Absorbent core with high superabsorbent material content

Information

  • Patent Grant
  • 9713556
  • Patent Number
    9,713,556
  • Date Filed
    Monday, December 9, 2013
    10 years ago
  • Date Issued
    Tuesday, July 25, 2017
    6 years ago
Abstract
An absorbent core (28) and an absorbent article (20) comprising the core. The absorbent core comprises a core wrap (16, 16′) enclosing an absorbent material (60), wherein the absorbent material comprises at least 80% of superabsorbent polymers (“SAP”) by weight of the absorbent material. The absorbent core has a Relative Wet Caliper Increase (RWCI) after compression of less than 10% as measured by the Wet Caliper And Compression Force (WCACF) Test as described herein, and wherein the core wrap (16, 16′) is at least partially sealed so that substantially no absorbent material leaks out of the core wrap while performing the WCACF Test.
Description
FIELD OF THE INVENTION

The invention is for an absorbent core for personal hygiene absorbent products such as, but not limited to, baby diapers, training pants, feminine pads or adult incontinence products.


BACKGROUND OF THE INVENTION

Absorbent articles for personal hygiene, such as disposable diapers for infants, training pants for toddlers or adult incontinence undergarments, are designed to absorb and contain body exudates, in particular large quantity of urine. These absorbent articles comprise several layers providing different functions, for example a topsheet, a backsheet and in-between an absorbent core, among other layers.


The function of the absorbent core is to absorb and retain the exudates for a prolonged amount of time, for example overnight for a diaper, minimize re-wet to keep the wearer dry and avoid soiling of clothes or bed sheets. The majority of currently marketed absorbent articles comprise as absorbent material a blend of comminuted wood pulp with superabsorbent polymers (SAP) in particulate form, also called absorbent gelling materials (AGM), see for example U.S. Pat. No. 5,151,092 (Buell). Absorbent articles having a core consisting essentially of SAP as absorbent material (so called “airfelt-free” cores) have also been proposed but are less common than traditional mixed cores (see e.g. WO2008/155699 (Hundorf), WO95/11652 (Tanzer), WO2012/052172 (Van Malderen)).


Absorbent articles comprising an absorbent core with slits or grooves have also been proposed, typically to increase the fluid acquisition properties of the core or to act as a folding guide. WO95/11652 (Tanzer) discloses absorbent articles which include superabsorbent material located in discrete pockets having water-sensitive and water-insensitive containment structure. WO2009/047596 (Wright) discloses an absorbent article with a slit absorbent core.


Absorbent products which are flexible in the crotch region provide the benefits of improved freedom of movement for the wearer, especially when the user's legs compress the crotch region of the article laterally. However the inventors have found that highly flexible products may in generally have a poor resiliency when becoming wet, and thus tend to lose their shape when compressed by the movement of the wearer's legs. As the absorbent core is deformed, the product can fail performing properly and this increases the chance of failure such as fluid leakages. The inventors have now found a new absorbent core structure which can provide the benefit of good flexibility combined with good resiliency when loaded with fluid.


SUMMARY OF THE INVENTION

The invention is for an absorbent core as defined in the claims and an absorbent article comprising this absorbent core. The absorbent core comprises a core wrap enclosing an absorbent material, wherein the absorbent material comprises at least 80% of superabsorbent polymers (“SAP”) by weight of the absorbent material. The absorbent core comprises a front edge, a back edge and two longitudinal edges, and has a longitudinal axis oriented in a longitudinal direction. The absorbent material comprises at least one channel, in particular at least one pair of channels at least partially oriented in the longitudinal direction. The absorbent core has a Relative Wet Caliper Increase (RWCI) value of less than 10.0% as measured by the Wet Caliper And Compression Force (WCACF) Test as described herein, and the core wrap is at least partially sealed so that substantially no absorbent material leaks out of the core wrap while performing the WCACF Test. The absorbent core may further have a Wet Compression Force below 5.00 N, in particular from 1.00 to 3.00N, as measured by the WCACF Test.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view of an absorbent article in the form of a diaper comprising an exemplary absorbent core according to the invention;



FIG. 2 is a transversal cross-section of the diaper of FIG. 1;



FIG. 3 is a top view of the exemplary absorbent core of the diaper of FIG. 1 taken in isolation;



FIG. 4 is a transversal cross-section of the core of FIG. 3;



FIG. 5 is a longitudinal cross-section of the core of FIG. 3;



FIG. 6 shows a top view of an alternative absorbent core of the invention.



FIG. 7 is a schematic description of an apparatus used to carry out the Wet Caliper And Compression Force Test, further detailed below.





DETAILED DESCRIPTION OF THE INVENTION

Introduction


As used herein, the term “absorbent article” refers to disposable products such as infant or adult diapers, training pants, and the like which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Typically these articles comprise a topsheet, backsheet, an absorbent core and optionally an acquisition layer and/or distribution layer and typically other components, with the absorbent core normally placed between the backsheet and the acquisition system or topsheet.


As used herein, the term “absorbent core” refers to an individual component, which is placed or is intended to be placed within an absorbent article and which comprises an absorbent material enclosed in a core wrap. The term “absorbent core” does not cover an acquisition or distribution layer or any other component of an absorbent article which is not either integral part of the core wrap or placed within the core wrap. The absorbent core is typically the component of an absorbent article which comprises all, or at least the majority of, superabsorbent particles (SAP) and has the most absorbent capacity of all the components of the absorbent article.


A “nonwoven web” as used herein means a manufactured sheet, web or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms such as short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yam). Nonwoven webs can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, carding and airlaying. The basis weight of nonwoven webs is usually expressed in grams per square meter (g/m2 or gsm).


“Comprise,” “comprising,” and “comprises” are open ended terms, each specifies the presence of the feature that follows, e.g. a component, but does not preclude the presence of other features, e.g. elements, steps, components known in the art or disclosed herein. These terms based on the verb “comprise” should be read as encompassing the narrower terms “consisting essential of” which excludes any element, step or ingredient not mentioned which materially affect the way the feature performs its function, and the term “consisting of” which excludes any element, step, or ingredient not specified. Any preferred or exemplary embodiments described below are not limiting the scope of the claims, unless specifically indicated to do so. The words “typically”, “normally”, “advantageously” and the likes also qualify features which are not intended to limit the scope of the claims unless specifically indicated to do so.


Unless indicated otherwise, the description refers to the absorbent core and absorbent article before use (i.e. dry, and not loaded with a fluid) and conditioned at least 24 hours at 21° C.+/−2° C. and 50+/−20% Relative Humidity (RH).


General Description of the Absorbent Article 20


An exemplary absorbent article 20 in which the absorbent core 28 of the invention can be used is an infant taped diaper 20 as represented in FIG. 1. FIG. 1 is a top plan view of the exemplary diaper 20, in a flat-out state, with portions of the structure being cut-away to more clearly show the construction of the diaper 20. This diaper 20 is shown for illustration purpose only as the invention may be used for making a wide variety of diapers or other absorbent articles.


The absorbent article 20 comprises a liquid permeable topsheet 24, a liquid impermeable backsheet 25, an absorbent core 28 between the topsheet 24 and the backsheet 25. The absorbent article may also comprise further typical components such as an acquisition layer 52 and/or a distribution layer 54 (collectively referred to as acquisition-distribution system “ADS”, designated as 50 in FIG. 2), and elasticized gasketing cuffs 32 present between topsheet and backsheet and upstanding barrier leg cuffs 34, which will be further detailed in the following. FIGS. 1-2 also show other typical taped diaper components such as a fastening system comprising fastening tabs 42 attached towards the back edge 12 of the article and cooperating with a landing zone 44 towards the front edge of the article. The absorbent article may also comprise other typical components, which are not represented in the Figures, such as a back elastic waist feature, a front elastic waist feature, transverse barrier cuff(s), a lotion application, etc. . . .


The absorbent article 20 comprises a front edge 10, a back edge 12, and two longitudinal edge edges. The front edge 10 is the edge of the article which is intended to be placed towards the front of the user when worn, and the back edge 12 is the opposite edge. The absorbent article may be notionally divided by a longitudinal axis 80 extending from the front edge to the back edge of the article and dividing the article in two substantially symmetrical halves relative to this axis, when viewing the article from the wearer facing side in a flat out configuration, as exemplarily shown in FIG. 1. If some part of the article is under tension due to elasticized components, the article may be typically flattened using clamps along the periphery of the article and/or a sticky surface, so that the topsheet and backsheet can be pulled taut so as to be substantially flat. The absorbent article 20 can also be notionally divided by a transversal axis 90 in a front region and a back region of equal length measured on the longitudinal axis, when the article is in such a flat state. This article's transversal axis 90 is perpendicular to the longitudinal axis 80 and placed at half the length of the article. The length of the article can be measured along the longitudinal axis 80 from front edge 10 to back edge 12.


The topsheet 24, the backsheet 25, the absorbent core 28 and the other article components may be assembled in a variety of well known configurations, in particular by gluing and/or heat embossing. Exemplary diaper assemblies are for example generally described in U.S. Pat. Nos. 3,860,003, 5,221,274, 5,554,145, 5,569,234, 5,580,411, and 6,004,306. The absorbent article is preferably thin. The article may be advantageously thin at the intersection of the longitudinal and transversal axis, for example with a caliper of from 1.0 mm to 8.0 mm, in particular from 1.5 mm to 6.0 mm, as measured using the Absorbent Article Caliper Test described below.


These and other components of the articles will now be discussed in more details.


Absorbent Core 28


The absorbent core of the invention comprises absorbent material with a high amount of superabsorbent polymers (herein abbreviated as “SAP”) enclosed within a core wrap. The SAP content represents at least 80% by weight of the absorbent material contained in the core wrap. The core wrap is not considered as absorbent material for the purpose of assessing the percentage of SAP in the absorbent core. The absorbent material defines an absorbent material deposition area 8 as seen when the core is placed substantially flat. As used herein, the term “absorbent core” does not include the topsheet, the backsheet and (if present) an acquisition-distribution system or layer which is not integral part of the absorbent core, in particular which is not placed within the core wrap. The core may consist essentially of, or consist of, the core wrap, the absorbent material and optionally glue. The term “absorbent core” and the term “core” are herein used interchangeably.


The exemplary absorbent core 28 of the absorbent article of FIG. 1 is shown in isolation in FIGS. 3-5. The absorbent core of the invention comprises a front edge 280, a back edge 282 and two longitudinal edges 284, 286 joining the front edge 280 and the back edge 282. The front edge 280 of the core is the edge of the core intended to be placed towards the front edge 10 of the absorbent article. Typically the absorbent material will be advantageously distributed in higher amount towards the front edge than towards the back edge as more absorbency is required at the front. Typically the front and back edges of the core 280, 282 are shorter than the longitudinal edges 284, 286 of the core. The absorbent core may also comprise a top side and a bottom side. The top side 288 of the core is the side intended to be placed towards the topsheet and the bottom side 290 the side intended to be placed towards the backsheet in the finished article 20. The top side 288 of the core is typically more hydrophilic than the bottom side 290. The width of the core at the crotch point as measured between the two longitudinal edges 284,286 should be sufficient for the WCACF Test to be conducted, i.e. should be at least 40 mm. The width of the core at the crotch point may in particular be of from 45 mm to 200 mm, or from 50 mm to 150 mm.


The absorbent core may be notionally divided by a longitudinal axis 80′ extending from the front edge to the back edge of the core and dividing the core in two substantially symmetrical halves relative to this axis, when viewing the core from the topside in a flat out configuration, as exemplarily shown in FIG. 3. Typically the longitudinal axis 80′ of the core and the longitudinal axis 80 of the article in which the core is intended to be placed will be contiguous, when viewed from the top as in FIG. 1. The transversal axis of the core (herein also referred to as “crotch line”), is perpendicular to the longitudinal axis and is passing through the crotch point C of the core. The crotch point C is the point of the absorbent core placed at a distance of 0.45 of L from the front edge of the absorbent core, L being the length of the core as measured from its front edge to its back edge on the longitudinal axis 80′, as illustrated in FIG. 3. The full length L of the core is measured from the front edge 280 to the back edge 282 of the core along its longitudinal axis 80′ and also includes the region of the core wrap which does not enclose the absorbent material, in particular at the front and back end seals when present. The length of the core L is of at least 320 mm, for example from 320 mm to 600 mm.


The crotch region 81 is defined herein as the region of the core extending from the crotch line, i.e. at the level of the crotch point C, towards the back edge and front edge of the core by a distance of a quarter of L (L/4) in both directions for a total length of L/2. The front region 82 and back region 83 of the core are the remaining regions of the deposition area towards the front and back edges of the core respectively.


The core wrap may be formed by two nonwoven material 16, 16′ which may be at least partially sealed along the edges of the absorbent core. The core wrap may be at least partially sealed along the core's front edge, back edge and two longitudinal edges so that substantially no absorbent material leaks out of the absorbent core wrap when performing the compression step of the WCACF test described below. It is not excluded that the core wrap can be sealed with a seal line further inboard than the core's edge, for example as in a gift wrapping if the core wrap comprises a single substrate. The absorbent core may also advantageously achieve an SAP loss of no more than about 70%, 60%, 50%, 40%, 30%, 20%, 10% according to the Wet Immobilization Test described in WO2010/0051166A1. Further aspects of the absorbent core will now be described in further details.


The absorbent core of the invention may be relatively thin and thinner than can conventional airfelt cores. In particular the caliper of the core (before use) as measured at the crotch point (C) according to the Core Caliper Test as described herein may be from 0.25 mm to 5.0 mm, in particular from 0.5 mm to 4.0 mm.


By “absorbent material” it is meant a material which has at least some absorbency and/or liquid retaining properties, such as SAP, cellulosic fibers as well as some hydrophilically treated synthetic fibers. Typically, glues used in making absorbent cores have no absorbency properties and are not considered as absorbent material. The SAP content may be higher than 80%, for example at least 85%, at least 90%, at least 95% and even up to and including 100% of the weight of the absorbent material contained within the core wrap. This high SAP content may provide a relatively thin core compared to conventional core typically comprising between 40-60% SAP and the rest of cellulose fibers. The absorbent material of the invention may in particular comprises less than 10% weight percent, or less than 5% weight percent, or even be substantially free of natural and/or synthetic fibers. The absorbent material may advantageously comprise little or no airfelt (cellulosic) fibers, in particular the absorbent core may comprise less than 15%, 10%, or 5% airfelt (cellulose) fibers by weight of the absorbent core, or even be substantially free of cellulose fibers.


The absorbent core of the invention may further comprise adhesive for example to help immobilizing the SAP within the core wrap and/or to ensure integrity of the core wrap, in particular when the core wrap is made of two or more substrates. The core wrap will typically extend to a larger area than strictly needed for containing the absorbent material within.


Cores comprising relatively high amount of SAP with various core designs have been proposed in the past, see for example in U.S. Pat. No. 5,599,335 (Goldman), EP1,447,066 (Busam), WO95/11652 (Tanzer), US2008/0312622A1 (Hundorf), WO2012/052172 (Van Malderen). In some embodiments, the absorbent material may be continuously present within the core wrap. In this case, the absorbent material may be for example obtained by the application of a single continuous layer of absorbent material. In other embodiments, the absorbent material may be comprised of individual pockets or stripes of absorbent material enclosed within the core wrap and separated by junction areas.


The continuous layer of absorbent material, in particular of SAP, may also be obtained by combining two “half” absorbent layers having discontinuous absorbent material application pattern wherein the resulting layer is substantially continuously distributed across the absorbent particulate polymer material area, as taught in US2008/0312622A1 (Hundorf) for example. The absorbent core 28 may for example, as illustrated in FIG. 5, comprise a first absorbent layer and a second absorbent layer, the first absorbent layer comprising a first substrate 16 and a first layer 61 of absorbent material, which may be 100% SAP, and the second absorbent layer comprising a second substrate and a second layer of absorbent material, which may also be 100% SAP, and a fibrous thermoplastic adhesive material 51 at least partially bonding each layer of absorbent material 61, 62 to its respective substrate. The first substrate 16 and the second substrate 16′ form the core wrap. The first and second absorbent layers may be deposited on their respective substrate in a deposition pattern comprising land areas comprising absorbent material and junction areas between the land areas which are free of absorbent material. The land areas as exemplified in FIG. 5 for example may be for example transversally orientated and span the width of the absorbent material deposition area 8. The fibrous thermoplastic adhesive material 51 may be at least partially in contact with the absorbent material 61, 62 in the land areas and at least partially in contact with the substrate layer in the junction areas. This imparts an essentially three-dimensional structure to the fibrous layer of thermoplastic adhesive material 51, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions. Thereby, the fibrous thermoplastic adhesive material may provide cavities to cover the absorbent material in the land area, and thereby immobilizes this absorbent material, which as already indicated may be 100% SAP.


The thermoplastic adhesive material may comprise, in its entirety, a single thermoplastic polymer or a blend of thermoplastic polymers, having a softening point, as determined by the ASTM Method D-36-95 “Ring and Ball”, in the range between 50° C. and 300° C., and/or the thermoplastic adhesive material may be a hotmelt adhesive comprising at least one thermoplastic polymer in combination with other thermoplastic diluents such as tackifying resins, plasticizers and additives such as antioxidants.


The thermoplastic polymer has typically a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or −6° C.<Tg<16° C. Typical concentrations of the polymer in a hotmelt are in the range of about 20 to about 40% by weight. The thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such. The B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof. Other suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins.


The tackifying resin may exemplarily have a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hotmelt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%.


The thermoplastic adhesive 51 used for the fibrous layer preferably has elastomeric properties, such that the web formed by the fibers on the SAP layer is able to be stretched as the SAP swell. Exemplary elastomeric, hotmelt adhesives include thermoplastic elastomers such as ethylene vinyl acetates, polyurethanes, polyolefin blends of a hard component (generally a crystalline polyolefin such as polypropylene or polyethylene) and a Soft component (such as ethylene-propylene rubber); copolyesters such as poly (ethylene terephthalate-co-ethylene azelate); and thermoplastic elastomeric block copolymers having thermoplastic end blocks and rubbery mid blocks designated as A-B-A block copolymers: mixtures of structurally different homopolymers or copolymers, e.g., a mixture of polyethylene or polystyrene with an A-B-A block copolymer; mixtures of a thermoplastic elastomer and a low molecular weight resin modifier, e.g., a mixture of a styrene-isoprenestyrene block copolymer with polystyrene; and the elastomeric, hot-melt, pressure-sensitive adhesives described herein. Elastomeric, hot-melt adhesives of these types are described in more detail in U.S. Pat. No. 4,731,066 issued to Korpman on Mar. 15, 1988.


The thermoplastic adhesive material is advantageously applied as fibers. The fibers may exemplarily have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5 mm to about 30 mm. To improve the adhesion of the thermoplastic adhesive material to the substrate or to any other layer, in particular any other nonwoven layer, such layers may be pre-treated with an auxiliary adhesive. The fibers adhere to each other to form a fibrous layer, which can also be described as a mesh.


In certain embodiments, the thermoplastic adhesive material will meet at least one, or several, or all of the following parameters. An exemplary thermoplastic adhesive material may have a storage modulus G′ measured at 20° C. of at least 30,000 Pa and less than 300,000 Pa, or less than 200,000 Pa, or between 140,000 Pa and 200,000 Pa, or less than 100,000 Pa. In a further aspect, the storage modulus G′ measured at 35° C. may be greater than 80,000 Pa. In a further aspect, the storage modulus G′ measured at 60° C. may be less than 300,000 Pa and more than 18,000 Pa, or more than 24,000 Pa, or more than 30,000 Pa, or more than 90,000 Pa. In a further aspect, the storage modulus G′ measured at 90° C. may be less than 200,000 Pa and more than 10,000 Pa, or more than 20,000 Pa, or more then 30,000 Pa. The storage modulus measured at 60° C. and 90° C. may be a measure for the form stability of the thermoplastic adhesive material at elevated ambient temperatures. This value is particularly important if the absorbent product is used in a hot climate where the thermoplastic adhesive material would lose its integrity if the storage modulus G′ at 60° C. and 90° C. is not sufficiently high.


