Absorbent core with profiled distribution of absorbent material

Information

  • Patent Grant
  • 10842690
  • Patent Number
    10,842,690
  • Date Filed
    Friday, April 28, 2017
    7 years ago
  • Date Issued
    Tuesday, November 24, 2020
    3 years ago
Abstract
An absorbent core for absorbent articles such as diapers comprising a core wrap comprising a top side and a bottom side, an absorbent material between the top side and the bottom side of the core wrap, a first and second longitudinally-extending channel-forming areas disposed on opposite sides of the longitudinal axis and substantially free of absorbent material preferably through which the top side of the core wrap is preferably attached to the bottom side of the core wrap. The core has a central absorbent zone between the first and the second channel-forming areas and a first and second lateral absorbent zones disposed laterally outwardly. The basis weight of the absorbent material in the central absorbent zone is higher than the basis weight of the absorbent material in each of the lateral absorbent zones for at least a first transversal section (S1). This relation is inverted along a second transversal section (S2) of the core. The first and second sections have each a length in the longitudinal direction of at least 10 mm.
Description
FIELD OF THE INVENTION

The invention relates to absorbent cores for use in absorbent articles such as, but not limited to, baby diapers, training pants, feminine pads or adult incontinence products. The invention efficiently uses the absorbent material by improving its placement in the absorbent core.


BACKGROUND OF THE INVENTION

Absorbent articles for personal hygiene of the type indicated above are designed to absorb and contain body exudates, in particular large quantity of urine. These absorbent articles comprise several layers providing different functions, such as a topsheet, a backsheet and in-between an absorbent core, among other layers. The absorbent core should absorb and retain the exudates for a prolonged amount of time in order to keep the wearer dry and avoid soiling of clothes or bed sheets. At the same time, the absorbent core should make the most efficient use possible of the absorbent material to save material costs and keep the diapers as thin as possible.


The majority of currently marketed absorbent articles comprise as absorbent material a blend of cellulose fibers with superabsorbent polymers (SAP) particles, also called absorbent gelling materials (AGM), see for example U.S. Pat. No. 5,151,092 (Buell). Absorbent articles having a core consisting essentially of SAP without cellulose fibers as absorbent material (so called “airfelt-free” cores) have also been proposed. For example WO2008/155699 (Hundorf et al.) discloses absorbent cores with a patterned layer of SAP immobilized by a net of fibrous thermoplastic adhesive material deposited over the layer of SAP. The fibrous thermoplastic material helps maintaining the SAP in position within the absorbent core prior to and during use of the article, without substantially restricting the ability of the SAP to absorb large volumes of urine. More recently, WO2012/170783 (Hundorf et al.) discloses absorbent cores comprising absorbent material having a basis weight that varies across the absorbent core. WO2012/170778 (Rosati et al., see also WO2012/170779, WO2012/170781 and WO2012/170808) discloses absorbent structures that comprise superabsorbent polymers, optionally a cellulosic material, and at least a pair of substantially longitudinally-extending channels. The core wrap can be adhesively bonded through the channels to form a channel bond. The integrity of the channel bonds may be at least partially maintained in wet state.


While the absorbent cores of the prior art generally have good properties, there is a continuous need to improve comfort, fit and efficiency of the current cores and to reduce the usage of raw material, in particular the superabsorbent particles, while improving or at least maintaining key properties such as the speed of acquisition and retention of the fluid. The present invention addresses all these problems.


SUMMARY OF THE INVENTION

The invention is directed to absorbent cores and absorbent articles containing these absorbent cores as indicated in the claims. The absorbent core of the invention extends in a longitudinal direction parallel to a longitudinal axis and a transversal direction perpendicular to the longitudinal direction. In a first aspect, the absorbent core comprises:

    • a core wrap having a top side and a bottom side;
    • an absorbent material between the top side and bottom side of the core wrap;
    • a first and second longitudinally-extending channel-forming areas substantially free of absorbent material, preferably through which the top side of the core wrap is attached to the bottom side of the core wrap, and wherein the first channel-forming area is disposed on one side of the longitudinal axis and the second channel-forming area on the other side of the longitudinal axis;
    • a central absorbent zone comprising absorbent material and disposed between the first and the second channel-forming areas; and
    • a first lateral absorbent zone and a second lateral absorbent zone comprising absorbent material and disposed laterally outwardly of the first and second channel-forming areas respectively.


The basis weight of the absorbent material in the central absorbent zone is higher than the basis weight of the absorbent material in each of the lateral absorbent zones for at least a first transversal section of the core having a first length in the longitudinal direction of at least 10 mm; and inversely in a second transversal section of the core having a second length in the longitudinal direction of at least 10 min, the basis weight of the absorbent material in the central absorbent zone is lower than the basis weight of the absorbent material in the lateral zones. The first and second channel-forming areas may be at least partially curved or angled so that the width of the central absorbent zone vary at least along a portion of the length of the core. Alternatively the first and second channel-forming areas may be straight and oriented parallel to the longitudinal axis. This and further aspects will now be further described in the following description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view of an absorbent core comprising two curved channel-forming areas, with the top layer of the core wrap partially removed.



FIG. 2 is a schematic transversal cross-section of the core of FIG. 1.



FIG. 3 is a schematic longitudinal cross-section of the core showing an optional dual absorbent layer construction.



FIG. 4 is a schematic close-up view of a section of FIG. 3.



FIG. 5 shows an exemplary deposition pattern of SAP particles to provide a distribution of absorbent material according to the invention.



FIG. 6 shows the relation between the basis weight of the absorbent material and the position along the longitudinal axis in the core of FIG. 5.



FIG. 7 shows another exemplary deposition pattern of SAP particles according to the invention.



FIG. 8 shows the relationship between the basis weight of the absorbent material and the position along the longitudinal axis in the core of FIG. 7.



FIG. 9 is a top view of an exemplary taped diaper comprising an absorbent core of the invention with some layers partially removed.



FIG. 10 shows a transversal cross-section of FIG. 9.



FIG. 11 shows a transversal cross-section as in FIG. 10 wherein the absorbent core has swollen after absorbing a fluid.



FIG. 12 schematically shows an process for making the absorbent core of the invention.



FIG. 13 shows an apparatus for depositing superabsorbent particles that can be used in the process of FIG. 12.



FIG. 14 shows an alternative distribution pattern for the SAP wherein the channel-forming areas are straight.



FIG. 15 shows an alternative distribution pattern for the SAP wherein the channel-forming areas are straight.