G′ can be measured using a rheometer as indicated in WO2010/27719. The rheometer is capable of applying a shear stress to the adhesive and measuring the resulting strain (shear deformation) response at constant temperature. The adhesive is placed between a Peltier-element acting as lower, fixed plate and an upper plate with a radius R of e.g., 10 mm, which is connected to the drive shaft of a motor to generate the shear stress. The gap between both plates has a height H of e.g., 1500 micron. The Peltier-element enables temperature control of the material (+0.5° C.). The strain rate and frequency should be chosen such that all measurements are made in the linear viscoelastic region.


Absorbent Material Deposition Area 8


The absorbent core may comprise an absorbent material deposition area 8 defined by the periphery of the layer formed by the absorbent material 60 within the core wrap, as seen from the top when the absorbent core is laid flat, as illustrated in FIG. 3. The absorbent material 60 may be applied continuously or discontinuously in the absorbent material deposition area 8. If absorbent material free channels or junction areas between pockets or stripes of absorbent material are present, these are considered to be part of the absorbent material deposition area 8, for example for the purpose of measuring the width or the length L of the absorbent material deposition area.


The shape of the absorbent material deposition area 8 can vary, in particular it can be rectangular as shown in FIG. 3 or shaped with a so-called “dog bone” or “hour-glass” shape, which shows a tapering along its width at least in the crotch region 81 of the absorbent material deposition area, as shown in FIG. 6. When shaped (non-rectangular), the absorbent material deposition area 8 may have a relatively narrow width in the crotch region 81 of the core as this may provide for example better wearing comfort in the finished article incorporating the core. The absorbent material deposition area 8 may thus have a width (as measured in the transversal direction perpendicular to the longitudinal axis 80′) at its narrowest point which is less than about 100 mm, 90 mm, 80 mm, 70 mm, 60 mm or even less than about 50 mm. This narrowest width may typically be in the crotch region and may further be for example at least 5 mm, or at least 10 mm, or at least 20 mm smaller than the maximum width of the absorbent material deposition area 8 at its largest point in the front region 82 and/or back region 83 of the absorbent core.


The basis weight (amount deposited per unit of area) of the absorbent material may also be varied along the absorbent material deposition area 8 to create a profiled distribution of the absorbent material in the longitudinal direction, in the transversal direction, or both directions of the core. Hence the basis weight of the absorbent material may vary along the longitudinal axis of the core 80′, as well as along the transversal axis, or any axis parallel to any of these axes. The basis weight of absorbent material in area of relatively high basis weight such as the crotch point may thus be for example at least 10%, or 20%, or 30%, or 40%, or 50% higher than in an area of relatively low basis weight. In particular the absorbent material present in the absorbent material deposition area 8 at the level of the crotch point C may have more SAP per unit of area deposited as compared to any other area of the front region 82 or back region 83 of the deposition area 8. The basis weight of the SAP may be at least 10%, or 20%, or 30%, or 40%, or 50% higher at the crotch point (C) of the core than at an another point of the absorbent material deposition area on the longitudinal axis, in particular in the front or back region of the core.


The absorbent material 60 may be deposited using known techniques, which may allow relatively precise deposition of SAP at relatively high speed. In particular the SAP printing technology as disclosed for example in US2006/24433 (Blessing), US2008/0312617 and US2010/0051166A1 (both to Hundorf et al.) may be used. This technique uses a printing roll to deposit SAP onto a substrate disposed on a grid of a support which may include a plurality of cross bars extending substantially parallel to and spaced from one another so as to form channels extending between the plurality of cross-bars. This technology allows high-speed and precise deposition of SAP on a substrate. The channels of the absorbent core can be formed for example by modifying the pattern of the grid and receiving drums so that no SAP is applied in areas corresponding to the channels. EP application number 11169396.6 for example discloses this modification in more details.


Superabsorbent Polymer (SAP)


“Superabsorbent polymers” (“SAP”) as used herein refer to absorbent material which are cross-linked polymeric materials that can absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity (CRC) test (EDANA method WSP 241.2-05E). The SAP of the invention may in particular have a CRC value of more than 20 g/g, or more than 24 g/g, or of from 20 to 50 g/g, or from 20 to 40 g/g, or 24 to 30 g/g. The SAP useful in the present invention include a variety of water-insoluble, but water-swellable polymers capable of absorbing large quantities of fluids.


The superabsorbent polymer can be in particulate form so as to be flowable in the dry state. Typical particulate absorbent polymer materials are made of poly(meth)acrylic acid polymers. However, e.g. starch-based particulate absorbent polymer material may also be used, as well polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxymethylcellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile. The superabsorbent polymer may be polyacrylates and polyacrylic acid polymers that are internally and/or surface cross-linked. Suitable materials are described in the PCT Patent Application WO07/047598 or for example WO07/046052 or for example WO2009/155265 and WO2009/155264. In some embodiments, suitable superabsorbent polymer particles may be obtained by current state of the art production processes as is more particularly as described in WO 2006/083584. The superabsorbent polymers are preferably internally cross-linked, i.e. the polymerization is carried out in the presence of compounds having two or more polymerizable groups which can be free-radically copolymerized into the polymer network. Useful crosslinkers include for example ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane as described in EP-A 530 438, di- and triacrylates as described in EP-A 547 847, EP-A 559 476, EP-A 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 and in DE-A 10331450, mixed acrylates which, as well as acrylate groups, include further ethylenically unsaturated groups, as described in DE-A 103 31 456 and DE-A 103 55 401, or crosslinker mixtures as described for example in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 and WO 02/32962 as well as cross-linkers described in WO2009/155265. The superabsorbent polymer particles may be externally surface cross-linked, or: post cross-linked). Useful post-crosslinkers include compounds including two or more groups capable of forming covalent bonds with the carboxylate groups of the polymers. Useful compounds include for example alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds as described in EP-A 083 022, EP-A 543 303 and EP-A 937 736, polyhydric alcohols as described in DE-C 33 14 019, cyclic carbonates as described in DE-A 40 20 780, 2-oxazolidone and its derivatives, such as N-(2-hydroxyethyl)-2-oxazolidone as described in DE-A 198 07 502, bis- and poly-2-oxazolidones as described in DE-A 198 07 992, 2-oxotetrahydro-1,3-oxazine and its derivatives as described in DE-A 198 54 573, N-acyl-2-oxazolidones as described in DE-A 198 54 574, cyclic ureas as described in DE-A 102 04 937, bicyclic amide acetals as described in DE-A 103 34 584, oxetane and cyclic ureas as described in EP1,199,327 and morpholine-2,3-dione and its derivatives as described in WO03/031482.


In some embodiments, the SAP are formed from polyacrylic acid polymers/polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions.


The SAP useful for the present invention may be of numerous shapes. The term “particles” refers to granules, fibers, flakes, spheres, powders, platelets and other shapes and forms known to persons skilled in the art of superabsorbent polymer particles. In some embodiments, the SAP particles can be in the shape of fibers, i.e. elongated, acicular superabsorbent polymer particles. In those embodiments, the superabsorbent polymer particles fibers have a minor dimension (i.e. diameter of the fiber) of less than about 1 mm, usually less than about 500 μm, and preferably less than 250 μm down to 50 μm. The length of the fibers is preferably about 3 mm to about 100 mm. The fibers can also be in the form of a long filament that can be woven.


Typically, SAP are spherical-like particles. In contrast to fibers, “spherical-like particles” have a longest and a smallest dimension with a particulate ratio of longest to smallest particle dimension in the range of 1-5, where a value of 1 would equate a perfectly spherical particle and 5 would allow for some deviation from such a spherical particle. The superabsorbent polymer particles may have a particle size of less than 850 μm, or from 50 to 850 μm, preferably from 100 to 710 μm, more preferably from 150 to 650 μm, as measured according to EDANA method WSP 220.2-05. SAP having a relatively low particle size help to increase the surface area of the absorbent material which is in contact with liquid exudates and therefore support fast absorption of liquid exudates.


The SAP may have a particle sizes in the range from 45 μm to 4000 μm, more specifically a particle size distribution within the range of from 45 μm to about 2000 μm, or from about 100 μm to about 1000, 850 or 600 μm. The particle size distribution of a material in particulate form can be determined as it is known in the art, for example by means of dry sieve analysis (EDANA 420.02 “Particle Size distribution).


In some embodiments herein, the superabsorbent material is in the form of particles with a mass medium particle size up to 2 mm, or between 50 microns and 2 mm or to 1 mm, or preferably from 100 or 200 or 300 or 400 or 500 μm, or to 1000 or to 800 or to 700 μm; as can for example be measured by the method set out in for example EP-A-0,691,133. In some embodiments of the invention, the superabsorbent polymer material is in the form of particles whereof at least 80% by weight are particles of a size between 50 μm and 1200 μm and having a mass median particle size between any of the range combinations above. In addition, or in another embodiment of the invention, said particles are essentially spherical. In yet another or additional embodiment of the invention the superabsorbent polymer material has a relatively narrow range of particle sizes, e.g. with the majority (e.g. at least 80% or preferably at least 90% or even at least 95% by weight) of particles having a particle size between 50 μm and 1000 μm, preferably between 100 μm and 800 μm, and more preferably between 200 μm and 600 μm.


Suitable SAP may for example be obtained from inverse phase suspension polymerizations as described in U.S. Pat. Nos. 4,340,706 and 5,849,816 or from spray- or other gas-phase dispersion polymerizations as described in US Patent Applications No. 2009/0192035, 2009/0258994 and 2010/0068520. In some embodiments, suitable SAP may be obtained by current state of the art production processes as is more particularly described from page 12, line 23 to page 20, line 27 of WO 2006/083584.


The surface of the SAP may be coated, for example, with a cationic polymer. Preferred cationic polymers can include polyamine or polyimine materials. In some embodiments, the SAP may be coated with chitosan materials such as those disclosed in U.S. Pat. No. 7,537,832. In some other embodiments, the SAP may comprise mixed-bed Ion-Exchange absorbent polymers such as those disclosed in WO 99/34841 and WO 99/34842.


The absorbent core will typically comprise only one type of SAP, but it is not excluded that a blend of SAPs may be used. The fluid permeability of a superabsorbent polymer can be quantified using its Urine Permeability Measurement (UPM) value, as measured in the test disclosed European patent application number EP12174117.7. The UPM of the SAP may for example be of at least 10×10−7 cm3·sec/g, or at least 30×10−7 cm3·sec/g, or at least 50×10−7 cm3·sec/g, or more, e.g. at least 80 or 100×10−7 cm3·sec/g. The flow characteristics can also be adjusted by varying the quantity and distribution of the SAP used in the second absorbent layer.


For most absorbent articles, the liquid discharge occurs predominately in the front half of the article, in particular for diaper. The absorbent core may be thus placed in the absorbent article so that the front half of the absorbent article comprises most of the absorbent capacity of the core. Thus, at least: 60%, or 65%, or 70%, or 75%, or 80% of the SAP by weight may be present in the front half of the absorbent article, the remaining SAP being disposed in the back half of the absorbent article. The front half region of the absorbent article can be defined as the region between the front edge 10 of the absorbent article and the transversal axis 90 of the absorbent article. The transversal axis 90 is perpendicular to the longitudinal axis 80 and placed at a distance of half the length of the article as measured on longitudinal axis of the article from the front or back edge thereof.


The total amount of SAP present in the absorbent core may also vary according to expected user. Diapers for newborns may require less SAP than infant or adult incontinence diapers. The amount of SAP in the core may be for example comprised from about 5 to 60 g, in particular from 5 to 50 g. The average SAP basis weight within the (or “at least one”, if several are present) deposition area 8 of the SAP may be for example of at least 50, 100, 200, 300, 400, 500 or more g/m2. The areas of the channels present in the absorbent material deposition area 8 are deduced from the absorbent material deposition area to calculate this average basis weight.


Core wrap (16, 16′)


The core wrap may be made of a single substrate folded around the absorbent material, or may advantageously comprise two (or more) substrates which are attached to another. Typical attachments are the so-called C-wrap and/or sandwich wrap. In a C-wrap, as exemplarily shown in FIGS. 2 and 4, the longitudinal and/or transversal edges of one of the substrate are folded over the other substrate to form flaps. These flaps are then bonded to the external surface of the other substrate, typically by gluing.


The core wrap may be formed by any materials suitable for receiving and containing the absorbent material. Typical substrate materials used in the production of conventional cores may be used, in particular paper, tissues, films, wovens or nonwovens, or laminate of any of these. The core wrap may in particular be formed by a nonwoven web, such as a carded nonwoven, spunbond nonwoven (“S”) or meltblown nonwoven (“M”), and laminates of any of these. For example spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 gsm to 15 gsm. Suitable materials are for example disclosed in U.S. Pat. No. 7,744,576, US2011/0268932A1, US2011/0319848A1 or US2011/0250413A1. Nonwoven materials provided from synthetic fibers may be used, such as PE, PET and in particular PP.


If the core wrap comprises a first substrate 16 and a second substrate 16′ these may be made of the same type of material, or may be made of different materials or one of the substrate may be treated differently than the other to provide it with different properties. As the polymers used for nonwoven production are inherently hydrophobic, they are preferably coated with hydrophilic coatings if placed on the fluid receiving side of the absorbent core. It is advantageous that the top side of the core wrap, i.e. the side placed closer to the wearer in the absorbent article, be more hydrophilic than the bottom side of the core wrap. A possible way to produce nonwovens with durably hydrophilic coatings is via applying a hydrophilic monomer and a radical polymerization initiator onto the nonwoven, and conducting a polymerization activated via UV light resulting in monomer chemically bound to the surface of the nonwoven. An alternative possible way to produce nonwovens with durably hydrophilic coatings is to coat the nonwoven with hydrophilic nanoparticles, e.g. as described in WO 02/064877.


Permanently hydrophilic nonwovens are also useful in some embodiments. Surface tension, as described in U.S. Pat. No. 7,744,576 (Busam et al.), can be used to measure how permanently a certain hydrophilicity level is achieved. Liquid strike through, as described in U.S. Pat. No. 7,744,576, can be used to measure the hydrophilicity level. The first and/or second substrate may in particular have a surface tension of at least 55, preferably at least 60 and most preferably at least 65 mN/m or higher when being wetted with saline solution. The substrate may also have a liquid strike through time of less than 5 s for a fifth gush of liquid. These values can be measured using the test methods described in US7,744,576B2: “Determination Of Surface Tension” and “Determination of Strike Through” respectively.


Hydrophilicity and wettability are typically defined in terms of contact angle and the strike through time of the fluids, for example through a nonwoven fabric. This is discussed in detail in the American Chemical Society publication entitled “Contact angle, wettability and adhesion”, edited by Robert F. Gould (Copyright 1964). A substrate having a lower contact angle between the water and the surface of substrate may be said to be more hydrophilic than another.


The substrates may also be air-permeable. Films useful herein may therefore comprise micro-pores. The substrate may have for example an air-permeability of from 40 or from 50, to 300 or to 200 m3/(m2×min), as determined by EDANA method 140-1-99 (125 Pa, 38.3 cm2). The material of the core wrap may alternatively have a lower air-permeability, e.g. being non-air-permeable, for example to facilitate handling on a moving surface comprising vacuum.


In the present invention, the core wrap may be at least partially sealed along all the sides of the absorbent core or otherwise so that substantially no absorbent material leaks out of the core wrap while performing the WCACF Test indicated below. By “substantially no absorbent material” it is meant that less than 5%, advantageously less than 2%, or less than 1% or 0% by weight of absorbent material escapes the core wrap. In particular the core wrap should not in an appreciable way burst open while the test is conducted.


The term “seal” is to be understood in a broad sense. The seal does not need to be continuous along the whole periphery of the core wrap but may be discontinuous along part or the whole of it, such as formed by a series of closely spaced apart seal points on a line. While the seal may be at the periphery of the core, it is not excluded that a seal may also be at other locations of the core, for example close to the longitudinal centerline 80′. Typically a seal may be formed by gluing and/or thermal bonding.


If the core wrap is formed by two substrates 16, 16′, one seal per edge of the core may be typically be used to enclose the absorbent material 60 within the core wrap. This is exemplified in the FIGS. 4 and 5. As shown in FIG. 4, for example, the first substrate 16 may be placed on one side of the core (the top side as represented therein) and extends around the core's longitudinal edges to at least partially wrap the opposed (bottom) side of the core. The second substrate 16′ can be present between the wrapped flaps of the first substrate 16 and the absorbent material 60 of the core. The flaps of the first substrate 16 may be glued to the second substrate 16′ to provide a strong seal. This so called C-wrap construction can provide benefits such as improved resistance to bursting in a wet loaded state compared to a sandwich seal. The front edge and back edge of the core wrap may then also be sealed for example by gluing the first substrate and second substrate flat to another to provide more complete enclosure of the absorbent material across the whole of the periphery of the core. It can be advantageous to use the C-wrap at least on the longitudinal edges of the core which are longer than the front and end edges. In the so-called sandwich construction, the first and second substrates may also extend outwardly on all edges of the core and be sealed flat along the whole or parts of the periphery of the core typically by gluing and/or heat/pressure bonding. Typically neither first nor second substrates need to be shaped, so that they can be rectangularly cut for ease of production but of course other shapes are possible.


The core wrap may also be formed by a single substrate which may enclose as in a parcel wrap the absorbent material and be for example sealed along the front edge and back edge of the core and one longitudinal seal.


Channels 26, 26


The absorbent core comprises at least one channel which is at least partially oriented in the longitudinal direction of the core. If the following the plural form “channels” will be used to mean “at least one channel”. The channels may be formed in various ways. For example the channels may be formed by zones within the absorbent material deposition area which may be substantially or completely free of absorbent material, in particular SAP. In addition or alternatively, the channel(s) may also be formed by continuously or discontinuously bonding the material forming the top side of the core wrap to the material forming the bottom side of the core wrap through the absorbent material deposition area. The channels may be advantageously continuous but it is not excluded that the channels are intermittent. The acquisition-distribution system or any sub-layer between the topsheet and the absorbent core, or another layer of the article, may also comprise channels, which may or not correspond to the channels of the absorbent core. The channels may be in particular fully encompassed within the absorbent material deposition area 8.


The channel or channels may in particular be present within the crotch region (81) of the core, in particular at least at the same longitudinal level as the crotch point C, as represented in FIG. 3 by the two longitudinally extending channels 26, 26′. Some channels may also extend from the crotch region 81 into the back region 82 and/or front region 83 of the core or may be solely present in the front region and/or in the back region of the core, as represented in FIG. 6 by the smaller channels 27, 27′.


The absorbent core 28 may also comprise more than two channels, for example at least 3, or at least 4 or at least 5 or at least 6. Shorter channels may also be present, for example in the back region or the front region of the core as represented by the pair of channels 27, 27′ in FIG. 6 towards the front of the core. The channels may comprise one or more pairs of channels symmetrically arranged relative to the longitudinal axis 80′.


The channels may be particularly useful in the absorbent core when the absorbent material deposition area is rectangular, as the channels can improve the flexibility of the core to an extent that there is less advantage in using a non-rectangular (shaped) core. Of course channels may also be present in a layer of SAP having a shaped deposition area.