DETAILED DESCRIPTION OF THE INVENTION

General Description of the Absorbent Core 28


As used herein, the term “absorbent core” or “core” refers to a component which is placed or is intended to be placed within an absorbent article, and which comprises an absorbent material contained in a core wrap. As used herein, the term “absorbent core” does not include the topsheet, the backsheet and (if present) an acquisition layer, a distribution layer or an acquisition-distribution multilayer system which is not integral part of the absorbent core. The absorbent core has typically the most absorbent capacity of all the components of the absorbent article, and comprises all or at least the majority of superabsorbent polymer (SAP). The core typically thus consists essentially of, or consists of, the core wrap, the absorbent material and optionally adhesives. The absorbent material may consist of SAP in particulate form as exemplified in the present description but it is not excluded that other absorbent materials may be used. The terms “absorbent core” and “core” are herein used interchangeably.


The absorbent core may be substantially planar so that it can be laid flat on a surface. The absorbent core may also be typically thin and conformable, so that it can also be laid on a curved surface for example a drum during its making process or stored as a continuous roll of stock material before being converted into an absorbent article. FIGS. 1-4 schematically show an absorbent core as known from the prior art, e.g. as in WO2012/170,778. The absorbent cores of the invention may comprise the same basic features as the absorbent core of FIGS. 1-4. For ease of discussion, the exemplarily absorbent core of FIG. 1 is represented in a flat state and extending in a plane along a transversal direction (x) and a longitudinal direction (y). Unless otherwise indicated, dimensions and areas disclosed herein apply to the core in this flat-out configuration. The same applies to an absorbent article, as exemplarily represented in FIG. 9, in which the core can be integrated. For ease of discussion, the absorbent cores and articles of the invention will be discussed with reference to the Figures and the numerals referred to in these Figures, however these are not intended to limit the scope of the claims unless specifically indicated.


The outline of the absorbent core is typically defined by the core wrap. The core wrap may comprise two individual substrates 16, 16′ as exemplified in the FIGS. 1-4, but it is also common and possible to have a single substrate forming the core wrap. The absorbent core typically comprises a front edge 280, a back edge 282 and two longitudinally-extending side edges 284, 286 joining the front edge and the back edge. The front edge is the edge of the core intended to be placed towards the front edge 10 of the absorbent article in which the core is or will be integrated. Typically the absorbent material 60 of the core may be advantageously distributed in somewhat higher amount towards the front edge than towards the back edge as more absorbency is typically required towards the front half of the article. Typically the front and back edges 280, 282 may be shorter than the longitudinally-extending side edges 284, 286. The absorbent core also comprises a top side 288 and a bottom side 290. The top side of the core is the side placed or intended to be placed towards the topsheet 24 of the article and the bottom side is the side placed or intended to be placed towards the backsheet 25 in the finished article. The top side of the core wrap may be typically treated to be more hydrophilic than the bottom side.


The absorbent core can notionally (i.e. virtually) comprise a longitudinal axis 80 extending from the front edge 280 to the back edge 282 and dividing the core in two substantially symmetrical halves relative to this axis, when viewing the core in the plane formed by the longitudinal and transversal direction (x, y). The absorbent core can typically be generally rectangular with a width W in the transversal direction and a length L in the longitudinal direction as measured from edge to edge, including the region of the core wrap which does not enclose the absorbent material, in particular at the front and back end seals 280′, 282′ when present. In case the core is not rectangular, the maximum dimension measured along the transversal direction and the longitudinal direction can be used to report the width and length of the core respectively. The width and length of the core may vary depending on the intended usage. For baby and infant diapers, the width W may for example in the range from 40 mm to 200 mm and the length L from 100 mm to 600 mm. Adult incontinence products may have higher maximum dimensions.


The transversal axis 90 of the core (also referred to as “crotch line”) is defined as the virtual line perpendicular to the longitudinal axis 80 and bisecting the core at a distance of 0.45 of L from the front edge 280 of the absorbent core, L being the length of the core as measured from the front edge 280 in direction of the back edge 282, as shown on FIG. 1. The crotch point C is herein defined as the point of intersection of these two axis. The crotch region of the core is defined herein as the region of the core extending from the transversal axis 90, i.e. at the level of the crotch point C, towards the back edge and front edge of the core by a distance of a quarter of L (L/4) in both directions for a total length of L/2. The front region and back region of the core are the remaining regions of the core towards the front and back edges of the core respectively.


The absorbent material 60 may be any conventional absorbent material used in absorbent articles. In the examples provided further below, the absorbent material consists of SAP particles immobilized by an adhesive, but it is not excluded that any other types of absorbent material may be used, for example superabsorbent foam or a cellulose fibers/SAP mix. The absorbent core may thus be relatively thin, in particular thinner than conventional cores comprising cellulosic fibers. In particular, the caliper of the core (dry, i.e. before use) as measured at the crotch point (C) or at any other points of the surface of the core according to the Dry Core Caliper Test as described herein may be from 0.25 mm to 5.0 mm, in particular from 0.5 mm to 4.0 mm.


The absorbent material 60 may be deposited within the core wrap as one layer, or as represented in FIGS. 3-4 as two absorbent layers applied on the top substrate 16 and bottom substrate 16′ respectively in a pattern of land areas 75,75′ separated by junction areas 76,76′, for example as generally disclosed in WO2008/155699. In particular, two absorbent layers having offset land 75,75′ and junction areas 76, 76′ may be combined to form an absorbent material deposition area in which the absorbent material is substantially continuous, as shown in FIG. 1. This dual layer printing process will be discussed further below with reference to the process illustrated in FIG. 12. If the absorbent core is made according to this process, it may further advantageously comprise a fibrous thermoplastic adhesive 74, 74′ to further immobilize the absorbent material. However the absorbent cores of the present invention are not limited to a particular process for making them. As illustrated in FIG. 3, the absorbent core may have a profiled distribution of material in the longitudinal direction, especially having a higher basis weight in the crotch region than in the front region, and still higher in the front region than in the back region.


The absorbent material 60 defines an absorbent material deposition area as seen from above within the plane of the core. The deposition area may be generally rectangular as shown in the FIG. 1, or may be shaped so that it has a tapered section in the crotch region, as is known in the art in so-called shaped cores. The absorbent core comprises within the deposition area at least a first and a second longitudinally-extending channel-forming areas 26a, 26b disposed on opposite sides of the longitudinal axis 80. The channel-forming areas may be typically mirror image of each other relative to the longitudinal axis. The top side 288 of the core wrap is preferably bonded to the bottom side 290 of the core wrap through these channel-forming areas 26 which are substantially free of absorbent material. The channel bonds 27 are typically encompassed within the areas substantially free of absorbent material. The bond 27 between the substrates 16, 16′ in the channel-forming areas 26 may be provided by an auxiliary glue 72 applied directly to the inner surface of at least one of the substrate, as illustrated in FIG. 2, and/or by any other bonding means such as fusion bonding or ultrasonic bonding. Typically the bonds 27 may generally have the same outline and shape as the absorbent material free areas 26 in which they are contained, but may be slightly smaller to allow for a safety margin (e.g. by a few mm) as some deviations from the optimal registration may happen during high speed process. It is however not excluded that the channel bonds 27 may be provided in areas containing absorbent material, in those cases the bonds may however be substantially less strong and more easily delaminate when the absorbent material swells.


The two channel-forming areas 26a,b define a central absorbent zone 62 disposed between them, and a first and second lateral absorbent zones 61, 63 respectively disposed laterally outwardly of the first and second channel-forming areas. The central, first and second lateral absorbent zones comprise absorbent material. The first and second lateral absorbent zones typically extend laterally up to the longitudinal side edges 284, 286 of the absorbent core. As defined herein, the central absorbent zone 62 and the lateral absorbent zones 61, 63 do not extend beyond the longitudinal extremities of the channel-forming areas 26, and thus the central and the lateral zones typically all have the same length L′ as the length of the channel-forming areas 26. The rest of the absorbent core comprising absorbent material may thus define a front absorbent zone 64 extending longitudinally forward of the front extremities of the channel-forming areas and up to the front end seal 280′ and a back absorbent zone 65 extending longitudinally backward from the back extremities of the channel-forming areas to the back end seal 282′ of the core.


The absorbent cores of the invention will typically be used in an absorbent article 20, for example a taped diaper as shown on FIG. 9 in a flat-out state. The longitudinal axis 80 of the core may be superposed with the longitudinal axis 80′ of the article. The absorbent article 20 typically comprises a liquid permeable topsheet 24 on the wearer-facing side of the article, a liquid impermeable backsheet 25 on the opposite, garment-facing side of the article, with the absorbent core 28 positioned between the topsheet and the backsheet. As the absorbent material 60 swells when it absorbs a liquid such as urine, the bond 27 in the channel-forming areas 26 remain at least initially in place between the top and bottom sides of the core wrap, so that the channel-forming areas 26 form three-dimensional channels 26′ as illustrated in FIG. 11. An acquisition layer and/or a distribution layer 54 disposed above the absorbent core 28 may be deformed and form ditches 29 corresponding to the underlying three-dimensional channels 26′. The acquisition or distribution layer may also comprise channel areas free of acquisition/distribution material at least partially superposed to the channel-forming areas (as taught for example by Roe et al. in WO2015/31225, WO2015/31229, WO2015/31243 or WO2015/31256).


Absorbent Material Distribution


After having disclosed the general construction of an exemplary absorbent core in FIGS. 1-4, the improved distribution of absorbent material in the absorbent cores of the invention will be further generally described below, and by way of non-limiting illustrations with the embodiments shown in the FIGS. 5-8 and 14-15. Unless indicated otherwise, the features of the examples are not limiting the scope of the invention.



FIGS. 5-6 disclose a first example of absorbent material distribution according to the invention. FIG. 5 shows a schematic top view of the absorbent core with the absorbent material distribution represented by the dots 23, 23′. Each of the dots 23, 23′ represents a small quantity of SAP particles, which taken together make up the absorbent material 60 of the core. The amount and distribution of SAP in the absorbent core may be represented by the position and size of these dots, wherein the larger dots 23′ represent larger amount of SAP and the smaller dots 23 lower amount. The distance between two dots may also be varied to influence the amount of SAP particles deposited. The larger and closer the dots are to each other, the higher the basis weight of the absorbent material will be in the area considered. The resulting basis weight distribution in the different absorbent zones is illustrated in the diagram of FIG. 6.


The SAP particles are represented in FIG. 5 and FIG. 7 by dots 23 aligned in the transversal direction as this may reflect a non-limiting SAP printing process for depositing the SAP particles onto two substrates forming respectively the top and bottom side of the core wrap. This process is e.g. generally taught in Hundorf s WO2010/027719A2, which will be discussed further below in greater details with reference to the apparatus and process of FIGS. 12-13. It should however be understood that according to this process, directly after the dots of SAP particles are deposited on the substrate on the lay-on drum, the particles will spread to a larger area and form generally continuous land areas 75 separated by junction areas 76 for each absorbent layer. For example if the lay-on drum has transversally oriented bars 36 between which the substrate is depressed, the dots in each transversal depressions will merge to form transversally oriented land areas. Typically, each substrate 16, 16′ may be printed with about half of the SAP dots. The substrates 16, 16′ are then assembled in face-to-face relation with the respective land areas 75, 75′ of each substrate being offset relative to each other so that the absorbent material form a substantially continuous absorbent area as illustrated in FIGS. 1-4.


Thus while the views of FIG. 5 and FIG. 7 with the discrete SAP dots are illustrative of one way to provide the claimed distribution of SAP particles, the resulting absorbent material deposition area may be typically substantially continuous in the area of the core comprising the absorbent material. Thus, typically, no individual dots 23 are recognizable in the finished core, except possibly in areas of low basis weight such as in the back absorbent zone 65 towards the back edge seal 282′ where the dots may be deposited too far away from each other to merge into larger land areas 75. FIGS. 5, 7 are thus to be understood as an useful illustration of how the basis weight of the absorbent material may be varied in the different absorbent zones of the absorbent core to achieve an absorbent material distribution of the present invention. However these should not be considered in any way limiting the scope of the invention, as other processes may be used to make the absorbent core of the invention.



FIG. 6 shows the basis weight distribution in the different absorbent zones corresponding to the SAP deposition pattern shown in FIG. 5. The longitudinal position is indicated in mm on the horizontal axis and refers to the distance from the front edge of the absorbent core (disregarding the length of the front seal 280′ which is substantially free of absorbent material). The absorbent material basis weight corresponding to the different longitudinal positions for each absorbent zone is indicated on the vertical axis. In short, starting from the front end seal 280′, the front absorbent zone 64 which is disposed forward of the channel-forming areas has a basis weight that first slightly increases (in this example from about 340 g/m2 (grams per square meter, or gsm) to about 360 g/m2 for the first front 45 mm of the absorbent area of the core). The channel-forming areas 26 then start, and the absorbent material is present in the central absorbent zone 62 and the lateral absorbent zones 61, 63 at different basis weight in the sections S1 and S2. A third section S3 is provided in this example where the basis weight is about the same in the central and lateral zones. Two sections S1′ and S2′ are then provided where the basis weight relation between the central absorbent zone and lateral absorbent zones differs, until the end of the channel-forming areas. The back absorbent zone 65 of the core has a relatively low basis weight that gradually decreases to a minimum until the back end seal 282′ is attained.