The channels may extend substantially longitudinally, which means typically that each channel extends more in the longitudinal direction than in the transverse direction, and typically at least twice as much in the longitudinal direction than in the transverse direction (as measured after projection on the respective axis). The channels may have a length L′ projected on the longitudinal axis 80′ of the core that is at least 10% of the length L of the absorbent material deposition area 8. It may be advantageous that at least some or all of the channels are not completely or substantially completely transversely oriented channels in the core.


The channels may be completely oriented longitudinally and parallel to the longitudinal axis but also may be curved. In particular some or all the channels, in particular the channels present in the crotch region, may be concave towards the longitudinal axis 80′, as for example represented in FIGS. 3 and 7 for the pair of channels 26, 26′. The radius of curvature may typically be at least equal (and preferably at least 1.5 or at least 2.0 times this average transverse dimension) to the average transverse dimension of the absorbent material deposition area 8; and also straight but under an angle of (e.g. from) 5° up to 30°, or for example up to 20°, or up to 10° with a line parallel to the longitudinal axis. The radius of curvature may be constant for a channel, or may vary along its length. This may also includes channels with an angle therein, provided said angle between two parts of a channel is at least 120°, preferably at least 150°; and in any of these cases, provided the longitudinal extension of the channel is more than the transverse extension. The channels may also be branched, for example a central channel superposed with the longitudinal axis in the crotch region which branches towards the back and/or towards the front of the article.


In some embodiments, there is no channel that coincides with the longitudinal axis 80′ of the core. When present as symmetrical pairs relative to the longitudinal axis, the channels may be spaced apart from one another over their whole longitudinal dimension. The smallest spacing distance may be for example at least 5 mm, or at least 10 mm, or at least 16 mm. Furthermore, in order to reduce the risk of fluid leakages, the longitudinal main channels typically do not extend up to any of the edges of the absorbent material deposition area 8, and are therefore fully encompassed within the absorbent material deposition area of the core. Typically, the smallest distance between a channel and the closest edge of the absorbent material deposition area is at least 5 mm.


The channels may have a width We along at least part of its length which is at least 2 mm, or at least 3 mm or at least 4 mm, up to for example 20 mm, or 16 mm or 12 mm. The width of the channel may be constant through substantially the whole length of the channel or may vary along its length.


At least some or all the channels are advantageously permanent channels, meaning their integrity is at least partially maintained both in the dry state and in the wet state. Permanent channels may be obtained by provision of one or more adhesive material, for example the fibrous layer of adhesive material or a construction glue that helps adhering for example a substrate with an absorbent material within the walls of the channel. Permanent channels may be also in particular formed by bonding the upper side and lower side of the core wrap (e.g. first substrate 16 and the second substrate 16′) together through the channels. Typically, an adhesive can be used to bond both sides of the core wrap through the channels, but it is possible to bond via other known means, such as pressure bonding, ultrasonic bonding or heat bonding or combination thereof. The core wrap can be continuously bonded or intermittently bonded along the channels. The channels may advantageously remain or become visible at least through the topsheet and/or backsheet when the absorbent article is fully loaded with a fluid as disclosed in the Wet Channel Integrity Test below. This may be obtained by making the channels substantially free of SAP, so they will not swell, and sufficiently large so that they will not close when wet. Furthermore bonding the core wrap to itself through the channels may be advantageous. The Wet Channel Integrity Test described below can be used to test if channels are permanent and visible following wet saturation and to what extent. Advantageously, a permanent channel according to the invention has a percentage of integrity of at least: 20%, or 30%, or 40%, or 50%, or 60, or 70%, or 80%, or 90%, according to the Wet Channel Integrity Test described below.


Topsheet 24


The topsheet 24 is the part of the absorbent article that is directly in contact with the wearer's skin. The topsheet 24 can be joined to the backsheet 25, the core 28 and/or any other layers as is known in the art (as used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element). Usually, the topsheet 24 and the backsheet 25 are joined directly to each other in some locations (e.g. on or close to the periphery of the article) and are indirectly joined together in other locations by directly joining them to one or more other elements of the article 20.


The topsheet 24 is preferably compliant, soft-feeling, and non-irritating to the wearer's skin. Further, at least a portion of the topsheet 24 is liquid permeable, permitting liquids to readily penetrate through its thickness. A suitable topsheet may be manufactured from a wide range of materials, such as porous foams, reticulated foams, apertured plastic films, or woven or nonwoven materials of natural fibers (e.g., wood or cotton fibers), synthetic fibers or filaments (e.g., polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof), or a combination of natural and synthetic fibers. If the topsheet 24 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art, in particular spunbond PP nonwoven. A suitable topsheet comprising a web of staple-length polypropylene fibers is manufactured by Veratec, Inc., a Division of International Paper Company, of Walpole, Mass. under the designation P-8.


Suitable formed film topsheets are also described in U.S. Pat. Nos. 3,929,135, 4,324,246, 4,342,314, 4,463,045, and 5,006,394. Other suitable topsheets may be made in accordance with U.S. Pat. Nos. 4,609,518 and 4,629,643 issued to Curro et al. Such formed films are available from The Procter & Gamble Company of Cincinnati, Ohio as “DRI-WEAVE” and from Tredegar Corporation, based in Richmond, Va., as “CLIFF-T”.


Any portion of the topsheet may be coated with a lotion as is known in the art. Examples of suitable lotions include those described in U.S. Pat. Nos. 5,607,760, 5,609,587, 5,643,588, 5,968,025 and 6,716,441. The topsheet 24 may also include or be treated with antibacterial agents, some examples of which are disclosed in PCT Publication WO95/24173. Further, the topsheet, the backsheet or any portion of the topsheet or backsheet may be embossed and/or matte finished to provide a more cloth like appearance.


The topsheet 24 may comprise one or more apertures to ease penetration of exudates therethrough, such as urine and/or feces (solid, semi-solid, or liquid). The size of at least the primary aperture is important in achieving the desired waste encapsulation performance. If the primary aperture is too small, the waste may not pass through the aperture, either due to poor alignment of the waste source and the aperture location or due to fecal masses having a diameter greater than the aperture. If the aperture is too large, the area of skin that may be contaminated by “rewet” from the article is increased. Typically, the total area of the apertures at the surface of a diaper may have an area of between about 10 cm2 and about 50 cm2, in particular between about 15 cm2 and 35 cm2. Examples of apertured topsheet are disclosed in U.S. Pat. No. 6,632,504, assigned to BBA NONWOVENS SIMPSONVILLE. WO2011/163582 also discloses suitable colored topsheet having a basis weight of from 12 to 18 gsm and comprising a plurality of bonded points. Each of the bonded points has a surface area of from 2 mm2 to 5 mm2 and the cumulated surface area of the plurality of bonded points is from 10 to 25% of the total surface area of the topsheet.


Typical diaper topsheets have a basis weight of from about 10 to about 28 gsm, in particular between from about 12 to about 18 gsm but other basis weights are possible.


Backsheet 25


The backsheet 25 is generally that portion of the absorbent article 20 which forms the majority of the external surface of the article when worn by the user. The backsheet is positioned towards the bottom side of the absorbent core and prevents the exudates absorbed and contained therein from soiling articles such as bedsheets and undergarments. The backsheet 25 is typically impermeable to liquids (e.g. urine). The backsheet may for example be or comprise a thin plastic film such as a thermoplastic film having a thickness of about 0.012 mm to about 0.051 mm. Exemplary backsheet films include those manufactured by Tredegar Corporation, based in Richmond, Va., and sold under the trade name CPC2 film. Other suitable backsheet materials may include breathable materials which permit vapors to escape from the diaper 20 while still preventing exudates from passing through the backsheet 25. Exemplary breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by Tredegar Corporation of Richmond, Va., and sold under the designation EXAIRE, and monolithic films such as manufactured by Clopay Corporation, Cincinnati, Ohio under the name HYTREL blend P18-3097. Some breathable composite materials are described in greater detail in PCT Application No. WO 95/16746 published on Jun. 22, 1995 in the name of E. I. DuPont; U.S. Pat. No. 5,938,648 to LaVon et al., U.S. Pat. No. 4,681,793 to Linman et al., U.S. Pat. No. 5,865,823 to Curro; and U.S. Pat. No. 5,571,096 to Dobrin et al, U.S. Pat. No. 6,946,585B2 to London Brown.


The backsheet 25 may be joined to the topsheet 24, the absorbent core 28 or any other element of the diaper 20 by any attachment means known in the art. Suitable attachment means are described above with respect to means for joining the topsheet 24 to other elements of the article 20. For example, the attachment means may include a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Suitable attachment means comprises an open pattern network of filaments of adhesive as disclosed in U.S. Pat. No. 4,573,986. Other suitable attachment means include several lines of adhesive filaments which are swirled into a spiral pattern, as is illustrated by the apparatus and methods shown in U.S. Pat. Nos. 3,911,173, 4,785,996; and 4,842,666. Adhesives which have been found to be satisfactory are manufactured by H. B. Fuller Company of St. Paul, Minn. and marketed as HL-1620 and HL 1358-XZP. Alternatively, the attachment means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment means or combinations of these attachment means as are known in the art.


Acquisition-distribution System


The absorbent articles of the invention may comprise an acquisition layer 52, a distribution layer 54, or combination of both (all herein collectively referred to as acquisition-distribution system “ADS”). The function of the ADS is typically to quickly acquire the fluid and distribute it to the absorbent core in an efficient manner. The ADS may comprise one, two or more layers, which may form a unitary layer or remain discrete layers which may be attached to each other. In the examples below, the ADS comprises two layers: a distribution layer 54 and an acquisition layer 52 disposed between the absorbent core and the topsheet, but the invention is not restricted to this example.


Typically, the ADS will not comprise SAP as this may slow the acquisition and distribution of the fluid. The prior art discloses many type of acquisition-distribution system, see for example WO2000/59430 (Daley), WO95/10996 (Richards), U.S. Pat. No. 5,700,254 (McDowall), WO02/067809 (Graef). The ADS may comprise, although not necessarily, two layers: a distribution layer 54 and an acquisition layer 52, which will now be exemplified in more details.


Distribution Layer 54


The function of a distribution layer 54 is to spread the insulting fluid liquid over a larger surface within the article so that the absorbent capacity of the core can be more efficiently used. Typically distribution layer are made of a nonwoven material based on synthetic or cellulosic fibers and having a relatively low density. The density of the distribution layer may vary depending on the compression of the article, but may typically range from 0.03 to 0.25 g/cm3, in particular from 0.05 to 0.15 g/cm3 measured at 0.30 psi (2.07 kPa). The distribution layer 54 may also be a material having a water retention value of from 25 to 60, preferably from 30 to 45, measured as indicated in the procedure disclosed in U.S. Pat. No. 5,137,537. The distribution layer may typically have an average basis weight of from 30 to 400 g/m2, in particular from 100 to 300 g/m2.


The distribution layer may for example comprise at least 50% by weight of cross-linked cellulose fibers. The cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled. This type of material has been used in the past in disposable diapers as part of an acquisition system, for example US 2008/0312622 A1 (Hundorf). The cross-linked cellulosic fibers provide higher resilience and therefore higher resistance to the first absorbent layer against the compression in the product packaging or in use conditions, e.g. under baby weight. This provides the core with a higher void volume, permeability and liquid absorption, and hence reduced leakage and improved dryness.


Exemplary chemically cross-linked cellulosic fibers suitable for a distribution layer are disclosed in U.S. Pat. Nos. 5,549,791, 5,137,537, WO9534329 or US2007/118087. Exemplary cross-linking agents include polycarboxylic acids such as citric acid and/or polyacrylic acids such as acrylic acid and maleic acid copolymers. For example, the crosslinked cellulosic fibers may have between about 0.5 mole % and about 10.0 mole % of a C2-C9 polycarboxylic acid cross-linking agent, calculated on a cellulose anhydroglucose molar basis, reacted with said fibers in an intrafiber ester crosslink bond form. The C2-C9 polycarboxylic acid cross-linking agent may be selected from the group consisting of:

    • aliphatic and alicyclic C2-C9 polycarboxylic acids having at least three carboxyl groups per molecule; and
    • aliphatic and alicyclic C2-C9 polycarboxylic acids having two carboxyl groups per molecule and having a carbon-carbon double bond located alpha, beta to one or both of the carboxyl groups, wherein one carboxyl group in said C2-C9 polycarboxylic acid crosslinking agent is separated from a second carboxyl group by either two or three carbon atoms. The fibers may have in particular between about 1.5 mole % and about 6.0 mole % crosslinking agent, calculated on a cellulose anhydroglucose molar basis, reacted therewith in the form of intrafiber ester crosslink bonds. The cross-linking agent may be selected from the group consisting of citric acid, 1, 2, 3, 4 butane tetracarboxylic acid, and 1, 2, 3 propane tricarboxylic acid, in particular citric acid.


Polyacrylic acid cross-linking agents may also be selected from polyacrylic acid homopolymers, copolymers of acrylic acid, and mixtures thereof. The fibers may have between 1.0 weight % and 10.0 weight %, preferably between 3 weight % and 7 weight %, of these cross-linking agents, calculated on a dry fiber weight basis, reacted therewith in the form of intra-fiber crosslink bonds. The cross-linking agent may be a polyacrylic acid polymer having a molecular weight of from 500 to 40,000, preferably from 1,000 to 20,000. The polymeric polyacrylic acid cross-linking agent may be a copolymer of acrylic acid and maleic acid, in particular wherein the weight ratio of acrylic acid to maleic acid is from 10:1 to 1:1, preferably from 5:1 to 1.5:1. An effective amount of citric acid may be further mixed with said polymeric polyacrylic acid cross-linking agent.


The distribution layer comprising cross-linked cellulose fibers may comprise other fibers, but this layer may advantageously comprise at least 50%, or 60%, or 70%, or 80%, or 90% or even up to 100%, by weight of the layer, of cross-linked cellulose fibers (including the cross-linking agents). Examples of such mixed layer of cross-linked cellulose fibers may comprise about 70% by weight of chemically cross-linked cellulose fibers, about 10% by weight polyester (PET) fibers, and about 20% by weight untreated pulp fibers. In another example, the layer of cross-linked cellulose fibers may comprise about 70% by weight chemically cross-linked cellulose fibers, about 20% by weight lyocell fibers, and about 10% by weight PET fibers. In another example, the layer may comprise about 68% by weight chemically cross-linked cellulose fibers, about 16% by weight untreated pulp fibers, and about 16% by weight PET fibers. In another example, the layer of cross-linked cellulose fibers may comprise from about 90-100% by weight chemically cross-linked cellulose fibers.


Acquisition Layer 52


The absorbent article 20 may comprise an acquisition layer 52, whose function is to quickly acquire the fluid away from the topsheet so as to provide a good dryness for the wearer. The acquisition layer 52 is typically placed directly under the topsheet. If present, the distribution layer may be at least partially disposed under the acquisition layer. The acquisition layer may typically be or comprise a non-woven material, for example a SMS or SMMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer or alternatively a carded chemical-bonded nonwoven. The non-woven material may in particular be latex bonded. Exemplary upper acquisition layers 52 are disclosed in U.S. Pat. No. 7,786,341. Carded, resin-bonded nonwovens may be used, in particular where the fibers used are solid round or round and hollow PET staple fibers (50/50 or 40/60 mix of 6 denier and 9 denier fibers). An exemplary binder is a butadiene/styrene latex. Non-wovens have the advantage that they can be manufactured outside the converting line and stored and used as a roll of material.


Further useful non-wovens are described in U.S. Pat. No. 6,645,569 to Cramer et al., U.S. Pat. No. 6,863,933 to Cramer et al., U.S. Pat. No. 7,112,621 to Rohrbaugh et al., and co patent applications US2003/148684 to Cramer et al. and US2005/008839 to Cramer et al.


The acquisition layer 52 may be stabilized by a latex binder, for example a styrene-butadiene latex binder (SB latex). Processes for obtaining such lattices are known, for example, from EP 149 880 (Kwok) and US 2003/0105190 (Diehl et al.). In certain embodiments, the binder may be present in the acquisition layer 52 in excess of about 12%, about 14% or about 16% by weight. SB latex is available under the trade name GENFLO™ 3160 (OMNOVA Solutions Inc.; Akron, Ohio).


A further acquisition layer may be used in addition to a first acquisition layer described above. For example a tissue layer may be placed between the first acquisition layer and the distribution layer. The tissue may have enhanced capillarity distribution properties compared to the acquisition layer described above. The tissue and the first acquisition layer may be of the same size or may be of different size, for example the tissue layer may extend further in the back of the absorbent article than the first acquisition layer. An example of hydrophilic tissue is a 13-15 gsm high wet strength made of cellulose fibers from supplier Havix.


Fastening System 42-44


The absorbent article may include a fastening system. The fastening system can be used to provide lateral tensions about the circumference of the absorbent article to hold the absorbent article on the wearer. This fastening system is not necessary for training pant article since the waist region of these articles is already bonded. The fastening system usually comprises a fastener such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs & slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable. A landing zone is normally provided on the front waist region of the article for the fastener to be releasably attached. Some exemplary surface fastening systems are disclosed in U.S. Pat. Nos. 3,848,594, 4,662,875, 4,846,815, 4,894,060, 4,946,527, 5,151,092 and 5,221,274 issued to Buell. An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140 issued to Robertson et al.


The fastening system may also include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622 to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. Nos. 5,242,436, 5,499,978, 5,507,736, and 5,591,152.


Front and Back Ears 46, 40


The absorbent article may comprise front ears 46 and back ears 40 as is known in the art. The ears can be integral part of the chassis, for example formed from the topsheet and/or backsheet as side panel. Alternatively, as represented on FIG. 1, they may be separate elements attached by gluing and/or heat embossing. The back ears 40 are advantageously stretchable to facilitate the attachment of the tabs 42 on the landing zone 40 and maintain the taped diapers in place around the wearer's waist. The back ears 40 may also be elastic or extensible to provide a more comfortable and contouring fit by initially conformably fitting the absorbent article to the wearer and sustaining this fit throughout the time of wear well past when absorbent article has been loaded with exudates since the elasticized ears allow the sides of the absorbent article to expand and contract.


Barrier Leg Cuffs 34 and Gasketing Cuffs 32


Absorbent articles such as diapers or training pants may typically further comprise components that increase the fit of the article around the legs of the wearer, in particular barrier leg cuffs 34 and gasketing cuffs 32. The barrier leg cuffs 32 may be formed by a piece of material, typically a nonwoven, which is partially bonded to the rest of the article and can be partially raised away and thus stand up from the plane defined by the topsheet, when the article is pulled flat as shown e.g. in FIGS. 1-2. The barrier leg cuffs can provide improved containment of liquids and other body exudates approximately at the junction of the torso and legs of the wearer. The barrier leg cuffs extend at least partially between the front edge and the back edge of the absorbent article on opposite sides of the longitudinal axis and are at least present at the level of the crotch point (C).


The barrier leg cuffs may be delimited by a proximal edge 64 joined to the rest of the article, typically the topsheet and/or the backsheet, and a free terminal edge 66, which is intended to contact and form a seal with the wearer's skin. The barrier leg cuffs 34 may be joined at the proximal edge 64 with the chassis of the article by a bond 65 which may be made for example by gluing, fusion bonding or combination of known bonding means. The bond 65 at the proximal edge 64 may be continuous or intermittent.