In the first transversal section S1 of the core, the basis weight of the absorbent material in the central absorbent zone 62 is higher than the basis weight of the absorbent material in each of the lateral absorbent zones 61, 63. The minimum value for the basis weight of each of the lateral zones is in this example about 100 g/m2, and the maximum value for the basis weight of the central absorbent zone being about 560 g/m2 (the difference between the maximum value and the minimum value thus being about 460 g/m2). The length in the longitudinal direction of this first section S1 is about 60 mm in this example.


More generally, the first transversal section(s) S1 may have a first length in the longitudinal direction of at least 10 mm, in particular at least 15 mm, or at least 20 mm, or at least 25 mm, or at least 30 mm or more. Furthermore, the basis weight difference between the maximum basis weight value in the central absorbent zone and the minimum basis weight value in (any of) the lateral absorbent zones in the first transversal section(s) may be of at least 20 g/m2, in particular of at least 30 g/m2, or at least 40 g/m2 or at least 50 g/m2, or at least 100 g/m2.


The second transversal section S2 of the absorbent core is in the example of FIGS. 5-6 directly adjacent the first transversal section S1. In the second transversal section, the basis weight of the absorbent material in the central absorbent zone is lower than the basis weight of the absorbent material in (each of) the lateral absorbent zones. The maximum value for the basis weight of each of the lateral zones is in this example about 550 g/m2, and the minimum value for the basis weight of the central absorbent zone being about 440 g/m2 (the difference between the maximum value and the minimum value thus being about 110 g/m2). The length (in the longitudinal direction) of this second transversal section S2 is about 40 mm.


More generally, the second transversal section(s) S2 may have a length of at least 10 mm, in particular at least 15 mm, or at least 20 mm, or at least 25 mm, or at least 30 mm or more. Furthermore, the basis weight difference between the maximum basis weight value in the lateral absorbent zones and the minimum basis weight value in the central absorbent zone in the second transversal section(s) may be of at least 10 g/m2, in particular of at least 20 g/m2, or at least 30 g/m2 or at least 40 g/m2, or at least 50 g/m2.


When, as in this example, the channel-forming areas 26 are concavely curved towards the longitudinal axis 80 when see from above, as in inverted brackets) (the width of the central absorbent zone 62 progressively narrows from the extremities of the channel-forming areas towards their middle, and, inversely, the width of the lateral absorbent zones 61, 63 increases until the channel-forming areas reach a minimum distance. Thus, the ratio of the width of the central absorbent zone to the width of each of the lateral absorbent zones may be higher in the first transversal section S1 than in the second transversal section S2 for the whole or at least a portion of these sections.


By varying the relative basis weight of the absorbent material across different transversal sections in the areas of the channel-forming areas, different effects can be obtained. First the absorbent material can be placed in the regions where most of the fluid will enter the absorbent core, that is typically along the central absorbent zone and in the crotch region of the core. Thus the placement of the absorbent material can be optimized by reducing the relative amount of the absorbent material in the lateral absorbent zones towards the front and back of the crotch region (corresponding to the sections S1 and S1′ in the Figures).


Second, it was also found that when the channel-forming areas are curved (or more generally at least partially non-straight, such as angled relative to the longitudinal axis), the volume available for the absorbent material to swell varies disproportionally according the position of the absorbent zone on the longitudinal axis. This is because when the absorbent material swells, the absorbent zones will generally each form an approximate cylinder delimited by the core wrap. When the width of any of the absorbent zone varies by a factor of x, the volume available for the swollen absorbent material varies by a factor of the square of x. Thus, a much higher basis weight of absorbent material may be disposed in the portion of the absorbent zones having a larger width relative to the portion having a smaller width. Arranging the distribution of the absorbent material differently for the central absorbent zone and the lateral absorbent zones at different longitudinal positions thus allows to manage the fluid constraint inside the absorbent zones in an optimized way. This may in particular help avoiding that the absorbent zones become too stiff in the longitudinal direction in certain areas, while still keeping enough stiffness so that the absorbent core refrains from excessive sagging in the crotch region when wet. Excessive sagging may for example cause the barrier leg cuffs or the gasketing cuffs to lose contact with the skin of the users, thus raising the risk of side leakage outside of the article, and should be avoided.


Alternatively, and as illustrated in FIGS. 14-15, the channel-forming areas may be straight, and in particular longitudinally oriented parallel to the longitudinal axis 80. In FIG. 14 and in FIG. 15, the zones of the absorbent core indicated with a plus “+” sign have a higher basis weight than the corresponding zones at the same position on the longitudinal axis which are marked with a minus “−” sign. Having a distribution of SAP according to the invention is also useful when the channel-forming areas 26 are straight and parallel to the longitudinal axis to provide zones in the absorbent core having different rigidities when the core has absorbed a fluid. Thus, as for the previously described examples, the absorbent core comprises at least one first transversal section S1 wherein the basis weight of the absorbent material in the central absorbent zone is higher than the basis weight of the absorbent material in the lateral absorbent zones, and at least one second transversal section S2, S2′ wherein the basis weight of the absorbent material in the central absorbent zone is lower than the basis weight of the absorbent material in the lateral zones. However the relative longitudinal position of these sections may be different than in the previously described examples. The absorbent core may also have, as discussed before, a third type of transversal section S3 where the basis weight is about equal in the central and the lateral absorbent zones. Having such a distribution of SAP allows to provide an improved fit, or better flexibility or other improved characteristics. For example, by reducing the basis weight of the absorbent material in the lateral zones towards the middle of the crotch as illustrated in FIGS. 14 and 15, a more flexible crotch portion in the absorbent core is provided in this area. The absorbent article may be thus more comfortable because the lateral zones will absorb less fluid and thus be less rigid and more conformable as the thighs of the wearer press them. At the same time, having a higher basis weight in the lateral zones towards the front and the back of the absorbent core allows to maintain a good rigidity of the core in these areas (after fluid insult), and thus a better overall fit with the less sagging. FIGS. 14-15 are of course only exemplary, as other distributions of the SAP are possible within the scope of the invention.


Within the invention, various deposition patterns for the absorbent material may be executed. In the example of FIG. 5, a third transversal section S3 is provided in the crotch region of the absorbent core wherein the basis weight in the central and the lateral absorbent zones is about equal. The width of the absorbent zones in this third section leaves enough space for the absorbent material to swell without excessive constraint, even at the relatively have basis weight values in this example varying between about 400 g/m2 and 550 g/m2. In this example, the third section has a length of about 80 mm.


The absorbent cores of the invention, as illustrated in FIG. 5, may further comprise another second transversal section S2′ wherein the basis weight in the lateral absorbent zones is higher than in the central absorbent zone, and another first transversal section S1′ wherein the basis weight in the central absorbent zone 62 is higher than in the lateral absorbent zones 61,63. The length and basis weight differences in these zones may be as indicated before.


The remaining absorbent material is disposed beyond the back extremities of the channel-forming areas 26 in a back absorbent zone 65. The basis weight in the back absorbent zone 65 may be relatively low, for example below about 200 g/m2. The rest of the absorbent core beyond the back absorbent zone 65 may be free of absorbent material, and a back end seal 282′ may be formed therein, if such a seal is desired.


The numerical values indicated above with reference to FIG. 6 are exemplary of a core that may be used in a taped diaper or training pant for young children having a weight range of 8-15 kg, and comprise enough SAP to provide overnight dryness. In this example, the total amount of SAP in the core may be about 12 g, distributed as follows: 11.5% in the front absorbent zone, 28% in the central absorbent zone, 25% in each lateral absorbent zone, and 10.5% in the back absorbent zone (for a total of 100%). More generally, the amount of absorbent material may be for example distributed as indicated in the following Table, the percentage being reported by total weight of the absorbent material in the absorbent core:















Range in weight %
In particular







Front absorbent zone 64
0*-25
 5-20


Central absorbent zone 62
15-55
20-45


Lateral absorbent zone 61, 63 (each)
10-40
15-30


Back absorbent zone 65
0*-25
 5-15





*although not preferred, it is possible that the channel-forming areas extend up to the front and back edges of the absorbent core, so that the front and/or the back absorbent zones are not existent.






Of course, the lengths of the different zones, the total amount of absorbent material and the basis weight distribution will be adapted for the intended usages of the different absorbent articles. Keeping for example sake the same general absorbent material distribution as shown in FIGS. 5-6, the different absorbent zones may have the following non-limiting ranges of lengths and minimum and maximum basis weight, with the lowest values adapted for smaller sizes of diapers and the larger values adapted for larger sizes of absorbent diapers.
















Min/Max basis weight


Zones
Range length (mm)
(g/m2)







Front absorbent zone 64
42-62
200-400


S1
35-70
 50-500 (Zones 61, 63)




300-600 (Zone 62)


S2
20-40
300-600 (Zones 61, 63)




250-550 (Zone 62)


S3
 55-105
300-650 (Zones 61, 63)




300-650 (Zone 62)


S2′
15-35
200-450 (Zones 61, 63)




150-400 (Zone 62)


S1′
20-45
 50-400 (Zones 61, 63)




150-450 (Zone 62)


Back absorbent zone 65
 81-134
 50-250









The curved channel-forming areas may also be convexly curved, as in two brackets facing away ( ) instead of concavely curved as in two brackets facing each other) (so that the central absorbent zone is wider in the middle of the channel-forming areas than at their front and back extremities. In such a case, the order of appearance of the different transversal sections S1, S2, starting from the front edge of the core may be inverted. The channel-forming areas may also comprise a portion that is straight and oriented parallel to the longitudinal axis and another portion that is curved (not represented). For example the channel-forming areas may be curved as shown in FIG. 5 from the front zone of the core up to the middle of the channel-forming areas (at the closest point between the channel-forming areas) and then further extend longitudinally parallel towards the rear edge of the core. In this case, the third section S3 where the basis weight in the central and lateral absorbent zones is about the same may extend up to the back extremities of the channel-forming areas 26.


The absorbent cores of the invention may further comprise one, two or more transversally orientated folding lines 66, 66′ that facilitate the folding of the core along these lines. FIGS. 7-8 show an example of an absorbent core with an SAP distribution similar to the core of FIGS. 5-6 with the difference that this absorbent core further comprises two transversal folding lines 66, 66′ formed in transversal sections S4, S4′. Absorbent cores comprising at least one folding line, in particular two or more folding lines, can more easily fold along these folding lines thus increasing the flexibility of the absorbent core in the longitudinal direction. The folding lines may in particular be provided along transversal sections S4, S4′ wherein the basis weight in the lateral absorbent zones reaches a minimum relative to the immediately adjacent regions of the lateral absorbent zones in longitudinal direction. These transversal sections S4, S4′ are however advantageously not completely free of absorbent material so as not to compromise the absorbency of the core by creating routes for a fluid to escape towards the periphery of the core. The sections of minimum basis weight forming the folding lines may be advantageously relatively narrow (for example having a length of from 5 mm to 30 mm, e.g. as represented in FIG. 7 of about 15 mm) and can serve as hinges for the absorbent core, especially when the core has swollen. They can provide a more conformable absorbent core, even when the basis weight of the central absorbent zone remain relatively high. This can increase the wearing comfort of the article while keeping satisfactory absorbency properties. While not represented, it is also possible that the basis weight of the absorbent material in the central absorbent zone 62 reaches a minimum in the further sections S4, S4′ as for the lateral absorbent zones.


The transversal folding lines may be advantageously be oriented completely parallel to the transversal direction as this may be easier to make, however it is not excluded that the transversal lines may also be present at an angle relative to this direction, for example of up to 60° in particular of up to 45°. In that case each folding line may still be typically symmetrically disposed relative to the longitudinal axis, similar to the shape of the comparison signs < or >. The folding lines are advantageously formed by regions or sections S4, S4′ of the central and/or lateral absorbent zones that have a minimum basis weight relative to the immediately adjacent regions of the absorbent zone. However it is not excluded that the folding lines may be obtained by other known methods. For example if the absorbent material comprises a compressible material such as cellulose fibers, folding lines may be obtained by embossing the absorbent material in the position and the direction desired. However these other methods may not be as efficient as the one exemplified.


In the example illustrated in FIGS. 7-8, the total amount of SAP in the core may be about 12 g, distributed as follows: 11.5% in the front absorbent zone, 32% in the central absorbent zone, 23% in each lateral absorbent zone, and 10.5% in the back absorbent zone (for a total of 100%). The following table further provides non-limiting exemplary ranges for the dimensions (in the longitudinal direction) and the basis weight of the material in each section for a core as in FIGS. 7-8. As in the previous table, the lowest values indicated are adapted for smaller sizes of diapers and the larger values are adapted for larger sizes of absorbent diapers.