The barrier leg cuffs 32 can be integral with (i.e. formed from) the topsheet or the backsheet, or more typically be formed from a separate material joined to the rest of the article. Typically the material of the barrier leg cuffs may extend through the whole length of the article but is “tack bonded” to the topsheet towards the front edge and back edge of the article so that in these sections the barrier leg cuff material remains flush with the topsheet. Each barrier leg cuff 34 may comprise one, two or more elastic strings 35 close to this free terminal edge 66 to provide a better seal. In addition to the barrier leg cuffs 34, the article may comprise gasketing cuffs 32, which are formed in the same plane as the chassis of absorbent article, in particular may be at least partially enclosed between the topsheet and the backsheet, and may be placed transversely outwardly relative to the barrier leg cuffs. The gasketing cuffs can provide a better seal around the thighs of the wearer. Usually each gasketing leg cuff will comprise one or more elastic string or elastic element comprised in the chassis of the diaper for example between the topsheet and backsheet in the area of the leg openings.


U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (a gasketing cuff). U.S. Pat. Nos. 4,808,178 and 4,909,803 issued to Aziz et al. describe disposable diapers having “stand-up” elasticized flaps (barrier leg cuffs) which improve the containment of the leg regions. U.S. Pat. Nos. 4,695,278 and 4,795,454 issued to Lawson and to Dragoo respectively, describe disposable diapers having dual cuffs, including gasketing cuffs and barrier leg cuffs. All or a portion of the barrier leg and/or gasketing cuffs may be treated with a lotion.


Elastic Waist Feature


The absorbent article may also comprise at least one elastic waist feature (not represented) that helps to provide improved fit and containment. The elastic waist feature is generally intended to elastically expand and contract to dynamically fit the wearer's waist. The elastic waist feature preferably extends at least longitudinally outwardly from at least one waist edge of the absorbent core 28 and generally forms at least a portion of the back side of the absorbent article. Disposable diapers can be constructed so as to have two elastic waist features, one positioned in the front waist region and one positioned in the back waist region. The elastic waist feature may be constructed in a number of different configurations including those described in U.S. Pat. Nos. 4,515,595, 4,710,189, 5,151,092 and 5,221,274.


Relations Between the Layers and Components


Typically, adjacent layers will be joined together using conventional bonding method such as adhesive coating via slot coating or spraying on the whole or part of the surface of the layer, or thermo-bonding, or pressure bonding or combinations thereof. This bonding is not represented in the Figures (except for the bonding 65 between the raised element of the leg cuffs 34 with the topsheet 24) for clarity and readability but bonding between the layers of the article should be considered to be present unless specifically excluded. Adhesives may be typically used to improve the adhesion of the different layers, for example between the backsheet and the core wrap. The glue may be any standard hotmelt glue as known in the art.


If an acquisition layer 52 is present, it may be advantageous that this acquisition layer is larger than or least as large as the distribution layer 54 in the longitudinal and/or transversal dimension. Thus the distribution layer 54 can be deposited on the acquisition layer 52. This simplifies handling, in particular if the acquisition layer is a nonwoven which can be unrolled from a roll of stock material. The distribution layer may also be deposited directly on the absorbent core's upper side of the core wrap or another layer of the article. Also, an acquisition layer 52 larger than the distribution layer allows to directly glue the acquisition layer to the storage core (at the larger areas). This can provide an increased article integrity and better liquid communication.


The absorbent core and in particular its absorbent material deposition area 8 may advantageously be at least as large and long and advantageously at least partially larger and/or longer than any of the layer in the ADS. This is because the absorbent material in the core can usually more effectively retain fluid and provide dryness benefits across a larger area than the ADS. The absorbent article may have a rectangular SAP layer and a non-rectangular (shaped) ADS. The absorbent article may also have a rectangular (non-shaped) ADS and a rectangular layer of SAP.


Method of Making


The absorbent cores and articles of the invention may be made by any conventional methods known in the art. In particular the articles may be hand-made or industrially produced at high speed on a modern converting line.


Experimental Settings


The values indicated herein are measured according to the methods indicated herein below, unless specified otherwise. All measurements are performed at 21° C.±2° C. and 50%±20% RH, unless specified otherwise. All samples should be kept at least 24 hours in these conditions to equilibrate before conducting the tests, unless indicated otherwise. All measurements should be reproduced on at least 4 samples and the average value obtained indicated, unless otherwise indicated.


Centrifuge Retention Capacity (CRC)


The CRC measures the liquid absorbed by the superabsorbent polymer particles for free swelling in excess liquid. The CRC is measured according to EDANA method WSP 241.2-05.


Dry Absorbent Core Caliper Test


This test may be used to measure the caliper of the absorbent core (before use i.e. without fluid loading) in a standardized manner.


Equipment: Mitutoyo manual caliper gauge with a resolution of 0.01 mm—or equivalent instrument.


Contact Foot: Flat circular foot with a diameter of 17.0 mm (±0.2 mm). A circular weight may be applied to the foot (e.g., a weight with a slot to facilitate application around the instrument shaft) to achieve the target weight. The total weight of foot and added weight (including shaft) is selected to provide 2.07 kPa (0.30 psi) of pressure to the sample.


The caliper gauge is mounted with the lower surface of the contact foot in an horizontal plane so that the lower surface of the contact foot contacts the center of the flat horizontal upper surface of a base plate approximately 20×25 cm. The gauge is set to read zero with the contact foot resting on the base plate.


Ruler: Calibrated metal ruler graduated in mm.


Stopwatch: Accuracy 1 second


Sample preparation: The core is conditioned at least 24 hours as indicated above.


Measurement procedure: The core is laid flat with the bottom side, i.e. the side intended to be placed towards the backsheet in the finished article facing down. The point of measurement (e.g. the crotch point C) is carefully drawn on the top side of the core taking care not to compress or deform the core.


The contact foot of the caliper gauge is raised and the core is placed flat on the base plate of the caliper gauge with the top side of the core up so that when lowered, the center of the foot is on the marked measuring point.


The foot is gently lowered onto the article and released (ensure calibration to “0” prior to the start of the measurement). The caliper value is read to the nearest 0.01 mm, 10 seconds after the foot is released.


The procedure is repeated for each measuring point. If there is a fold at the measuring point, the measurement is done in the closest area to this point but without any folds. Ten articles are measured in this manner for a given product and the average caliper is calculated and reported with an accuracy of one tenth mm.


Absorbent Article Caliper Test


The Absorbent Article Caliper Test can be performed as for the Dry Absorbent Core Caliper Test with the difference that the caliper of the finished absorbent article is measured instead of the caliper of the core. The point of measurement may be the intersection of the longitudinal axis (80) and transversal axis (90) of the absorbent article. If the absorbent articles were provided folded and/or in a package, the articles to be measured are unfolded and/or removed from the center area of the package. If the package contains more than 4 articles, the outer most two articles on each side of the package are not used in the testing. If the package contains more than 4 but fewer than 14 articles, then more than one package of articles is required to complete the testing. If the package contains 14 or more articles, then only one package of articles is required to perform the testing. If the package contains 4 or fewer articles then all articles in the package are measured and multiple packages are required to perform the measurement. Caliper readings should be taken 24±1 hours after the article is removed from the package, unfolded and conditioned. Physical manipulation of product should be minimal and restricted only to necessary sample preparation.


Any elastic components of the article that prevent the article from being laid flat under the caliper foot are cut or removed. These may include leg cuffs or waistbands. Pant-type articles are opened or cut along the side seams as necessary. Apply sufficient tension to flatten out any folds/wrinkles Care is taken to avoid touching and/or compressing the area of measurement.


Wet Channel Integrity Test


This test is designed to check the integrity of a channel in an absorbent core following wet saturation.


1. The full length (in millimeters) of the channel is measured in the dry state (if the channel is not straight, the curvilinear length through the middle of the channel is measured).


2. The absorbent core is then completely immersed in a large excess (e.g. 5 liters) of synthetic urine “Saline”, with a concentration of 9.00 g NaCl per 1000 ml solution prepared by dissolving the appropriate amount of sodium chloride in distilled water. The temperature of the solution must be 20+/−5° C.


3. After 1 minute in the saline, the core is removed and held vertically by one end for 5 seconds to drain, then extended flat on an horizontal surface with the top side (the side intended to be facing the wearer in the article) facing up. If the core comprises stretch elements, it is pulled taut so that no contraction is observed. The core can be fixed to an horizontal surface by clamps at its front edge and back edge, so that no contraction can happen.


4. The absorbent core is covered with a rectangular suitably weighted rigid plate, with dimensions as follows: length equal to the full length of the core, and width equal to the maximum core width at the widest point.


5. A pressure of 18.0 kPa is applied for 30 seconds over the area of the rigid plate above mentioned. Pressure is calculated on the basis of overall area encompassed by the rigid plate. Pressure is achieved by placing additional weights in the geometric center of the rigid plate, such that the combined weight of the rigid plate and the additional weights result in a pressure of 18.0 kPa over the total area of the rigid plate.


6. After 30 seconds, the additional weights and the rigid plate are removed.


7. Immediately afterwards, the cumulative length of the portions of the channel which remained intact is measured (in millimeters; if the channel is not straight, the curvilinear length through the middle of the channel is measured). If no portions of the channel remained intact then the channel is not permanent.


The percentage of integrity of the permanent channel is calculated by dividing the cumulative length of the portions of the channel which remained intact by the length of the channel in the dry state, and then multiplying the quotient by 100.


Wet Caliper And Compression Force (WCACF) Test


This test measures a) the percentage of increase in caliper of a saturated absorbent core following one lateral compression, and b) the force required to laterally compress the saturated absorbent core to a width of 40 mm. The WCACF Test is to be performed on an absorbent core according to the following instructions.

    • 1. Mark the longitudinal axis on the absorbent core on the top side of the core. The longitudinal axis generally divides the top side of the core into two roughly symmetric pieces along the length of the absorbent core when the core is viewed from the top as exemplarily shown on FIG. 3. The top side of the core is the side intended to be placed towards the wearer-facing side of the absorbent article. In doubt, the top side is normally more hydrophilic than the bottom side. If the top side still cannot be identified, the test is then conducted on an equal number of cores on alternative sides and the results averaged. Marking can be made with any pen taking care not to damage the core while marking
    • 2. Mark the crotch line on the same side of the absorbent core as the longitudinal centerline. The crotch line is perpendicular to the longitudinal axis and crosses the longitudinal axis at a distance equal to 45% of the length L of the absorbent core (0.45 L). This distance is measured from the front side of the absorbent core (see FIG. 3 for an exemplary illustration). The front side of the absorbent core is the side of the core intended to be placed towards the front of the absorbent article. If the intended orientation of the core is not known, the front edge is on the side of the core where the amount of SAP is higher. If the front edge can still not be identified, then half the samples can be tested with the distance starting from one side and the other half with the distance starting from the other side, and the results averaged. The intersection of the crotch line and the longitudinal axis is the crotch point C.
    • 3. The absorbent core is then immersed in a large excess, e.g. 5 l, of synthetic urine “Saline”, with a concentration of 9.00 g NaCl per 1000 ml solution prepared by dissolving the appropriate amount of sodium chloride in distilled water. The container must be large enough to accommodate the core in a flat configuration. The marked side of the core faces up during the immersion.
    • 4. After 1 minute in the saline, the absorbent core is removed and held vertically by the front side for 10 seconds to drain.
    • 5. The absorbent core is left to equilibrate for 10 minutes by pulling it flat on a horizontal surface, with the top side facing down. Clamps placed on the front and back sides of the core may be used to keep the loaded core flat.
    • 6. The caliper of the loaded absorbent core before compression is then measured at the crotch point and reported as Cinitial. For this purpose, a presser foot with a diameter of 17.0 mm is used, and a pressure of 2.07 kPa (0.30 psi) is applied. The absorbent core is laid flat on a plexiglas plate the marked side facing up, and the presser foot is gently lowered so that it is centered on the crotch point C. The thickness Cinitial is measured 30±2 seconds after initial contact between the foot and the core and reported to the nearest 0.1 mm.
    • 7. The loaded absorbent core with its top side facing up is then fixed on a rigid-plastic cylinder as schematically represented in FIG. 7. The cylinder 600 has a diameter d of 150 mm (+−1 mm). The last 20.0 mm (+−0.5 mm) of the front edge 280 of the core 28 is first attached to the external surface of the cylinder closest to the operator via a double sided tape previously applied on the cylinder or other fastening means so that the absorbent core can be securely and releasably attached to the cylinder. The last 20.0 mm (+−0.5 mm) of the back edge 282 of the core 28 is then attached at the diametrically opposed external surface of the cylinder at a high sufficient for the crotch point C to coincide with the central axis 610 of the cylinder 600.
    • 8. One understands that the cylinder needs to be sufficiently high so that the back edge of the core can be attached to it.
    • 9. The absorbent core is then laterally compressed as detailed below. Compressive forces are applied to the absorbent core by an assembly comprised of a pair of compression plates 630, 640, which simulate the portion of the legs compressing the absorbent core during use. Each compression plate should have dimensions 90 mm (+−1 mm)×90 mm (+−1 mm). The plates can be made from any suitable material that can be formed into the required flat, square shape (e.g. aluminum, Plexiglas). The plates should be placed lined up opposite one another. The compression plates are placed so that the Crotch Line on the top side of the core and the geometrical center of each compression plate are aligned and are in a horizontal plane.
    • 10. Each compression plate is driven toward the crotch point at constant rate of 100 mm/min. (total closing speed is 200 mm/min). The gap between both compression plates starts at a distance of 140.0 mm+−0.5 mm, or more if the width of the core so requires, and then narrows to a final gap of 40.0 mm+−0.5 mm when the absorbent core is compressed. The compression plates may for example use an apparatus such as a Zwick Z 1.0 or similar. The testing instrument includes a right clamp for securing one compression plate, and a left clamp for securing another compression plate. The equipment should include a force cell with an appropriate measurement range e.g. up to 100 N and a precision of at least +/−0.01 N.
    • 11. Once the absorbent core has been compressed to 40 mm, compression is maintained for 30 seconds. The force at the end of the 30 seconds immediately before the compression is released is recorded to the nearest 0.01 N and reported as the “Wet Compression Force”. The compression plates can then be returned to their initial positions at a speed of 100 mm/min for each plate.
    • 12. Immediately afterwards, the absorbent core is removed from the cylinder 600, taking care to not touch the area that has been compressed. If some absorbent material leaked out of the core wrap during the compression step this leaked out absorbent material is collected and weighted.
    • 13. The caliper at the crotch point C is measured again using the thickness measuring procedure as described above on step 6. This caliper value is reported as Cfinal.


This procedure is repeated for at least 4 core samples. The Relative Wet Caliper Increase (RWCI) of the absorbent core is then calculated as follows:

Relative Wet Caliper Increase (%)=(ΣCfinal−ΣCinitial)*100/ΣCinitial


where ΣCfinal is the sum of Cfinal values measured for all the samples and ΣCinitial is the sum of the Cinitial values measured for all the samples. The Relative Wet Caliper Increase value of the cores according to the invention is less than 10.0%, in particular it may range of from 1.0% to 9.5%, or 2.0% to 9.0%, or from to 2.5% to 8.0%.


If some absorbent material leaked at step 12, the rest of the absorbent material still contained in the core can be extracted and also weighted. If the amount that leaked represents less than 5% by weight of the total absorbent material of the core (leaked and extracted) then it is considered that “substantially no absorbent material” leaked during the test. Advantageously less than 2%, or less than 1% or even 0% by weight of absorbent material escapes the core wrap during step 12. In particular the core wrap should not in an appreciable way burst open while the test is conducted.


EXPERIMENTALS

The following absorbent core according to the invention was prepared:


Invention Example 1

The absorbent cores tested in this example were similar to the core illustrated in FIG. 3. The cores contained SAP as absorbent material, without cellulosic fibers. The core wrap comprised two substrates forming the top and bottom sides of the core, the upper substrate forming a C-wrap along the longitudinal edges of the core and the front and back edges of the core being attached flat. The core comprised two absorbent material free channels in the crotch region. The channels were symmetric in relation to the longitudinal axis 80 had a projected length thereon of about 227 mm, a width of about 8 mm and a shortest distance from each other of 20 mm. The core wrap was further attached to itself through the channels.


The absorbent core comprised in total 14.1 g fast absorbing SAP applied in an area of deposition having a length of 360 mm and a width of 110 mm (rectangular profile). The SAP was distributed so that the basis weight of SAP was higher in the crotch region than at the front region and still lower towards the back region. There was no profiling of the SAP in the transversal direction (“cross-machine direction” or “CD”, except of the channels which were free of absorbent material). The absorbent core was formed by SAP printing technology, as disclosed in US2010/0051166A1, which combines two nonwoven substrates each supporting a SAP layer and having a microfiber elastic glue applied on each SAP layer which immobilizes the SAP layer on the substrate. The channels were formed by using a suitable printing drum delimiting the channels shape, further information on how to form channels can be found in EP application number EP12174117.7 using printed SAP technology.


Auxiliary glue was applied between the SAP layer and the upper substrate 16, and was slot coated with 41 slots 1 mm wide with a distance of 1 mm between the slots along the whole length of the core wrap (390 mm). 0.211 g and 0.168 g of microfiber glue (from H. B. Fuller) were respectively applied on the upper and lower SAP layer, the area of application having a width of 110 mm and length of 390 mm on each SAP layer.


The core wrap had a length of 390 mm with two end flaps free of absorbent material having a length of 15 mm at the back and at the front edge of the absorbent core. The front and back end seals of the core were slot glued together, the glue slots having a length of 30 mm from the front end seal and 20 mm from the back end seal. The folded width of the core wrap was 120 mm.


The upper substrate 16 was a 10 gsm hydrophilically treated SMMS nonwoven and the lower substrate 16′ was a 10 gsm SMMS nonwoven. The upper substrate was cut at a length of 390 mm and a cut width of 165 mm. The lower substrate had a cut length of 390 mm and a cut width of 130 mm. The upper substrate was C-wrapped around the lower substrate on the lateral edges of the core and the lateral edges of the lower layer was slightly formed upwards on the edge of the absorbent material of the core so that the overall width of the folded core wrap was about 120 mm. The C-wrap was made permanent by application between the substrates of a core folding glue applied at 20 gsm with 2 slots having a slot width of 3 mm and 390 mm long on each side of the core.


The two substrates were additionally bonded together through the channels. The bond was formed by applying pressure and the auxiliary and microfiber glue. The bond was strong. The core wrap seals resisted compression and no absorbent material escaped the core wrap during the WCACF Test.


Invention Example 2

The cores tested in this example had two pair of channels and a shaped deposition area similar to the one shown in FIG. 6. The width of the absorbent material deposition area was 110 mm at the front and the back region and 90 mm at the crotch point of the absorbent material deposition area.


The projected lengths of the long and short channels on the longitudinal axis of the core were about 170 mm and 40 mm respectively. The smallest distance between the longer channels was about 16 mm. The smallest distance between the shorter channels was about 14 mm. The cores comprised 11.53 g of SAP. The core wrap comprised two nonwovens, the top substrate (16) was a 10 gsm SMMS nonwoven treated by a surfactant to be hydrophilic. The lower substrate (16′) was a 11 gsm SMMS nonwoven. Auxiliary glue was applied between the lower SAP layer and its respective lower substrate which was slot coated with 41 slots 1 mm wide with a distance of 1 mm between the slots along the whole length of the core wrap (390 mm). The microfiber glue (from H. B. Fuller) applied on each SAP layer was uniformly applied at width of 108 mm and length of 390 mm on each SAP layer, 0.211 g of microfiber glue was used on the core cover side and 0.211 g on the dusting layer side. The rest of the core construction was substantially similar as the cores in Invention Example 1.