Range length
Min/Max basis weight


Zones
(mm)
(g/m2)







Front absorbent zone 64
42-62
200-400


S1
35-70
 50-500 (Zones 61,63)




300-600 (Zone 62)


S2
20-40
300-600 (61,63)




250-550 (62)


S4
10-20
100-300 (61, 63)




300-650 (62)


S3
35-65
300-650 (61,63)




300-650 (62)


S4′
10-20
100-300 (61, 63)




300-650 (62)


S2′
15-35
200-450 (61,63)




150-400 (62)


S1′
20-45
 50-400 (61,63)




150-450 (62)


Back absorbent zone 65
81-134
 50-250










Core Wrap 16, 16


The absorbent core comprises a core wrap which encloses the absorbent material. The core wrap typically serves a substrate for receiving the absorbent material when the core is made. Various core wrap constructions are possible. The core wrap may in particular comprise as represented in the Figures two separate substrates 16, 16′ forming the top side and the bottom side of the core wrap respectively. Having two different substrates for example allows to deposit about half of the absorbent material on each substrate separately before combining these to form the core wrap. The two substrates may be attached in a C-wrap configuration with two longitudinal seals 284′, 286′, and optionally a front seal 280′ and a back seal 282′ as will be detailed further below. However this core wrap construction is not limiting of the invention, as any conventional core wrap construction may also be used, for example a single substrate on a portion of which the absorbent material is deposited and then the rest of the substrate folded over the deposited absorbent material to form the other side of the core. This single substrate construction can then be sealed longitudinally with a single longitudinal edge seal. The core wrap may also comprise two substrates disposed flat in a face to face relation (sandwich).


The substrates may be formed by any materials suitable for receiving and containing the absorbent material. Typical substrate materials used in the production of conventional cores may be used, in particular paper, tissues, films, wovens or nonwovens, or laminate of any of these. The core wrap may in particular be formed by a nonwoven web, such as a carded nonwoven, spunbond nonwoven (“S”) or meltblown nonwoven (“M”), and laminates of any of these. For example spunmelt polypropylene nonwovens are suitable, in particular those having a laminate web SMS, or SMMS, or SSMMS, structure, and having a basis weight range of about 5 g/m2 to 15 g/m2. Suitable materials are for example disclosed in U.S. Pat. No. 7,744,576, US 2011/0268932 A1, US 2011/0319848 A1 and US 2011/0250413 A1. Nonwoven materials are typically made of synthetic fibers, such as PE, PET and in particular PP fibers. It is also possible that the core wrap may be at least partially formed from a component of the article having another function. For example, it is possible that the backsheet may form the bottom side of the core wrap and/or that a distribution layer or the topsheet may form the top side of the core wrap. However, typically the core wrap is made of one or more substrates whose only function is to receive and enclose the absorbent material, as indicated previously.


As used herein, the terms “nonwoven layer” or “nonwoven web” generally means a manufactured sheet, web or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. The fibers may be of natural or synthetic origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms such as short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yam). Nonwoven webs can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, carding and airlaying. The basis weight of nonwoven webs is usually expressed in grams per square meter (g/m2 or gsm).


As illustrated in FIG. 2, a first substrate 16 may substantially form the whole of the top surface 288 of the core wrap and a second substrate 16′ substantially form the whole of the bottom surface 290 of the core wrap, but it is not excluded that this may be the other way round. By “substantially forming the whole of the surface”, it is meant that the outwardly extending flaps of the other substrate that have been folded longitudinally may also form part of the surface considered. The substrates are typically substantially planar in the same plane as the absorbent core, and each comprises an external surface and an internal surface. The internal surface is orientated towards the absorbent material and the external surface is the opposite surface. At least one of the substrate comprises at least one, and advantageously two outwardly extending flaps, which are folded around the front, back or side edges of the absorbent core and then attached to the external surface of the other substrate to form at least one so-called C-wrap seal. As seen in FIG. 2, the first substrate 16 may comprise two side flaps laterally extending along the length of the core and which are folded inwardly over each side edge 284, 286 of the absorbent core. The flaps may be attached to the outer surface of the second substrate 16′ for example by using an adhesive seal along each C-wrap seal 284′, 286′. One or two continuous or semi-continuous lines of glue may be typically applied along the length of the flaps to bond the inner surface of the flaps to the external surface of the other substrate.


As exemplarily represented in FIG. 3, the core may also comprise so-called sandwich seals 280′, 282′ where the two substrates are bonded along one edge of the core to each other in face-to-face relationship with the inner surface of each substrate bonded to the inner surface of the other substrate. These sandwich seals can for example be formed using a hotmelt glue applied in a series of stripes in a direction perpendicular of the edge, as shown on the front edge 280 and back edge 282 of the core on FIG. 1 for example.


The substrates may typically be commercially supplied as rolls of material of several hundred meters of length. Each roll is then integrated in the converting line and unrolled at high speed while the auxiliary adhesive, the absorbent material and the fibrous thermoplastic adhesive layer if present are deposited or applied on the substrate and then further converted into an absorbent core when a core wrap enclosing the absorbent material is formed by the second substrate. Typically the machine direction (MD) of the converting line may correspond to the longitudinal direction (y) of the substrate/core and the cross-machine direction (CD) to the transversal direction (x) of the substrate/core. The substrates may be cut along the front and back edges of the core 280, 282 to individualize the core. This will be further exemplarily discussed in the process section further below.


Absorbent Material 60


The absorbent material may be any known absorbent material known in the art, but will typically comprise or consist of superabsorbent polymers (herein referred to as “SAP”). The SAP may be typically in particulate forms (superabsorbent polymer particles), optionally mixed with cellulose fibers, but it not excluded that other forms of SAP may be used such as a superabsorbent polymer foam for example. The SAP useful in the present invention includes a variety of water-insoluble, but water-swellable polymers capable of absorbing large quantities of fluids.


The term “superabsorbent polymer” refers herein to absorbent materials, which may be cross-linked polymeric materials, that can typically absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity (CRC) test (EDANA method WSP 241.2.R3 (12). The SAP may in particular have a CRC value of more than 20 g/g, or more than 24 g/g, or of from 20 to 50 g/g, or from 20 to 40 g/g, or 24 to 30 g/g.


The absorbent material may comprise a relative high amount of SAP, in particular the absorbent material may comprise at least 80%, in particular at least 85%, 90%, 95% and up to 100% of SAP by weight of the absorbent material. The absorbent material may in particular comprise no or only small amount of cellulose fibers, such as less than 20%, in particular less than 10%, 5% or even 0% of cellulose fibers by weight of the absorbent material. The absorbent material may thus consist or consist essentially of SAP. The core wrap is not considered as absorbent material for the purpose of calculating the percentage of SAP in the absorbent core. When the absorbent material comprises cellulose fibers, the content of SAP may typically range from 60% to 80% by weight of the absorbent material.