Comparative Example

The comparative example 1 was substantially similar to Invention Example 2 with the difference that the absorbent core did not comprise material free channels.


Test Results


Four samples of each above mentioned products were tested according to the WCACF Test described above to measure the Relative Wet Caliper Increase and the Wet Compression Force of the core. The averaged results are compiled below:



















ΣCfinal/
Relative
Wet



ΣCinitial/4
4
wet caliper
Compression



[mm]
[mm]
increase
Force (N)




















Invention Example 1
13.0
13.8
6.2%
4.83


Invention Example 2
10.8
11.5
6.5%
2.81


Comparative
10.8
11.9
10.2%
3.05


example 1










Discussion


While not wishing to be bound by theory it is believed that the following features can provide alone or in combinations an increase in the relative wet caliper to an absorbent core missing one or more of the below features. None of these features should be considered as being limited the scope of the claims, unless specifically claimed.

    • 1) The top side of the wrap and the bottom side of the wrap may advantageously be at least partially bonded to each other through the channels. These bonds may be continuous or intermittent, and may be made via gluing and/or heat bonding, and may advantageously be sufficiently strong to at least partially resist delamination upon fluid loading (“permanent channels”), as discussed above. By constraining the core wrap in the channels, these bonds increase the strain of the core wrap and can diminish the wet caliper increase upon core loading.
    • 2) The core wrap may comprise a first substrate (16) and a second substrate (16′), both typically made of a nonwoven, wherein the first substrate forms a C-wrap around the second substrate. The first substrate may form the top side of the core wrap and the second substrate may form at least part of the bottom side of the core wrap. Typically the substrates may be bonded, for example by gluing, along the wrapped flaps of the first substrate together with the bottom side of the second substrate. The inventors believe that a C-wrap, especially along part or whole of the longitudinal sides of the absorbent core, can better restrain the absorbent material from breaking out of the core upon compression.
    • 3) The Wet Compression Force is influenced by the amount of absorbent material and the shape of the deposition area of the core in the crotch region. It is believed that a lower amount of absorbent material and/or a narrower deposition area at the crotch region of the core (as in a shaped area) can provide a decreased Wet Compression Force. The absorbent core of the invention may exemplarily have a Wet Compression Force below 5.00 N, in particular less than 3.00 N, or from 1.00 N to 5.00 N, as measured by the WCACF Test.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. An absorbent core, wherein the absorbent core comprises a core wrap enclosing an absorbent material, wherein the absorbent material comprises at least 80% of superabsorbent polymers by weight of the absorbent material; the absorbent core comprising a front edge, a back edge, two longitudinal edges, a front region, a back region and a crotch region, the absorbent core having a longitudinal axis oriented in a longitudinal direction, and a length (L) as measured between the front edge and back edge along the longitudinal axis which is at least 320 mm; the absorbent core further comprising:a first absorbent layer and a second absorbent layer, wherein the first absorbent layer comprises a first substrate and a first layer of superabsorbent polymers, wherein the second absorbent layer comprises a second substrate and a second layer of superabsorbent polymers, wherein the absorbent core comprises a fibrous thermoplastic adhesive material positioned between the first absorbent layer and the second absorbent layer, wherein the fibrous thermoplastic adhesive material at least partially contributes to bonding each layer of the superabsorbent polymers to its respective substrate, and wherein the first substrate and the second substrate form the core wrap; andat least a pair of channels symmetrically disposed relative to the longitudinal axis of the core, wherein neither channel coincides with the longitudinal axis and wherein the channels have a length projected on the longitudinal axis of the core which is at least 10% of the length L of the absorbent core, wherein the channels are substantially free of the absorbent material, wherein the width of a portion of the channels is at least about 2 mm, and wherein the channels are formed by bonding the first substrate directly to the second substrate;wherein the channels are present at least at the same longitudinal level as a crotch point, C, wherein the crotch point is the point placed at a distance of 45% of the length L from the front edge of the absorbent core, and wherein the channels extend from the crotch region into the back region;wherein the absorbent core has a Relative Wet Caliper Increase (RWCI) after compression of less than 10.0%; and wherein the core wrap is at least partially sealed along the edges of the core.
  • 2. The absorbent core of claim 1, wherein the core has a Wet Compression Force of less than about 5.00 N.
  • 3. The absorbent core of claim 2, wherein the Wet Compression Force is of from about 1.00 to about 3.00 N.
  • 4. The absorbent core of claim 1, wherein the first substrate comprises a first nonwoven and the second substrate comprises a second nonwoven, and wherein the first nonwoven forms a C-wrap around the second nonwoven.
  • 5. The absorbent core of claim 1, wherein the absorbent material defines an absorbent material deposition area within the core wrap, wherein the absorbent material deposition area is rectangular or shaped with a width having a minimum in the crotch region of the absorbent core, wherein the crotch region is the region of the core extending from the crotch point towards the back edge and the front edge of the absorbent core by a distance of a quarter of L in both directions towards the back edge and towards the front edge.
  • 6. The absorbent core of claim 5, wherein the basis weight of the superabsorbent polymers is not homogenously distributed along the longitudinal axis of the core within the absorbent material deposition area, and wherein the basis weight of the superabsorbent polymers is at least 10% percent higher at the crotch point of the core than at another point of the absorbent material deposition area on the longitudinal axis.
  • 7. The absorbent core of claim 1, wherein the absorbent material comprises at least about 90% of the superabsorbent polymers by total weight of the absorbent material.
  • 8. The absorbent core of claim 1, wherein the absorbent material comprises less than about 10% of natural or synthetic fibers by total weight of the absorbent material.
  • 9. The absorbent core of claim 8, wherein the absorbent material is substantially free of natural or synthetic fibers.
  • 10. The absorbent core of claim 1, comprising from about 5 g to about 60 g of superabsorbent polymers.
  • 11. The absorbent core of claim 10, comprising from about 10 g to about 50 g of superabsorbent polymers.
  • 12. The absorbent core of claim 1, wherein the caliper of the core, as measured at the crotch point, is from about 0.25 mm to about 5.0 mm.
  • 13. The absorbent core of claim 12, wherein the caliper of the core, as measured at the crotch point, is from about 0.5 mm to about 3.0 mm.
  • 14. An absorbent article comprising: a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core positioned between the topsheet and the backsheet; wherein the absorbent core comprises the absorbent core of claim 1.
Priority Claims (1)
Number Date Country Kind
12196343 Dec 2012 EP regional
US Referenced Citations (1101)
Number Name Date Kind
1733997 Marr Oct 1929 A
1734499 Marinsky Nov 1929 A
1989283 Limacher Jan 1935 A
2058509 Rose Oct 1936 A
2271676 Bjornbak Feb 1942 A
2450789 Frieman Oct 1948 A
2508811 Best et al. May 1950 A
2568910 Condylis Sep 1951 A
2570796 Gross Oct 1951 A
2570963 Mesmer Oct 1951 A
2583553 Faure Jan 1952 A
2705957 Mauro Apr 1955 A
2788003 Morin Apr 1957 A
2788786 Dexter Apr 1957 A
2798489 Behrman Jul 1957 A
2807263 Newton Sep 1957 A
2830589 Doner Apr 1958 A
2890700 Lönberg-Holm Jun 1959 A
2890701 Weinman Jun 1959 A
2898912 Adams Aug 1959 A
2931361 Sostsrin Apr 1960 A
2977957 Clyne Apr 1961 A
3071138 Gustavo Jan 1963 A
3180335 Duncan et al. Apr 1965 A
3207158 Yoshitake et al. Sep 1965 A
3227160 Joy Jan 1966 A
3386442 Sabee Jun 1968 A
3561446 Jones Feb 1971 A
3572342 Lindquist et al. Mar 1971 A
3572432 Burton Mar 1971 A
3575174 Mogor Apr 1971 A
3578155 Small et al. May 1971 A
3606887 Roeder Sep 1971 A
3610244 Jones Oct 1971 A
3618608 Brink Nov 1971 A
3642001 Sabee Feb 1972 A
3653381 Warnken Apr 1972 A
3670731 Harmon Jun 1972 A
3688767 Goldstein Sep 1972 A
3710797 Marsan Jan 1973 A
3731688 Litt et al. May 1973 A
3756878 Willot Sep 1973 A
3774241 Zerkle Nov 1973 A
3776233 Schaar Dec 1973 A
3814100 Nystrand et al. Jun 1974 A
3828784 Zoephel Aug 1974 A
3840418 Sabee Oct 1974 A
3847702 Jones Nov 1974 A
3848594 Buell Nov 1974 A
3848595 Endres Nov 1974 A
3848597 Endres Nov 1974 A
3860003 Buell Jan 1975 A
3863637 MacDonald et al. Feb 1975 A
3882870 Hathaway May 1975 A
3884234 Taylor May 1975 A
3900032 Heurlen Aug 1975 A
3911173 Sprague, Jr. Oct 1975 A
3920017 Karami Nov 1975 A
3924626 Lee et al. Dec 1975 A
3926189 Taylor Dec 1975 A
3929134 Karami Dec 1975 A
3929135 Thompson Dec 1975 A
3930501 Schaar Jan 1976 A
3938523 Gilliland et al. Feb 1976 A
3968799 Schrading Jul 1976 A
3978861 Schaar Sep 1976 A
3981306 Krusko Sep 1976 A
3987794 Schaar Oct 1976 A
3995637 Schaar Dec 1976 A
3995640 Schaar Dec 1976 A
3999547 Hernandez Dec 1976 A
4014338 Schaar Mar 1977 A
4034760 Amirsakis Jul 1977 A
4055180 Karami Oct 1977 A
4074508 Reid Feb 1978 A
4079739 Whitehead Mar 1978 A
4084592 Tritsch Apr 1978 A
4100922 Hernandez Jul 1978 A
4232674 Melican Nov 1980 A
4257418 Hessner Mar 1981 A
4259220 Bunnelle et al. Mar 1981 A
4296750 Woon et al. Oct 1981 A
4315508 Bolick Feb 1982 A
4324246 Mullane et al. Apr 1982 A
4340706 Obayashi et al. Jul 1982 A
4341216 Obenour Jul 1982 A
4342314 Radel et al. Aug 1982 A
4360021 Stima Nov 1982 A
4381783 Elias May 1983 A
4388075 Mesek et al. Jun 1983 A
4410571 Korpman Oct 1983 A
4461621 Karami et al. Jul 1984 A
4463045 Ahr et al. Jul 1984 A
4469710 Rielley et al. Sep 1984 A
4475912 Coates Oct 1984 A
4490148 Beckeström Dec 1984 A
4507438 Obayashi et al. Mar 1985 A
4515595 Kievit et al. May 1985 A
4527990 Sigl Jul 1985 A
4541871 Obayashi et al. Sep 1985 A
4551191 Kock et al. Nov 1985 A
4573986 Minetola et al. Mar 1986 A
4578072 Lancaster Mar 1986 A
4578702 Campbell Mar 1986 A
4585448 Enloe Apr 1986 A
4585450 Rosch et al. Apr 1986 A
4589878 Mitrani May 1986 A
4596568 Flug Jun 1986 A
4601717 Blevins Jul 1986 A
4606964 Wideman Aug 1986 A
4609518 Curro et al. Sep 1986 A
4610678 Weisman et al. Sep 1986 A
4623342 Ito et al. Nov 1986 A
4624666 Derossett Nov 1986 A
4629643 Curro et al. Dec 1986 A
4636207 Buell Jan 1987 A
4641381 Heran et al. Feb 1987 A
4646510 McIntyre Mar 1987 A
4662875 Hirotsu et al. May 1987 A
4666983 Tsubakimoto et al. May 1987 A
4670011 Mesek Jun 1987 A
4670012 Johnson Jun 1987 A
4680030 Coates et al. Jul 1987 A
4681579 Toussant et al. Jul 1987 A
4681581 Coates Jul 1987 A
4681793 Linman et al. Jul 1987 A
4690680 Higgins Sep 1987 A
4695278 Lawson Sep 1987 A
4699622 Toussant et al. Oct 1987 A
4704115 Buell Nov 1987 A
4704116 Enloe Nov 1987 A
4710189 Lash Dec 1987 A
4720321 Smith Jan 1988 A
4731066 Korpman Mar 1988 A
4731070 Koci Mar 1988 A
RE32649 Brandt et al. Apr 1988 E
4741941 Englebert et al. May 1988 A
4747846 Boland et al. May 1988 A
4753648 Jackson Jun 1988 A
4773905 Molee Sep 1988 A
4784892 Storey et al. Nov 1988 A
4785996 Ziecker et al. Nov 1988 A
4787896 Houghton et al. Nov 1988 A
4795454 Dragoo Jan 1989 A
4800102 Takada Jan 1989 A
4802884 Fröidh et al. Feb 1989 A
4806408 Pierre et al. Feb 1989 A
4806598 Morman Feb 1989 A
4808176 Kielpikowski Feb 1989 A
4808178 Aziz Feb 1989 A
4826880 Lesniak et al. May 1989 A
4834735 Alemany et al. May 1989 A
4834740 Suzuki et al. May 1989 A
4834742 Wilson et al. May 1989 A
4838886 Kent Jun 1989 A
4842666 Werenicz Jun 1989 A
4846815 Scripps Jul 1989 A
4846825 Enloe et al. Jul 1989 A
4848815 Molloy Jul 1989 A
4861652 Lippert et al. Aug 1989 A
4869724 Scripps Sep 1989 A
4886697 Perdelwitz, Jr. et al. Dec 1989 A
4888231 Angstadt Dec 1989 A
4892528 Suzuki et al. Jan 1990 A
4892535 Bjornberg Jan 1990 A
4892536 DesMarais et al. Jan 1990 A
4894060 Nestegard Jan 1990 A
4894277 Akasaki Jan 1990 A
4900317 Buell Feb 1990 A
4904251 Igaue et al. Feb 1990 A
4909802 Ahr et al. Mar 1990 A
4909803 Aziz et al. Mar 1990 A
4936839 Molee Jun 1990 A
4940463 Leathers et al. Jul 1990 A
4940464 Van Gompel et al. Jul 1990 A
4946527 Battrell Aug 1990 A
4950264 Osborn Aug 1990 A
4960477 Mesek Oct 1990 A
4963140 Robertson et al. Oct 1990 A
4966809 Tanaka et al. Oct 1990 A
4968313 Sabee Nov 1990 A
4990147 Freeland Feb 1991 A
4994053 Lang Feb 1991 A
5006394 Baird Apr 1991 A
5019063 Marsan et al. May 1991 A
5019072 Polski May 1991 A
5021051 Hiuke Jun 1991 A
5030314 Lang Jul 1991 A
5032120 Freeland et al. Jul 1991 A
5034008 Breitkopf Jul 1991 A
5037416 Allen et al. Aug 1991 A
5071414 Elliott Dec 1991 A
5072687 Mitchell Dec 1991 A
5085654 Buell Feb 1992 A
5087255 Sims et al. Feb 1992 A
5092861 Nomura et al. Mar 1992 A
5102597 Roe et al. Apr 1992 A
5114420 Igaue et al. May 1992 A
5124188 Roe et al. Jun 1992 A
5135522 Fahrenkrug et al. Aug 1992 A
5137537 Herron et al. Aug 1992 A
D329697 Fahrenkrug et al. Sep 1992 S
5143679 Weber et al. Sep 1992 A
5147343 Kellenberger Sep 1992 A
5147345 Young et al. Sep 1992 A
5149334 Roe et al. Sep 1992 A
5149335 Kellenberger et al. Sep 1992 A
5151091 Glaug Sep 1992 A
5151092 Buell et al. Sep 1992 A
5156793 Buell et al. Oct 1992 A
5167653 Igaue et al. Dec 1992 A
5167897 Weber et al. Dec 1992 A
5175046 Nguyen Dec 1992 A
5180622 Berg et al. Jan 1993 A
5190563 Herron et al. Mar 1993 A
5190606 Merkatoris et al. Mar 1993 A
5204997 Suzuki et al. Apr 1993 A
5213817 Pelley May 1993 A
5221274 Buell et al. Jun 1993 A
5235515 Ungpiyakul et al. Aug 1993 A
5242436 Weil et al. Sep 1993 A
5246431 Minetola et al. Sep 1993 A
5246432 Suzuki et al. Sep 1993 A
5246433 Hasse et al. Sep 1993 A
5248309 Serbiak et al. Sep 1993 A
5260345 Desmarais et al. Nov 1993 A
5269775 Freeland et al. Dec 1993 A
5281683 Yano et al. Jan 1994 A
H1298 Ahr Apr 1994 H
5300565 Berg et al. Apr 1994 A
5312386 Correa et al. May 1994 A
5331059 Engelhardt et al. Jul 1994 A
5336552 Strack et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5358500 LaVon et al. Oct 1994 A
5366782 Curro et al. Nov 1994 A
5382610 Harada et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387208 Ashton et al. Feb 1995 A
5387209 Yamamoto et al. Feb 1995 A
5389095 Suzuki Feb 1995 A
5397316 Lavon et al. Mar 1995 A
5397317 Thomas Mar 1995 A
5399175 Glaug Mar 1995 A
5401792 Babu et al. Mar 1995 A
5409771 Dahmen et al. Apr 1995 A
H1440 New et al. May 1995 H
5411497 Tanzer et al. May 1995 A
5415644 Enloe May 1995 A
5425725 Tanzer et al. Jun 1995 A
5429630 Beal et al. Jul 1995 A
5433715 Tanzer et al. Jul 1995 A
5451219 Suzuki Sep 1995 A
5451442 Pieniak Sep 1995 A
5460622 Dragoo et al. Oct 1995 A
5460623 Emenaker et al. Oct 1995 A
5462541 Bruemmer et al. Oct 1995 A
5476458 Glaug et al. Dec 1995 A
5486166 Bishop et al. Jan 1996 A
5486167 Dragoo et al. Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5492962 Lahrman et al. Feb 1996 A
5494622 Heath et al. Feb 1996 A
5499978 Buell et al. Mar 1996 A
5507736 Clear et al. Apr 1996 A
5507895 Suekane Apr 1996 A
5509915 Hanson et al. Apr 1996 A
5514104 Cole May 1996 A
5518801 Chappell et al. May 1996 A
5520674 Hines et al. May 1996 A
5522810 Allen, Jr. Jun 1996 A
5527300 Sauer Jun 1996 A
5531730 Dreier Jul 1996 A
5532323 Yano et al. Jul 1996 A
5542943 Sageser Aug 1996 A
5549592 Fries et al. Aug 1996 A
5549593 Ygge et al. Aug 1996 A
5549791 Herron et al. Aug 1996 A
5554145 Roe et al. Sep 1996 A
5559335 Zeng et al. Sep 1996 A
5560878 Dragoo et al. Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5562646 Goldman et al. Oct 1996 A
5569234 Buell et al. Oct 1996 A
5571096 Dobrin et al. Nov 1996 A
5574121 Irie et al. Nov 1996 A
5575783 Clear et al. Nov 1996 A
5580411 Nease et al. Dec 1996 A
5584829 Lavash et al. Dec 1996 A
5586979 Thomas Dec 1996 A
5591152 Buell et al. Jan 1997 A
5591155 Nishikawa et al. Jan 1997 A
5593399 Tanzer et al. Jan 1997 A
5599335 Goldman et al. Feb 1997 A
5601542 Melius et al. Feb 1997 A
5607414 Richards et al. Mar 1997 A
5607416 Yamamoto et al. Mar 1997 A
5607537 Johnson et al. Mar 1997 A
5607760 Roe et al. Mar 1997 A
5609587 Roe Mar 1997 A
5609588 DiPalma et al. Mar 1997 A
5611879 Morman Mar 1997 A
5613959 Roessler et al. Mar 1997 A
5613960 Mizutani Mar 1997 A
5614283 Potnis et al. Mar 1997 A
5622589 Johnson et al. Apr 1997 A
5624423 Anjur Apr 1997 A
5624424 Saisaka et al. Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5626571 Young et al. May 1997 A
5628741 Buell et al. May 1997 A
5628845 Murray et al. May 1997 A
5635191 Roe et al. Jun 1997 A
5635271 Zafiroglu Jun 1997 A
5637106 Mitchell Jun 1997 A
5643238 Baker Jul 1997 A
5643243 Klemp Jul 1997 A
5643588 Roe et al. Jul 1997 A
5649914 Glaug Jul 1997 A
5650214 Anderson Jul 1997 A
H1674 Ames et al. Aug 1997 H
5658268 Johns et al. Aug 1997 A
5662634 Yamamoto et al. Sep 1997 A
5662638 Johnson et al. Sep 1997 A
5662758 Hamilton et al. Sep 1997 A
5669894 Goldman et al. Sep 1997 A
5674215 Ronnberg Oct 1997 A
5681300 Ahr Oct 1997 A
5683374 Yamamoto Nov 1997 A
5685874 Buell et al. Nov 1997 A
5690624 Sasaki et al. Nov 1997 A
5690627 Clear et al. Nov 1997 A
5691035 Chappell et al. Nov 1997 A
5691036 Lin et al. Nov 1997 A
5695488 Sosalla Dec 1997 A
5700254 McDowall et al. Dec 1997 A
5702376 Glaug Dec 1997 A
5714156 Schmidt et al. Feb 1998 A
5722967 Coles Mar 1998 A
5723087 Chappell et al. Mar 1998 A
5733275 Davis et al. Mar 1998 A
5749866 Roe et al. May 1998 A
5752947 Awolin May 1998 A
5756039 Mcfall et al. May 1998 A
H1732 Johnson Jun 1998 H
5762641 Bewick-Sonntag et al. Jun 1998 A
5766388 Pelley Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5772825 Schmitz Jun 1998 A
5776121 Roe et al. Jul 1998 A
5779831 Schmitz Jul 1998 A
5788684 Abuto et al. Aug 1998 A
5795345 Mizutani Aug 1998 A
5797892 Glaug Aug 1998 A
5797894 Cadieux et al. Aug 1998 A
5807365 Luceri Sep 1998 A
5810796 Kimura et al. Sep 1998 A
5810800 Hunter et al. Sep 1998 A
5814035 Gryskiewicz et al. Sep 1998 A
5820618 Roberts et al. Oct 1998 A
5827257 Fujioka Oct 1998 A
5830202 Bogdanski et al. Nov 1998 A
5833678 Ashton et al. Nov 1998 A
5837789 Stockhausen et al. Nov 1998 A
5840404 Graff Nov 1998 A
5843059 Niemeyer et al. Dec 1998 A
5846231 Fujioka et al. Dec 1998 A
5846232 Serbiak et al. Dec 1998 A
5849816 Suskind et al. Dec 1998 A
5851204 Mitzutani Dec 1998 A
5855572 Schmidt Jan 1999 A
5858013 Kling Jan 1999 A
5858515 Stokes et al. Jan 1999 A
5865823 Curro Feb 1999 A
5865824 Chen Feb 1999 A
5873868 Nakahata Feb 1999 A
5876391 Roe et al. Mar 1999 A
5879751 Bogdanski Mar 1999 A
5891118 Toyoshima Apr 1999 A
5891544 Chappell et al. Apr 1999 A
5897545 Kline et al. Apr 1999 A
5904673 Roe et al. May 1999 A
5925439 Haubach Jul 1999 A
5928184 Etheredge Jul 1999 A
5931825 Kuen et al. Aug 1999 A
5938648 Lavon et al. Aug 1999 A
5938650 Baer et al. Aug 1999 A
5941862 Haynes et al. Aug 1999 A
5944706 Palumbo et al. Aug 1999 A
5947949 Inoue et al. Sep 1999 A
5951536 Osborn, III et al. Sep 1999 A
5957908 Kline et al. Sep 1999 A
5968025 Roe et al. Oct 1999 A
5968029 Chappell et al. Oct 1999 A
5980500 Shimizu et al. Nov 1999 A
5981824 Luceri Nov 1999 A
5989236 Roe et al. Nov 1999 A
6004306 Roe et al. Dec 1999 A
6022430 Blenke et al. Feb 2000 A
6022431 Blenke et al. Feb 2000 A
6042673 Johnson et al. Mar 2000 A
6050984 Fujioka Apr 2000 A
6054631 Gent Apr 2000 A
6056732 Fujioka et al. May 2000 A
6060115 Borowski et al. May 2000 A
6068620 Chmielewski May 2000 A
6080909 Osterdahl et al. Jun 2000 A
6083210 Young et al. Jul 2000 A
6090994 Chen Jul 2000 A
6091336 Zand Jul 2000 A
6093474 Sironi Jul 2000 A
6099515 Sugito Aug 2000 A
6102892 Putzer et al. Aug 2000 A
6103814 Van Drongelen et al. Aug 2000 A
6107537 Elder et al. Aug 2000 A
6110157 Schmidt Aug 2000 A
6117121 Faulks et al. Sep 2000 A
6117803 Morman et al. Sep 2000 A
6120486 Toyoda et al. Sep 2000 A
6120487 Ashton Sep 2000 A
6120489 Johnson et al. Sep 2000 A
6120866 Arakawa et al. Sep 2000 A
6121509 Ashraf et al. Sep 2000 A
6129717 Fujioka et al. Oct 2000 A
6129720 Blenke et al. Oct 2000 A
6132411 Huber et al. Oct 2000 A
6139912 Onuschak Oct 2000 A
6143821 Houben Nov 2000 A
6152908 Widlund Nov 2000 A
6156023 Yoshioka Dec 2000 A
6156424 Taylor Dec 2000 A
6160197 Lassen Dec 2000 A
6165160 Suzuki et al. Dec 2000 A
6174302 Kumasaka Jan 2001 B1
6177606 Etheredge Jan 2001 B1
6177607 Blaney et al. Jan 2001 B1
6186996 Martin Feb 2001 B1
6210386 Inoue Apr 2001 B1
6210390 Karlsson Apr 2001 B1
6231556 Osborn, III May 2001 B1
6231566 Lai May 2001 B1
6238380 Sasaki May 2001 B1
6241716 Rönnberg Jun 2001 B1
6254294 Muhar Jul 2001 B1
6258996 Goldman Jul 2001 B1
6265488 Fujino et al. Jul 2001 B1
6290686 Tanzer et al. Sep 2001 B1
6306122 Narawa et al. Oct 2001 B1
6315765 Datta Nov 2001 B1
6319239 Daniels et al. Nov 2001 B1
6322552 Blenke et al. Nov 2001 B1
6325787 Roe et al. Dec 2001 B1
6326525 Hamajima Dec 2001 B1
6330735 Hahn et al. Dec 2001 B1
6334858 Rönnberg et al. Jan 2002 B1
6336922 Van Gompel et al. Jan 2002 B1
6340611 Shimizu Jan 2002 B1
6342715 Shimizu Jan 2002 B1
6350332 Thomas et al. Feb 2002 B1
6368687 Joseph et al. Apr 2002 B1
6371948 Mizutani Apr 2002 B1
6372952 Lash et al. Apr 2002 B1
6375644 Mizutani Apr 2002 B2
6376034 Brander Apr 2002 B1
6383431 Dobrin et al. May 2002 B1
6383960 Everett et al. May 2002 B1
6394989 Mizutani May 2002 B2
6402729 Boberg et al. Jun 2002 B1
6402731 Suprise et al. Jun 2002 B1
6403857 Gross et al. Jun 2002 B1
6406467 Dilnik et al. Jun 2002 B1
6409883 Makolin Jun 2002 B1
6410820 McFall et al. Jun 2002 B1
6410822 Mizutani Jun 2002 B1
6413248 Mizutani Jul 2002 B1
6413249 Turi et al. Jul 2002 B1
6414214 Engelhardt et al. Jul 2002 B1
6416502 Connelly et al. Jul 2002 B1
6416697 Venturino et al. Jul 2002 B1
6419667 Avalon et al. Jul 2002 B1
6423046 Fujioka et al. Jul 2002 B1
6423048 Suzuki et al. Jul 2002 B1
6423884 Oehmen Jul 2002 B1
6429350 Tanzer et al. Aug 2002 B1
6432094 Fujioka et al. Aug 2002 B1
6432098 Kline et al. Aug 2002 B1
6432099 Rönnberg Aug 2002 B2
6437214 Everett et al. Aug 2002 B1
6441268 Edwardsson Aug 2002 B1
6443933 Suzuki et al. Sep 2002 B1
6444064 Henry et al. Sep 2002 B1
6447496 Mizutani Sep 2002 B1
6458111 Onishi et al. Oct 2002 B1
6458877 Ahmed et al. Oct 2002 B1
6459016 Rosenfeld et al. Oct 2002 B1
6461342 Tanji et al. Oct 2002 B2
6461343 Schaefer et al. Oct 2002 B1
6472478 Funk et al. Oct 2002 B1
6475201 Saito et al. Nov 2002 B2
6494872 Suzuki et al. Dec 2002 B1
6494873 Karlsson et al. Dec 2002 B2
6500159 Carvalho Dec 2002 B1
6503233 Chen Jan 2003 B1
6503979 Funk et al. Jan 2003 B1
6506186 Roessler Jan 2003 B1
6506961 Levy Jan 2003 B1
6515195 Lariviere Feb 2003 B1
6517525 Berthou Feb 2003 B1
6518479 Graef Feb 2003 B1
6520947 Tilly et al. Feb 2003 B1
6521811 Lassen Feb 2003 B1
6521812 Graef Feb 2003 B1
6524294 Hilston et al. Feb 2003 B1
6525240 Graef Feb 2003 B1
6528698 Mizutani et al. Mar 2003 B2
6529860 Strumolo et al. Mar 2003 B1
6531025 Lender et al. Mar 2003 B1
6531027 Lender et al. Mar 2003 B1
6534149 Daley et al. Mar 2003 B1
6559081 Erspamer May 2003 B1
6559239 Riegel et al. May 2003 B1
6562168 Schmitt et al. May 2003 B1
6562192 Hamilton May 2003 B1
6569137 Suzuki et al. May 2003 B2
6573422 Rosenfeld Jun 2003 B1
6585713 LeMahieu et al. Jul 2003 B1
6585858 Otto et al. Jul 2003 B1
6602234 Klemp et al. Aug 2003 B2
6605070 Ludwig et al. Aug 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605752 Magnusson et al. Aug 2003 B2
6610900 Tanzer Aug 2003 B1
6630054 Graef Oct 2003 B1
6632209 Chmielewski Oct 2003 B1
6632504 Gillespie et al. Oct 2003 B1
6645569 Cramer et al. Nov 2003 B2
6646180 Chmielewski Nov 2003 B1
6648869 Gillies et al. Nov 2003 B1
6648870 Itoh et al. Nov 2003 B2
6648871 Kusibojoska et al. Nov 2003 B2
6649807 Mizutani Nov 2003 B2
6649810 Minato et al. Nov 2003 B1
6657015 Riegel et al. Dec 2003 B1
6657102 Furuya Dec 2003 B2
6667424 Hamilton Dec 2003 B1
6670522 Graef Dec 2003 B1
6673982 Chen Jan 2004 B1
6673983 Graef Jan 2004 B1
6673985 Mizutani Jan 2004 B2
6682515 Mizutani et al. Jan 2004 B1
6682516 Johnston Jan 2004 B2
6689115 Popp et al. Feb 2004 B1
6689934 Dodge, II et al. Feb 2004 B2
6695827 Chen Feb 2004 B2
6700034 Lindsay et al. Mar 2004 B1
6703538 Lassen Mar 2004 B2
6705465 Ling et al. Mar 2004 B2
6706129 Ando et al. Mar 2004 B2
6706943 Onishi Mar 2004 B2
6710224 Chmielewski et al. Mar 2004 B2
6710225 Everett et al. Mar 2004 B1
6716205 Popp et al. Apr 2004 B2
6716441 Osborne et al. Apr 2004 B1
6717029 Baker Apr 2004 B2
6726668 Underhill et al. Apr 2004 B2
6726792 Johnson et al. Apr 2004 B1
6730387 Rezai et al. May 2004 B2
6734335 Graef May 2004 B1
6790798 Suzuki et al. Sep 2004 B1
6802834 Melius et al. Oct 2004 B2
6809158 Ikeuchi et al. Oct 2004 B2
6811642 Ochi Nov 2004 B2
6818083 Mcamish et al. Nov 2004 B2
6818166 Edwardson et al. Nov 2004 B2
6830800 Curro et al. Dec 2004 B2
6832905 Delzer et al. Dec 2004 B2
6840929 Kurata Jan 2005 B2
6846374 Popp Jan 2005 B2
6858771 Yoshimasa Feb 2005 B2
6863933 Cramer et al. Mar 2005 B2
6863960 Curro et al. Mar 2005 B2
6867345 Shimoe et al. Mar 2005 B2
6867346 Dopps Mar 2005 B1
6878433 Curro et al. Apr 2005 B2
6878647 Rezai Apr 2005 B1
6880211 Jackson et al. Apr 2005 B2
6891080 Minato May 2005 B2
6904865 Klofta Jun 2005 B2
6911574 Mizutani Jun 2005 B1
6923797 Shinohara et al. Aug 2005 B2
6923926 Walter et al. Aug 2005 B2
6926703 Sugito Aug 2005 B2
6929629 Drevik et al. Aug 2005 B2
6939914 Qin et al. Sep 2005 B2
6946585 Brown Sep 2005 B2
6953451 Berba Oct 2005 B2
6955733 Henry et al. Oct 2005 B2
6962578 Lavon Nov 2005 B1
6962645 Graef Nov 2005 B2
6965058 Raidel et al. Nov 2005 B1
6969781 Graef Nov 2005 B2
6972010 Pesce et al. Dec 2005 B2
6972011 Maeda et al. Dec 2005 B2
6979564 Glucksmann et al. Dec 2005 B2
6982052 Daniels et al. Jan 2006 B2
7001167 Venturino Feb 2006 B2
7014632 Takino et al. Mar 2006 B2
7015370 Watanabe Mar 2006 B2
7037299 Turi et al. May 2006 B2
7037571 Fish et al. May 2006 B2
7048726 Kusagawa et al. May 2006 B2
7056311 Kinoshita Jun 2006 B2
7067711 Kinoshita et al. Jun 2006 B2
7073373 La Fortune Jul 2006 B2
7078583 Kudo Jul 2006 B2
7090665 Ohashi Aug 2006 B2
7108759 You Sep 2006 B2
7108916 Ehrnsperger et al. Sep 2006 B2
7112621 Rohrbaugh et al. Sep 2006 B2
7122713 Komatsu Oct 2006 B2
7125470 Graef Oct 2006 B2
7132585 Kudo Nov 2006 B2
7147628 Drevik Dec 2006 B2
7150729 Shimada Dec 2006 B2
7154019 Mishima et al. Dec 2006 B2
7160281 Leminh et al. Jan 2007 B2
7163528 Christon et al. Jan 2007 B2
7166190 Graef Jan 2007 B2
7169136 Otsubo Jan 2007 B2
7183360 Daniel et al. Feb 2007 B2
7189888 Wang et al. Mar 2007 B2
7196241 Kinoshita Mar 2007 B2
7199211 Popp et al. Apr 2007 B2
7204830 Mishima Apr 2007 B2
7207978 Takino Apr 2007 B2
7219403 Miyamoto et al. May 2007 B2
7220251 Otsubo et al. May 2007 B2
7241280 Christon et al. Jul 2007 B2
7250481 Jaworek et al. Jul 2007 B2
7252657 Mishima Aug 2007 B2
7265258 Hamilton Sep 2007 B2
7270651 Adams et al. Sep 2007 B2
7285178 Mischler et al. Oct 2007 B2
7306582 Adams et al. Dec 2007 B2
7311696 Christon et al. Dec 2007 B2
7311968 Ehrnsperger et al. Dec 2007 B2