The superabsorbent polymers may be in particulate form so as to be flowable in the dry state and thus easily deposited on a substrate. Typical particulate absorbent polymer materials are made of poly(meth)acrylic acid polymers. However, starch-based particulate absorbent polymer materials may also be used, as well polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxymethylcellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile. The superabsorbent polymer may be polyacrylates and polyacrylic acid polymers that are internally and/or surface cross-linked. Suitable materials are described in WO 07/047598, WO 07/046052, WO 2009/155265 and WO 2009/155264. Suitable superabsorbent polymer particles may be obtained by current state of the art production processes, for example as described in WO 2006/083584. The superabsorbent polymers are preferably internally cross-linked, i.e. the polymerization is carried out in the presence of compounds having two or more polymerizable groups which can be free-radically copolymerized into the polymer network. In some embodiments, the SAP are formed from polyacrylic acid polymers/polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions.


The SAP particles may be relatively small (under 1 mm in their longest dimension) in their dry state and may be roughly circular in shape, but granules, fibers, flakes, spheres, powders, platelets and other shapes and forms are also known to persons skilled in the art. Typically, the SAP may be in the form of spherical-like particles. In contrast to fibers, “spherical-like particles” have a longest and a smallest dimension with a particulate ratio of longest to smallest particle dimension in the range of 1-5, where a value of 1 would equate a perfectly spherical particle and 5 would allow for some deviation from such a spherical particle. The superabsorbent polymer particles may have a particle size of less than 850 μm, or from 50 μm to 850 μm, preferably from 100 μm to 710 μm, more preferably from 150 μm to 650 μm, as measured according to EDANA method WSP 220.2-05. SAP having a relatively low particle size help to increase the surface area of the absorbent material which is in contact with liquid exudates and therefore support fast absorption of liquid exudates.


The absorbent core will typically comprise only one type of SAP, but it is not excluded that a blend of different SAPs may be used. The fluid permeability of a superabsorbent polymer can be quantified using its Urine Permeability Measurement (UPM) value, as measured in the test disclosed in US patent application number US2014/005622A1. The UPM of the SAP may for example be of at least 10×10−7 cm3·sec/g, or at least 30×10−7 cm3·sec/g, or at least 50×10−7 cm3·sec/g, or more, e.g. at least 80 or 100×10−7 cm3·sec/g. The SAP particles may have a time to reach an uptake of 20 g/g (T20) of less than 240 s, preferably from 40 s to less than 240 s, more preferably from 65 s to 215 s, as measured according to the K(t) test method as described in WO2015/041784 (Peri et al).


Absorbent Material Deposition Area


The absorbent material 60 defines as seen from above as in FIG. 1 an absorbent material deposition area having a periphery that may generally follow the front, back and longitudinal side edges of the core. The absorbent material deposition area can be generally rectangular, for example as shown in FIG. 1, but other shapes can also be used such as a “T” or “Y” or “sand-hour” or “dog-bone” shape. In particular the deposition area may be tapered along its width towards the crotch region of the core. In this way, the absorbent material deposition area may have a relatively narrow width in an area of the core intended to be placed in the crotch region of the absorbent article. This may provide for example better wearing comfort. The absorbent material deposition area may for example have a width (as measured in the transversal direction x) at its narrowest point which is less than about 100 mm, 90 mm, 80 mm, 70 mm, 60 mm or even less than about 50 mm. This narrowest width may be for example at least 5 mm, or at least 10 mm, smaller than the width of the deposition area at its largest point in the front and/or back regions of the deposition area. The channel-forming areas 26 are typically encompassed within the absorbent material area, and are typically completely surrounded by absorbent material, i.e. the channel-forming areas do not extend to any edges of the absorbent material deposition area.


The absorbent material 60 may be deposited on any of the substrates using known techniques, which may allow relatively precise deposition of absorbent material at relatively high speed. In particular the SAP printing technology as disclosed for example in US2006/024433 (Blessing), US2008/0312617 and US2010/0051166A1 (both to Hundorf et al.) may be used. This technique uses a transfer device such as a printing roll to deposit SAP onto a substrate disposed on a grid of a support which may include a plurality of cross-bars 36 extending substantially parallel to each other and spaced apart from one another. The zones 26 substantially free of absorbent material through which the bonding 27 is executed can be formed for example by modifying the pattern of the grid and receiving drums so that no SAP is applied in the selected areas, as exemplary disclosed in US2012/0312491 (Jackels). This technology allows high-speed and precise deposition of SAP on a substrate in particular to provide one or more area(s) substantially free of absorbent material surrounded by absorbent material.


The absorbent material may be substantially continuously distributed in the deposition area. By “substantially continuous” it is meant that at least 50%, or at least to 70% and up to 100% of the deposition area comprises a continuous layer of absorbent material as seen from the top side of the core. The absorbent material may be for example applied as a single continuous layer on one of the substrate, the layer thus directly forming the material deposition area. A continuous layer of absorbent material, in particular of SAP, may also be obtained by combining two absorbent layers having matching (offset) discontinuous absorbent material application pattern wherein the resulting layer is substantially continuously distributed across the absorbent material deposition area, as exemplarily taught in US2008/0312622A1 (Hundorf), and as exemplarily shown on FIG. 3-4. Each individual absorbent material layer comprises a pattern having absorbent material land areas 75, 75′ separated by absorbent material-free junction areas 76, 76′. The absorbent material areas 75 of the first layer correspond substantially to the absorbent material-free junction areas 76′ of the second layer and vice versa. As exemplary shown in FIGS. 3-4, the absorbent core 28 may thus comprise a first absorbent layer and a second absorbent layer deposited respectively on the first substrate 16 and second substrate 16′ and combined together. The first and second absorbent layers may be deposited as series of transversally oriented dots which immediately after deposition merge into transversal stripes or “land areas” having the desired width. Each absorbent layer may comprise for example between 5 and 50 of these generally transversally orientated land areas. These land areas may have for example a width ranging from 4 to 20 mm, in particular 10 mm, as measured in the longitudinal direction (y). The land areas 75 may be of uniform length in the transversal direction (x) but they may have different width, in particular towards the center or crotch section of the absorbent structure to form so called “dog bone” or “hour-glass” shape, which shows a tapering along its width at least in the crotch zone of the structure. The width of the junction areas 76 between the land areas 75 may typically be shorter than the width of the land areas, for example having a width exemplarily ranging from 0.5 to 6 mm, for example 1 to 2 mm. Of course other patterns of deposition for the absorbent material are possible, for example the absorbent material may be deposited as an array of circular or ovoid land areas, or combination of rectangular land areas with circular or ovoid land areas.