7312372 Miyama Dec 2007 B2
7318820 LaVon et al. Jan 2008 B2
7329244 Otsubo Feb 2008 B2
7329246 Kinoshita Feb 2008 B2
7335810 Yoshimasa et al. Feb 2008 B2
7377914 LaVon May 2008 B2
7429689 Chen Sep 2008 B2
7435244 Schroer et al. Oct 2008 B2
7465373 Graef Dec 2008 B2
7500969 Mishima Mar 2009 B2
7504552 Tamura Mar 2009 B2
7521109 Suzuki et al. Apr 2009 B2
7521587 Busam et al. Apr 2009 B2
7537832 Carlucci et al. May 2009 B2
7547815 Ohashi Jun 2009 B2
7550646 Tamura Jun 2009 B2
7563257 Nakajima Jul 2009 B2
7588561 Kenmochi Sep 2009 B2
7594904 Rosenfeld Sep 2009 B2
7598428 Gustavsson et al. Oct 2009 B2
7625363 Yoshimasa Dec 2009 B2
7641642 Murai et al. Jan 2010 B2
7648490 Kuroda Jan 2010 B2
7652111 Hermeling et al. Jan 2010 B2
7666173 Mishima Feb 2010 B2
7666174 Kawakami et al. Feb 2010 B2
7686790 Rasmussen et al. Mar 2010 B2
7687596 Hermeling et al. Mar 2010 B2
7695461 Rosenfeld Apr 2010 B2
7696402 Nishikawa Apr 2010 B2
7708725 Tamagawa May 2010 B2
7717150 Manabe May 2010 B2
7718844 Olson May 2010 B2
7722587 Suzuki et al. May 2010 B2
7722590 Tsuji May 2010 B2
7727217 Hancock-Cooke Jun 2010 B2
7736351 Nigam Jun 2010 B2
7737324 LaVon et al. Jun 2010 B2
7744576 Busam et al. Jun 2010 B2
7744578 Tanio et al. Jun 2010 B2
7750203 Busam et al. Jul 2010 B2
7754822 Daniel et al. Jul 2010 B2
7754940 Brisebois Jul 2010 B2
7759540 Litvay et al. Jul 2010 B2
7763004 Beck Jul 2010 B2
7767875 Olson Aug 2010 B2
7767876 Davis et al. Aug 2010 B2
7767878 Suzuki Aug 2010 B2
7772420 Hermeling et al. Aug 2010 B2
7786341 Schneider et al. Aug 2010 B2
7795492 Vartiainen Sep 2010 B2
7803145 Rosenfeld Sep 2010 B2
7825291 Elfsberg et al. Nov 2010 B2
7838722 Blessing et al. Nov 2010 B2
7850672 Guidotti et al. Dec 2010 B2
7851667 Becker et al. Dec 2010 B2
7855314 Hanao Dec 2010 B2
7857797 Kudo Dec 2010 B2
7858842 Komatsu Dec 2010 B2
7884259 Hanao Feb 2011 B2
7888549 Jansson et al. Feb 2011 B2
7910797 Nandrea Mar 2011 B2
7931636 LaVon et al. Apr 2011 B2
7935207 Zhao May 2011 B2
7935861 Suzuki May 2011 B2
7938813 Wang et al. May 2011 B2
7942858 Francoeur May 2011 B2
7951126 Nanjyo May 2011 B2
7959620 Miura et al. Jun 2011 B2
7982091 Konawa Jul 2011 B2
7993319 Sperl Aug 2011 B2
8017827 Hundorf et al. Sep 2011 B2
8029486 Nakajima Oct 2011 B2
8034991 Bruzadin et al. Oct 2011 B2
8039684 Guidotti et al. Oct 2011 B2
8052454 Polnyi Nov 2011 B2
8057620 Perego et al. Nov 2011 B2
8109915 Shimoe Feb 2012 B2
8124828 Kline et al. Feb 2012 B2
8133212 Takada Mar 2012 B2
8148598 Tsang et al. Apr 2012 B2
8163124 Moriura et al. Apr 2012 B2
8167862 Digiacomantonio et al. May 2012 B2
8173858 Kuroda May 2012 B2
8178747 Venturino et al. May 2012 B2
8183430 Hakansson et al. May 2012 B2
8186296 Brown et al. May 2012 B2
8187239 LaVon et al. May 2012 B2
8187240 Busam et al. May 2012 B2
8198506 Venturino et al. Jun 2012 B2
8211815 Baker Jul 2012 B2
8236715 Schmidt et al. Aug 2012 B2
8237012 Miyama Aug 2012 B2
8246594 Sperl Aug 2012 B2
8258367 Lawson et al. Sep 2012 B2
8268424 Suzuki Sep 2012 B1
8273943 Noda Sep 2012 B2
8282617 Kaneda Oct 2012 B2
8283516 Litvay Oct 2012 B2
8317766 Naoto Nov 2012 B2
8317768 Larsson Nov 2012 B2
8319005 Becker et al. Nov 2012 B2
8343123 Noda Jan 2013 B2
8343296 Blessing et al. Jan 2013 B2
8360977 Marttila Jan 2013 B2
8361047 Mukai Jan 2013 B2
8377025 Nakajima Feb 2013 B2
8450555 Nhan et al. May 2013 B2
8496637 Hundorf et al. Jul 2013 B2
8519213 Venturino et al. Aug 2013 B2
8524355 Nakaoka Sep 2013 B2
8552252 Hundorf et al. Oct 2013 B2
8568566 Jackels et al. Oct 2013 B2
8569571 Kline et al. Oct 2013 B2
8581019 Carlucci et al. Nov 2013 B2
8603058 Sprerl et al. Dec 2013 B2
8604270 Venturino et al. Dec 2013 B2
8633347 Bianco et al. Jan 2014 B2
8664468 Lawson et al. Mar 2014 B2
8674170 Busam et al. Mar 2014 B2
8734417 LaVon et al. May 2014 B2
8766031 Becker et al. Jul 2014 B2
8772570 Kawakami et al. Jul 2014 B2
8784594 Blessing et al. Jul 2014 B2
8785715 Wright et al. Jul 2014 B2
8791318 Becker et al. Jul 2014 B2
8936584 Zander et al. Jan 2015 B2
9056034 Akiyama Jun 2015 B2
9326896 Schaefer et al. May 2016 B2
20010007065 Blanchard Jul 2001 A1
20010008964 Kurata et al. Jul 2001 A1
20010014797 Suzuki et al. Aug 2001 A1
20010016548 Kugler et al. Aug 2001 A1
20010020157 Mizutani Sep 2001 A1
20010037101 Allan et al. Nov 2001 A1
20010044610 Kim Nov 2001 A1
20020007167 Ervin Jan 2002 A1
20020007169 Graef et al. Jan 2002 A1
20020016122 Curro et al. Feb 2002 A1
20020016579 Stenberg Feb 2002 A1
20020045881 Kusibojoska et al. Apr 2002 A1
20020056516 Ochi May 2002 A1
20020058919 Hamilton et al. May 2002 A1
20020062112 Mizutani May 2002 A1
20020062115 Wada et al. May 2002 A1
20020062116 Mizutani et al. May 2002 A1
20020065498 Ohashi May 2002 A1
20020072471 Ikeuchi et al. Jun 2002 A1
20020082575 Ervin Jun 2002 A1
20020087139 Popp et al. Jul 2002 A1
20020095127 Fish et al. Jul 2002 A1
20020102392 Fish et al. Aug 2002 A1
20020115969 Maeda et al. Aug 2002 A1
20020123728 Graef et al. Sep 2002 A1
20020123848 Schneiderman et al. Sep 2002 A1
20020151634 Rohrbaugh et al. Oct 2002 A1
20020151861 Klemp et al. Oct 2002 A1
20020173767 Popp et al. Nov 2002 A1
20020192366 Cramer et al. Dec 2002 A1
20020197695 Glucksmann et al. Dec 2002 A1
20030036741 Abba et al. Feb 2003 A1
20030078553 Wada Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030088223 Vogt et al. May 2003 A1
20030105190 Diehl et al. Jun 2003 A1
20030109839 Costae et al. Jun 2003 A1
20030114811 Christen et al. Jun 2003 A1
20030114816 Underhill Jun 2003 A1
20030114818 Benecke et al. Jun 2003 A1
20030115969 Koyano et al. Jun 2003 A1
20030120235 Boulanger Jun 2003 A1
20030120249 Wulz et al. Jun 2003 A1
20030135176 Delzer et al. Jul 2003 A1
20030135181 Chen et al. Jul 2003 A1
20030135182 Woon et al. Jul 2003 A1
20030139712 Dodge Jul 2003 A1
20030139715 Dodge Jul 2003 A1
20030139718 Graef Jul 2003 A1
20030144642 Dopps Jul 2003 A1
20030144644 Murai et al. Jul 2003 A1
20030148684 Cramer et al. Aug 2003 A1
20030148694 Ghiam Aug 2003 A1
20030158530 Diehl et al. Aug 2003 A1
20030158531 Chmielewski Aug 2003 A1
20030158532 Magee et al. Aug 2003 A1
20030167045 Graef Sep 2003 A1
20030171727 Graef Sep 2003 A1
20030208175 Gross Nov 2003 A1
20030225385 Glaug Dec 2003 A1
20030233082 Kline et al. Dec 2003 A1
20030236512 Baker Dec 2003 A1
20040019338 Litvay et al. Jan 2004 A1
20040022998 Miyamoto et al. Feb 2004 A1
20040033750 Everett Feb 2004 A1
20040063367 Dodge Apr 2004 A1
20040064113 Erdman Apr 2004 A1
20040064115 Arora Apr 2004 A1
20040064116 Arora Apr 2004 A1
20040064125 Justmann et al. Apr 2004 A1
20040065420 Graef Apr 2004 A1
20040082928 Pesce et al. Apr 2004 A1
20040097895 Busam et al. May 2004 A1
20040122411 Hancock-Cooke Jun 2004 A1
20040127131 Potnis Jul 2004 A1
20040127871 Odorzynski Jul 2004 A1
20040127872 Petryk Jul 2004 A1
20040134596 Rosati et al. Jul 2004 A1
20040138633 Mishima et al. Jul 2004 A1
20040147890 Nakahata et al. Jul 2004 A1
20040158212 Ponomarenko et al. Aug 2004 A1
20040162536 Busam et al. Aug 2004 A1
20040167486 Busam et al. Aug 2004 A1
20040167489 Kellenberger et al. Aug 2004 A1
20040170813 Digiacomantonio et al. Sep 2004 A1
20040193127 Hansson Sep 2004 A1
20040215160 Chmielewski Oct 2004 A1
20040220541 Suzuki et al. Nov 2004 A1
20040225271 Datta et al. Nov 2004 A1
20040231065 Daniel et al. Nov 2004 A1
20040236299 Tsang et al. Nov 2004 A1
20040236455 Woltman et al. Nov 2004 A1
20040243078 Guidotti et al. Dec 2004 A1
20040249355 Tanio et al. Dec 2004 A1
20040260259 Baker Dec 2004 A1
20050004543 Schroer et al. Jan 2005 A1
20050004548 Otsubo et al. Jan 2005 A1
20050008839 Cramer et al. Jan 2005 A1
20050018258 Miyagi Jan 2005 A1
20050038401 Suzuki et al. Feb 2005 A1
20050070867 Beruda et al. Mar 2005 A1
20050085784 LeMinh et al. Apr 2005 A1
20050090789 Graef Apr 2005 A1
20050101929 Waksmundzki et al. May 2005 A1
20050137543 Underhill et al. Jun 2005 A1
20050148258 Chakravarty Jul 2005 A1
20050148961 Sosalla et al. Jul 2005 A1
20050148990 Shimoe Jul 2005 A1
20050154363 Minato Jul 2005 A1
20050159720 Gentilcore Jul 2005 A1
20050165208 Popp et al. Jul 2005 A1
20050171499 Nigam et al. Aug 2005 A1
20050176910 Jaworek et al. Aug 2005 A1
20050203475 LaVon et al. Sep 2005 A1
20050215752 Popp et al. Sep 2005 A1
20050217791 Costello et al. Oct 2005 A1
20050229543 Tippey Oct 2005 A1
20050234414 Liu et al. Oct 2005 A1
20050245684 Daniel et al. Nov 2005 A1
20050288645 LaVon Dec 2005 A1
20050288646 LaVon Dec 2005 A1
20060004334 Schlinz et al. Jan 2006 A1
20060021695 Blessing et al. Feb 2006 A1
20060024433 Blessing et al. Feb 2006 A1
20060069367 Waksmundzki et al. Mar 2006 A1
20060069371 Ohashi et al. Mar 2006 A1
20060073969 Torli et al. Apr 2006 A1
20060081348 Graef Apr 2006 A1
20060129114 Mason et al. Jun 2006 A1
20060142724 Watanabe Jun 2006 A1
20060155057 Hermeling et al. Jul 2006 A1
20060155254 Sanz et al. Jul 2006 A1
20060167215 Hermeling et al. Jul 2006 A1
20060177647 Schmidt et al. Aug 2006 A1
20060178071 Schmidt et al. Aug 2006 A1
20060184146 Suzuki Aug 2006 A1
20060184149 Kasai et al. Aug 2006 A1
20060189954 Kudo Aug 2006 A1
20060202380 Bentley Sep 2006 A1
20060206091 Cole Sep 2006 A1
20060211828 Daniel et al. Sep 2006 A1
20060240229 Ehrnsperger et al. Oct 2006 A1
20060264860 Beck Nov 2006 A1
20060264861 Lavon et al. Nov 2006 A1
20060271010 LaVon et al. Nov 2006 A1
20070027436 Nakagawa et al. Feb 2007 A1
20070032770 Lavon et al. Feb 2007 A1
20070043191 Hermeling et al. Feb 2007 A1
20070043330 Lankhof et al. Feb 2007 A1
20070044903 Wisneski et al. Mar 2007 A1
20070049892 Lord et al. Mar 2007 A1
20070049897 LaVon et al. Mar 2007 A1
20070073253 Miyama Mar 2007 A1
20070078422 Glaug Apr 2007 A1
20070088308 Ehrnsperger et al. Apr 2007 A1
20070093164 Nakaoka Apr 2007 A1
20070093767 Carlucci et al. Apr 2007 A1
20070100307 Nomoto May 2007 A1
20070118087 Flohr et al. May 2007 A1
20070123834 McDowall et al. May 2007 A1
20070156108 Becker et al. Jul 2007 A1
20070156110 Thyfault Jul 2007 A1
20070167928 Becker et al. Jul 2007 A1
20070179464 Becker et al. Aug 2007 A1
20070179469 Takahashi et al. Aug 2007 A1
20070191798 Glaug Aug 2007 A1
20070197987 Tsang et al. Aug 2007 A1
20070219521 Hird et al. Sep 2007 A1
20070219523 Bruun Sep 2007 A1
20070244455 Hansson et al. Oct 2007 A1
20070246147 Venturino et al. Oct 2007 A1
20070255245 Asp et al. Nov 2007 A1
20070282288 Noda Dec 2007 A1
20070282290 Cole Dec 2007 A1
20070282291 Cole Dec 2007 A1
20080027402 Schmidt et al. Jan 2008 A1
20080032035 Schmidt et al. Feb 2008 A1
20080091159 Carlucci et al. Apr 2008 A1
20080119810 Kuroda May 2008 A1
20080125735 Busam et al. May 2008 A1
20080132864 Lawson et al. Jun 2008 A1
20080208154 Oetjen et al. Aug 2008 A1
20080221538 Zhao Sep 2008 A1
20080221539 Zhao Sep 2008 A1
20080228158 Sue et al. Sep 2008 A1
20080262459 Kamoto Oct 2008 A1
20080268194 Kim et al. Oct 2008 A1
20080274227 Boatman et al. Nov 2008 A1
20080281287 Marcelo Nov 2008 A1
20080294140 Ecker et al. Nov 2008 A1
20080312617 Hundorf et al. Dec 2008 A1
20080312618 Hundorf et al. Dec 2008 A1
20080312619 Hundorf et al. Dec 2008 A1
20080312620 Ashton et al. Dec 2008 A1
20080312621 Hundorf et al. Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20080312623 Hundorf et al. Dec 2008 A1
20080312624 Hundorf et al. Dec 2008 A1
20080312625 Hundorf et al. Dec 2008 A1
20080312627 Takeuchi Dec 2008 A1
20080312628 Hundorf et al. Dec 2008 A1
20090023848 Ahmed et al. Jan 2009 A1
20090056867 Moriura et al. Mar 2009 A1
20090062760 Wright et al. Mar 2009 A1
20090112173 Bissah Apr 2009 A1
20090112175 Bissah et al. Apr 2009 A1
20090157022 Macdonald Jun 2009 A1
20090192035 Stueven et al. Jul 2009 A1
20090240220 Macdonald Sep 2009 A1
20090247977 Takeuchi Oct 2009 A1
20090258994 Stueven et al. Oct 2009 A1
20090270825 Wciorka et al. Oct 2009 A1
20090298963 Matsumoto et al. Dec 2009 A1
20090299312 Macdonald Dec 2009 A1
20090306618 Kudo Dec 2009 A1
20090318884 Meyer et al. Dec 2009 A1
20090326494 Uchida et al. Dec 2009 A1
20100051166 Hundorf et al. Mar 2010 A1
20100062165 Suzuki Mar 2010 A1
20100062934 Suzuki Mar 2010 A1
20100063470 Suzuki Mar 2010 A1
20100068520 Stueven et al. Mar 2010 A1
20100100065 Bianco Apr 2010 A1
20100115237 Brewer et al. May 2010 A1
20100121296 Noda May 2010 A1
20100137773 Gross Jun 2010 A1
20100137823 Corneliusson Jun 2010 A1
20100198179 Noda Aug 2010 A1
20100228210 Busam et al. Sep 2010 A1
20100241096 LaVon et al. Sep 2010 A1
20100241097 Nigam et al. Sep 2010 A1
20100262099 Klofta Oct 2010 A1
20100262104 Carlucci et al. Oct 2010 A1
20100274208 Gabrielii Oct 2010 A1
20100274210 Noda Oct 2010 A1
20100312208 Bond et al. Dec 2010 A1
20100324521 Mukai Dec 2010 A1
20100324523 Mukai Dec 2010 A1
20110041999 Hundorf et al. Feb 2011 A1
20110060301 Nishikawa et al. Mar 2011 A1
20110060303 Bissah Mar 2011 A1
20110066127 Kuwano Mar 2011 A1
20110071486 Harada Mar 2011 A1
20110092944 Sagisaka Apr 2011 A1
20110112498 Nhan et al. May 2011 A1
20110125120 Nishitani May 2011 A1
20110130732 Jackels et al. Jun 2011 A1
20110130737 Sagisaka Jun 2011 A1
20110137276 Yoshikawa Jun 2011 A1
20110144602 Long Jun 2011 A1
20110144604 Noda Jun 2011 A1
20110144606 Nandrea Jun 2011 A1
20110152813 Ellingson Jun 2011 A1
20110166540 Yang et al. Jul 2011 A1
20110172630 Nomoto Jul 2011 A1
20110174430 Zhao Jul 2011 A1
20110196330 Hammons et al. Aug 2011 A1
20110208147 Kawakami et al. Aug 2011 A1
20110250413 Lu et al. Oct 2011 A1
20110268932 Catalan et al. Nov 2011 A1
20110274834 Brown et al. Nov 2011 A1
20110288513 Hundorf et al. Nov 2011 A1
20110288514 Kuroda Nov 2011 A1
20110295222 Becker et al. Dec 2011 A1
20110319846 Rinnert et al. Dec 2011 A1
20110319848 McKiernan et al. Dec 2011 A1
20110319851 Kudo Dec 2011 A1
20120004633 Marcelo Jan 2012 A1
20120016326 Brennan et al. Jan 2012 A1
20120022479 Cotton Jan 2012 A1
20120035566 Sagisaka Feb 2012 A1
20120035576 Ichikawa Feb 2012 A1
20120064792 Bauduin Mar 2012 A1
20120071848 Zhang Mar 2012 A1
20120165771 Ruman et al. Jun 2012 A1
20120165776 McGregor et al. Jun 2012 A1
20120170779 Rosati et al. Jul 2012 A1
20120175056 Tsang Jul 2012 A1
20120184934 Venturino Jul 2012 A1
20120232514 Baker Sep 2012 A1
20120238977 Oku Sep 2012 A1
20120253306 Otsubo Oct 2012 A1
20120256750 Novak Oct 2012 A1
20120271262 Venturino Oct 2012 A1
20120312491 Jackels et al. Dec 2012 A1
20120316046 Jackels et al. Dec 2012 A1
20120316523 Hippe et al. Dec 2012 A1
20120316526 Rosati et al. Dec 2012 A1
20120316527 Rosati et al. Dec 2012 A1
20120316528 Kreuzer et al. Dec 2012 A1
20120316529 Kreuzer et al. Dec 2012 A1
20120323195 Ehrnsperger et al. Dec 2012 A1
20120323201 Bissah Dec 2012 A1
20120323202 Bissah Dec 2012 A1
20130035656 Moriya et al. Feb 2013 A1
20130041334 Prioleau Feb 2013 A1
20130178811 Kikuchi et al. Jul 2013 A1
20130211354 Tsuji et al. Aug 2013 A1
20130211358 Kikkawa et al. Aug 2013 A1
20130226119 Katsuragawa et al. Aug 2013 A1
20130226120 Van De Maele Aug 2013 A1
20130310784 Bryant et al. Nov 2013 A1
20140005622 Wirtz et al. Jan 2014 A1
20140027066 Jackels et al. Jan 2014 A1
20140039437 Van De Maele Feb 2014 A1
20140045683 Loick et al. Feb 2014 A1
20140102183 Agami et al. Apr 2014 A1
20140121623 Kirby et al. May 2014 A1
20140135726 Busam et al. May 2014 A1
20140142531 Sasayama et al. May 2014 A1
20140163500 Roe et al. Jun 2014 A1
20140163501 Ehrnsperger et al. Jun 2014 A1
20140163503 Arizti et al. Jun 2014 A1
20140163506 Roe et al. Jun 2014 A1
20140163511 Roe et al. Jun 2014 A1
20140171893 Lawson et al. Jun 2014 A1
20140318694 Blessing et al. Oct 2014 A1
20140324007 Hundorf et al. Oct 2014 A1
20140324008 Hundorf et al. Oct 2014 A1
20150065981 Roe et al. Mar 2015 A1
20150065986 Blessing et al. Mar 2015 A1
20150080837 Rosati et al. Mar 2015 A1
20150080839 Tapp et al. Mar 2015 A1
20150173967 Kreuzer et al. Jun 2015 A1
20150173968 Joseph Jun 2015 A1
20150250662 Isele et al. Sep 2015 A1
Foreign Referenced Citations (543)
Number Date Country
2001370 Apr 1990 CA
2291997 Jun 2000 CA
2308961 Nov 2000 CA
2487027 Dec 2003 CA
2561521 Mar 2007 CA
2630713 Nov 2008 CA
2636673 Jan 2009 CA
2712563 Aug 2010 CA
2702001 Oct 2010 CA
1238171 Dec 1999 CN
2362468 Feb 2000 CN
1371671 Feb 2001 CN
2527254 Dec 2002 CN
2535020 Feb 2003 CN
2548609 May 2003 CN
1539391 Oct 2004 CN
1939242 Apr 2007 CN
101292930 Oct 2008 CN
201263750 Jul 2009 CN
201591689 Sep 2010 CN
201855366 Jun 2011 CN
3205931 Sep 1983 DE
3608114 Sep 1987 DE
19732499 Feb 1999 DE
10204937 Aug 2003 DE
083022 Jul 1983 EP
149880 Jul 1985 EP
0149880 Jul 1985 EP
203289 Dec 1986 EP
0203289 Dec 1986 EP
0206208 Dec 1986 EP
209561 Jan 1987 EP
297411 Jan 1989 EP
304957 Mar 1989 EP
374542 Jun 1990 EP
394274 Oct 1990 EP
0403832 Dec 1990 EP
481322 Apr 1992 EP
530438 Mar 1993 EP
547847 Jun 1993 EP
555346 Aug 1993 EP
559476 Sep 1993 EP
591647 Apr 1994 EP
597273 May 1994 EP
601610 Jun 1994 EP
632068 Jan 1995 EP
0640330 Mar 1995 EP
0668066 Sep 1995 EP
685214 Dec 1995 EP
687453 Dec 1995 EP
0689817 Jan 1996 EP
0691133 Jan 1996 EP
0700673 Mar 1996 EP
0394274 Jul 1996 EP
724418 Aug 1996 EP
725613 Aug 1996 EP
725615 Aug 1996 EP
725616 Aug 1996 EP
758543 Feb 1997 EP
0761194 Mar 1997 EP
769284 Apr 1997 EP
0781537 Jul 1997 EP
783877 Jul 1997 EP
787472 Aug 1997 EP
788874 Aug 1997 EP
796068 Sep 1997 EP
799004 Oct 1997 EP
822794 Feb 1998 EP
826351 Mar 1998 EP
844861 Jun 1998 EP
0737055 Aug 1998 EP
863733 Sep 1998 EP
971751 Sep 1998 EP
0875224 Nov 1998 EP
875224 Nov 1998 EP
880955 Dec 1998 EP
891758 Jan 1999 EP
0893115 Jan 1999 EP
0724418 Mar 1999 EP
0725613 Mar 1999 EP
0725616 Mar 1999 EP
904755 Mar 1999 EP
0916327 May 1999 EP
925769 Jun 1999 EP
933074 Aug 1999 EP
937736 Aug 1999 EP
941157 Sep 1999 EP
947549 Oct 1999 EP
951887 Oct 1999 EP
0951890 Oct 1999 EP
2295493 Oct 1999 EP
2305749 Oct 1999 EP
2330152 Oct 1999 EP
953326 Nov 1999 EP
0978263 Feb 2000 EP
985397 Mar 2000 EP
0778762 Apr 2000 EP
1005847 Jun 2000 EP
1008333 Jun 2000 EP
1013252 Jun 2000 EP
1018999 Jul 2000 EP
1019002 Jul 2000 EP
1019003 Jul 2000 EP
1022008 Jul 2000 EP
1023884 Aug 2000 EP
1053729 Nov 2000 EP
1059072 Dec 2000 EP
1063954 Jan 2001 EP
1071388 Jan 2001 EP
1078618 Feb 2001 EP
1088537 Apr 2001 EP
0796068 May 2001 EP
752892 Jul 2001 EP
1116479 Jul 2001 EP
0790839 Aug 2001 EP
1132069 Sep 2001 EP
1173128 Jan 2002 EP
1175194 Jan 2002 EP
1184018 Mar 2002 EP
1192312 Apr 2002 EP
1196122 Apr 2002 EP
1199059 Apr 2002 EP
1199327 Apr 2002 EP
1208824 May 2002 EP
0793469 Jun 2002 EP
1210925 Jun 2002 EP
1224922 Jul 2002 EP
1225857 Jul 2002 EP
1253231 Oct 2002 EP
1262531 Dec 2002 EP
1263374 Dec 2002 EP
0737056 Jan 2003 EP
1275358 Jan 2003 EP
1275361 Jan 2003 EP
1293187 Mar 2003 EP
1304986 May 2003 EP
1332742 Aug 2003 EP
1339368 Sep 2003 EP
1374817 Jan 2004 EP
1388334 Feb 2004 EP
1402863 Mar 2004 EP
962208 Aug 2004 EP
1447066 Aug 2004 EP
1447067 Aug 2004 EP
1460987 Sep 2004 EP
963749 Nov 2004 EP
1495739 Jan 2005 EP
1524955 Apr 2005 EP
1920743 Apr 2005 EP
1541103 Jun 2005 EP
1551344 Jul 2005 EP
1586289 Oct 2005 EP
1588723 Oct 2005 EP
1605882 Dec 2005 EP
1609448 Dec 2005 EP
1621166 Feb 2006 EP
1621167 Feb 2006 EP
1632206 Mar 2006 EP
1642556 Apr 2006 EP
1403419 May 2006 EP
1656162 May 2006 EP
1669046 Jun 2006 EP
1688114 Aug 2006 EP
2314265 Aug 2006 EP
1723939 Nov 2006 EP
1738727 Jan 2007 EP
1754461 Feb 2007 EP
1787611 May 2007 EP
1813238 Aug 2007 EP
2008626 Dec 2008 EP
2055279 May 2009 EP
2093049 Aug 2009 EP
2130522 Dec 2009 EP
1621165 Apr 2010 EP
2444046 Apr 2012 EP
2532328 Dec 2012 EP
2532329 Dec 2012 EP
2532332 Dec 2012 EP
2679210 Jan 2014 EP
2740449 Jun 2014 EP
2740452 Jun 2014 EP
2213491 Aug 2004 ES
2566631 Jan 1986 FR
2583377 Dec 1986 FR
2612770 Sep 1988 FR
2810234 Dec 2001 FR
1333081 Aug 1971 GB
1307441 Feb 1973 GB
1513055 Jun 1978 GB
2101468 Jan 1983 GB
2170108 Jul 1986 GB
2262873 Jul 1993 GB
2288540 Jun 1994 GB
2354449 Mar 2001 GB
2452260 Oct 2007 GB
851769 Nov 1985 GR
IN0984KOL1999 Oct 2005 IN
212479 Mar 2007 IN
208543 Aug 2007 IN
IN0980MUM2009 Jun 2009 IN
2107250 Apr 1990 JP
03224481 Oct 1991 JP
04122256 Apr 1992 JP
04341368 Nov 1992 JP
06191505 Jul 1994 JP
06269475 Sep 1994 JP
07124193 May 1995 JP
08215629 Aug 1996 JP
H10295728 Nov 1998 JP
10328232 Dec 1998 JP
11033056 Feb 1999 JP
11318980 Nov 1999 JP
11320742 Nov 1999 JP
2000232985 Aug 2000 JP
2000238161 Sep 2000 JP
2001037810 Feb 2001 JP
2001046435 Feb 2001 JP
2001120597 May 2001 JP
2001158074 Jun 2001 JP
2001178768 Jul 2001 JP
2001198157 Jul 2001 JP
2001224626 Aug 2001 JP
2001277394 Oct 2001 JP
03420481 Nov 2001 JP
2001321397 Nov 2001 JP
2001353174 Dec 2001 JP
2002052042 Feb 2002 JP
2002065718 Mar 2002 JP
2002113800 Apr 2002 JP
2002165832 Jun 2002 JP
2002165836 Jun 2002 JP
2002178429 Jun 2002 JP
2002272769 Sep 2002 JP
2002320641 Nov 2002 JP
2002325792 Nov 2002 JP
2002325799 Nov 2002 JP
2002369841 Dec 2002 JP
2003126140 May 2003 JP
2003153955 May 2003 JP
2003265523 Sep 2003 JP
2003265524 Sep 2003 JP
2003275237 Sep 2003 JP
2003325563 Nov 2003 JP
2004089269 Mar 2004 JP
03566012 Jun 2004 JP
03568146 Jun 2004 JP
03616077 Nov 2004 JP
2004337314 Dec 2004 JP
2004337385 Dec 2004 JP
2004350864 Dec 2004 JP
03640475 Jan 2005 JP
2005000312 Jan 2005 JP
03660816 Mar 2005 JP
03676219 May 2005 JP
03688403 Jun 2005 JP
03705943 Aug 2005 JP
03719819 Sep 2005 JP
03724963 Sep 2005 JP
03725008 Sep 2005 JP
03737376 Nov 2005 JP
2006014792 Jan 2006 JP
03781617 Mar 2006 JP
2006110329 Apr 2006 JP
2006513824 Apr 2006 JP
03801449 May 2006 JP
2006116036 May 2006 JP
03850102 Sep 2006 JP
03850207 Sep 2006 JP
03856941 Sep 2006 JP
03868628 Oct 2006 JP
03874499 Nov 2006 JP
03877702 Nov 2006 JP
2006325639 Dec 2006 JP
2006346021 Dec 2006 JP
03904356 Jan 2007 JP
2007007455 Jan 2007 JP
2007007456 Jan 2007 JP
03926042 Mar 2007 JP
03934855 Mar 2007 JP
2007089906 Apr 2007 JP
2007105198 Apr 2007 JP
2007152033 Jun 2007 JP
03986210 Jul 2007 JP
03986222 Jul 2007 JP
2007167453 Jul 2007 JP
2007175515 Jul 2007 JP
2007195665 Aug 2007 JP
2007267763 Oct 2007 JP
2007275491 Oct 2007 JP
04035341 Nov 2007 JP
04058281 Dec 2007 JP
04061086 Dec 2007 JP
04092319 Mar 2008 JP
2008080150 Apr 2008 JP
2008093289 Apr 2008 JP
04124322 May 2008 JP
2008119081 May 2008 JP
2008136739 Jun 2008 JP
2008136877 Jun 2008 JP
04148594 Jul 2008 JP
04148620 Jul 2008 JP
2008154606 Jul 2008 JP
04162609 Aug 2008 JP
04162637 Aug 2008 JP
04166923 Aug 2008 JP
04167406 Aug 2008 JP
04173723 Aug 2008 JP
04190675 Sep 2008 JP
04190693 Sep 2008 JP
04208338 Oct 2008 JP
2008246089 Oct 2008 JP
4177770 Nov 2008 JP
04230971 Dec 2008 JP
2008295475 Dec 2008 JP
2008295713 Dec 2008 JP
04261593 Feb 2009 JP
2009112590 May 2009 JP
04322228 Jun 2009 JP
2009136601 Jun 2009 JP
2009142401 Jul 2009 JP
2009201878 Sep 2009 JP
04392936 Oct 2009 JP
2009232987 Oct 2009 JP
2009261777 Nov 2009 JP
2009291473 Dec 2009 JP
2009297048 Dec 2009 JP
2010017342 Jan 2010 JP
04458702 Feb 2010 JP
04459013 Feb 2010 JP
2010022560 Feb 2010 JP
04481325 Mar 2010 JP
2010051654 Mar 2010 JP
2010063814 Mar 2010 JP
2010063944 Mar 2010 JP
04492957 Apr 2010 JP
2010068954 Apr 2010 JP
2010075462 Apr 2010 JP
2010082059 Apr 2010 JP
2010104545 May 2010 JP
2010104547 May 2010 JP
2010110535 May 2010 JP
2010119454 Jun 2010 JP
2010119605 Jun 2010 JP
2010119743 Jun 2010 JP
2010131131 Jun 2010 JP
2010131132 Jun 2010 JP
2010131206 Jun 2010 JP
2010131297 Jun 2010 JP
2010136917 Jun 2010 JP
2010136973 Jun 2010 JP
04540563 Jul 2010 JP
04587947 Sep 2010 JP
2010194124 Sep 2010 JP
2010201093 Sep 2010 JP
2010221067 Oct 2010 JP
4577766 Nov 2010 JP
04620299 Nov 2010 JP
04627472 Nov 2010 JP
04627473 Nov 2010 JP
04638087 Dec 2010 JP
04652626 Dec 2010 JP
2010273842 Dec 2010 JP
2010284418 Dec 2010 JP
2011000480 Jan 2011 JP
2011030700 Feb 2011 JP
04693574 Mar 2011 JP
2011067484 Apr 2011 JP
2011072720 Apr 2011 JP
2011104014 Jun 2011 JP
2011104122 Jun 2011 JP
2011120661 Jun 2011 JP
2011125360 Jun 2011 JP
2011125537 Jun 2011 JP
04776516 Jul 2011 JP
2011130797 Jul 2011 JP
2011130799 Jul 2011 JP
2011156032 Aug 2011 JP
2011156070 Aug 2011 JP
2011156254 Aug 2011 JP
04824882 Sep 2011 JP
4850272 Oct 2011 JP
04855533 Nov 2011 JP
2011239858 Dec 2011 JP
04931572 Feb 2012 JP
04937225 Mar 2012 JP
04953618 Mar 2012 JP
04969437 Apr 2012 JP
04969640 Apr 2012 JP
4971491 Apr 2012 JP
04974524 Apr 2012 JP
04979780 Apr 2012 JP
05016020 Jun 2012 JP
05027364 Jun 2012 JP
2012115378 Jun 2012 JP
05031082 Jul 2012 JP
05042351 Jul 2012 JP
05043569 Jul 2012 JP
05043591 Jul 2012 JP
05046488 Jul 2012 JP
2012125452 Jul 2012 JP
2012125625 Jul 2012 JP
05053765 Aug 2012 JP
05070275 Aug 2012 JP
05079931 Sep 2012 JP
05080189 Sep 2012 JP
05084442 Sep 2012 JP
05084476 Sep 2012 JP
5085770 Sep 2012 JP
05089269 Sep 2012 JP
2012179286 Sep 2012 JP
05113146 Oct 2012 JP
05129536 Nov 2012 JP
05105884 Dec 2012 JP
5715806 May 2015 JP
20010005620 Jan 2001 KR
20020035634 May 2002 KR
20080028771 Apr 2008 KR
9400916 Mar 1994 SE
9704893 Dec 1997 SE
WO 9015830 Dec 1990 WO
WO9219198 Nov 1992 WO
WO 9321237 Oct 1993 WO
WO9321879 Nov 1993 WO
WO9510996 Apr 1995 WO
WO9511652 May 1995 WO
WO 9516746 Jun 1995 WO
WO9514453 Jun 1995 WO
WO9515139 Jun 1995 WO
WO9516424 Jun 1995 WO
WO9519753 Jul 1995 WO
WO 9524173 Sep 1995 WO
WO9526209 Oct 1995 WO
WO9529657 Nov 1995 WO
WO 9534329 Dec 1995 WO
WO9532698 Dec 1995 WO
WO9616624 Jun 1996 WO
WO9619173 Jun 1996 WO
WO9629967 Oct 1996 WO
WO9711659 Apr 1997 WO
WO9717922 May 1997 WO
WO 9724096 Jul 1997 WO
WO9816179 Apr 1998 WO
WO9816180 Apr 1998 WO
WO9843684 Oct 1998 WO
WO9913813 Mar 1999 WO
WO 9934841 Jul 1999 WO
WO9934841 Jul 1999 WO
WO0000235 Jan 2000 WO
WO0032145 Jun 2000 WO
WO0059430 Oct 2000 WO
WO0115647 Mar 2001 WO
WO0126596 Apr 2001 WO
WO 0135886 May 2001 WO
WO0207663 Jan 2002 WO
WO0232962 Apr 2002 WO
WO02064877 Aug 2002 WO
WO02067809 Sep 2002 WO
WO03009794 Feb 2003 WO
WO03039402 May 2003 WO
WO03053297 Jul 2003 WO
WO03079946 Oct 2003 WO
WO03101622 Dec 2003 WO
WO03105738 Dec 2003 WO
WO2004021946 Mar 2004 WO
WO2004049995 Jun 2004 WO
WO2004071539 Aug 2004 WO
WO2004084784 Oct 2004 WO
WO2004105664 Dec 2004 WO
WO2005018694 Mar 2005 WO
WO2005087164 Sep 2005 WO
WO 2005102237 Nov 2005 WO
WO2006104024 May 2006 WO
WO2006059922 Jun 2006 WO
WO2006062258 Jun 2006 WO
WO2006066029 Jun 2006 WO
WO2006083584 Aug 2006 WO
WO2006134904 Dec 2006 WO
WO2006134906 Dec 2006 WO
WO2007000315 Jan 2007 WO
WO2007046052 Apr 2007 WO
WO2007047598 Apr 2007 WO
WO2007049725 May 2007 WO
WO2007061035 May 2007 WO
WO 2007141744 Dec 2007 WO
WO2007142145 Dec 2007 WO
WO2007148502 Dec 2007 WO
WO2008018922 Feb 2008 WO
WO2008065945 Jun 2008 WO
WO2008146749 Dec 2008 WO
WO2008155699 Dec 2008 WO
WO2009004941 Jan 2009 WO
WO2009005431 Jan 2009 WO
WO2009139248 Jan 2009 WO
WO2009139255 Jan 2009 WO
WO2009041223 Apr 2009 WO
WO2009096108 Aug 2009 WO
WO2009107435 Sep 2009 WO
WO2009122830 Oct 2009 WO
WO 2009155265 Dec 2009 WO
WO2009152018 Dec 2009 WO
WO2009155264 Dec 2009 WO
WO2009155265 Dec 2009 WO
WO2010071508 Jun 2010 WO
WO2010074319 Jul 2010 WO
WO2010107096 Sep 2010 WO
WO2010114052 Oct 2010 WO
WO2010117015 Oct 2010 WO
WO2010118272 Oct 2010 WO
WO201153044 May 2011 WO
WO2011118725 Sep 2011 WO
WO2011118842 Sep 2011 WO
WO2011145653 Nov 2011 WO
WO2011150955 Dec 2011 WO
WO2011163582 Dec 2011 WO
WO2012002252 Jan 2012 WO
WO2012014436 Feb 2012 WO
WO 2012052172 Apr 2012 WO
WO2012042908 Apr 2012 WO
WO2012043077 Apr 2012 WO
WO2012043078 Apr 2012 WO
WO 2012048879 Apr 2012 WO
WO2012043082 May 2012 WO
WO2012067216 May 2012 WO
WO2012073499 Jun 2012 WO
WO2012074466 Jun 2012 WO
WO201291016 Jul 2012 WO
WO2012090508 Jul 2012 WO
WO2012101934 Aug 2012 WO
WO2012102034 Aug 2012 WO
WO 2012117764 Sep 2012 WO
WO2012117824 Sep 2012 WO
WO2012132460 Oct 2012 WO
WO 2012177400 Dec 2012 WO
WO2012170778 Dec 2012 WO
WO2012170779 Dec 2012 WO
WO2012170781 Dec 2012 WO
WO2012170808 Dec 2012 WO
WO2012174026 Dec 2012 WO
WO2013001788 Jan 2013 WO
WO2013046701 Apr 2013 WO
WO2013060733 May 2013 WO
WO2014073636 May 2014 WO
WO2014078247 May 2014 WO
Non-Patent Literature Citations (1)
Entry
European Search Report, Appl. No. 12196343.3, dated Apr. 3, 2013, 13 pgs.
Related Publications (1)
Number Date Country
20140163502 A1 Jun 2014 US