In many applications, the liquid discharge occurs predominantly in one area of the core. For diapers, the liquid may predominantly be released towards the crotch region of the core and to a lesser extent the front of the core. Relatively less liquid may be released towards the back of the core. Thus it may be beneficial to profile the amount of absorbent material along the longitudinal direction of the absorbent structure so that more absorbent material is present in the areas where the liquid is more likely to insult the core.


As indicated above, the junction areas 76 of an absorbent layer may advantageously be not directly recognizable in the absorbent core as they will be filled with the land area 75′ of the opposed absorbent layer, as shown on FIG. 4. On the other hand, it is an object of the invention that the absorbent material deposition area encompasses at least two channel-forming areas 26. The channel-forming areas 26 may be advantageously substantially free of absorbent material so that the top and bottom sides of the core wrap can be efficiently bonded to another. These channel-forming areas will be exemplified in more details in the following paragraphs.


Channel-Forming Areas 26 and Channels 26


The absorbent material deposition area of the core encompasses at least two channel-forming areas 26 which are substantially free of absorbent material and preferably through which core wrap bonds 27 are formed. By “substantially free” it is meant that zones do not comprise absorbent material except possibly for minimal amount such as involuntary contaminations with absorbent material particles that may occur during the core making process. The top side 288 of the core wrap is attached to the bottom side 290 of the core wrap by core wrap bonds 27 in the channel-forming areas, in particular through these areas substantially free of absorbent material. The channel-forming areas 26 are advantageously surrounded by absorbent material 60. As illustrated in FIG. 11, when the absorbent material 60 swells upon absorbing a liquid, the core wrap bonds 27 remain at least initially attached in the channel-forming areas 26. The absorbent material 60 swells in the rest of the core when it absorbs a liquid, so that the core wrap forms one or more channels 26′ along the channel-forming areas 26 comprising the core wrap bond 27. These channels 26′ are three dimensional and can serve to distribute an insulting fluid along their length to a wider area of the core. They may provide a quicker fluid acquisition speed and a better utilization of the absorbent capacity of the core. The channels 26′ can also provide a deformation of an overlying layer such as a fibrous layer 54 and provide corresponding ditches 29 in the overlying layer. It is not excluded that the absorbent core may comprise area(s) substantially free of absorbent material without a core wrap bond, but these non-bonded areas will typically not form a channel when wet as effectively as when there is a core wrap bond.


The inner surface of the top side 288 and the inner surface of the bottom side 290 of the core wrap may be bonded together continuously along the channel-forming areas 26, but the core wrap bond 27 may also be discontinuous (intermittent) such as formed by series of point bonds. An auxiliary glue 72 may be used to at least partially form the substrates bond 27. In this case, some pressure may be applied on the substrates in the zones 26 to improve the adhesive bonds between the substrates. If an optional fibrous adhesive 74, 74′ is present, it may also help forming the bond 27. If the auxiliary glue is applied as a series of longitudinally orientated continuous slots, the width and frequency of these slots may advantageously be such that at least one slot of auxiliary glue is present at any level of the channel-forming area 26 in the longitudinal direction. For example the slots may be 1 mm wide with a 1 mm distance between each slots, and the channel-forming areas have a width of about 8 mm. Such on average for 4 slots of auxiliary glue will be present in each of the channel-forming area 26. It is of course also possible to form the bonds 27 via other known attachment means, such as pressure bonding, ultrasonic bonding, heat bonding or combination thereof.


The following are non-limiting examples of shape and size of channel-forming areas 26 that are substantially free of absorbent material. In general, the core wrap bond 27 may have the same outline but be slightly smaller than the material free area of the channel-forming areas 26 due to the tolerance required for registration in the manufacturing process. The channel-forming areas are advantageously present at least within the crotch region of the core, in particular at least at the same longitudinal level as the crotch point C. The channel-forming areas 26 may comprise, as exemplified in FIG. 1, two longitudinally-extending areas substantially free of absorbent material. The channel-forming areas may be symmetrically arranged relative to the longitudinal axis 80. The absorbent core 28 may also comprise more than two channel-forming areas, for example at least 3, or at least 4 or at least 5 or at least 6. Shorter channel-forming areas substantially free of absorbent material may for example be present in the back region or the front region of the core as illustrated for example in the Figures of WO2012/170778.


The channel-forming areas 26 extend substantially longitudinally, meaning that each zone extends at least as much in the longitudinal direction (y) than in the transversal direction (x), and typically at least twice as much in the longitudinal direction than in the transverse direction (as measured after projection on the respective axis). The channel-forming areas 26 may have a length L′ projected on the longitudinal axis 80 of the core that is at least 10% of the length L of the absorbent core, in particular from 20% to 80%. The absorbent material-free channel-forming areas may have a width W′ along at least part of their length which is at least 2 mm, or at least 3 mm or at least 4 mm, up to for example 20 mm, or 16 mm or 12 mm. The width W′ of each areas substantially free of absorbent material may be constant through substantially its whole length or may vary along its length.


As discussed before, the channel-forming areas may be at least partially curved. In particular the channel-forming areas present in the crotch region may be concave towards the longitudinal axis 80 as illustrated in FIG. 1. The radius of curvature may typically be at least equal to the average transverse dimension of the absorbent material deposition area (and in particular at least 1.5 or at least 2.0 times this average transverse dimension). The radius of curvature may be constant or may vary along the length of the channel-forming area. The channel-forming areas may alternatively be straight but under an angle of (e.g. from 5°) up to 30°, or for example up to 20°, or up to 10° with a line parallel to the longitudinal axis. Alternatively, and as illustrated in FIGS. 14-15, the channel-forming areas may be straight, and in particular longitudinally oriented parallel to the longitudinal axis 80.


The channel-forming areas are typically disposed as one or more symmetrical pair(s) relative to the longitudinal axis, and are spaced apart from one another over their whole longitudinal dimension. The shortest spacing distance between the channel-forming areas may be for example at least 5 mm, or at least 10 mm, or at least 16 mm. It is however not excluded that the channels may be joined together, for example at their front or back extremities. Furthermore, in order to reduce the risk of fluid leakages, the areas substantially free of absorbent material may advantageously not extend up to any of the edges of the absorbent material deposition area, and are therefore surrounded by and fully encompassed within the absorbent material deposition area of the core. The smallest distance between a channel-forming area and the closest edge of the absorbent material deposition area may be at least 5 mm.


The three dimensional channels 26′ in the absorbent core start forming when the absorbent material absorbs a liquid such as urine and starts swelling. As the core absorbs more liquid, the depressions within the absorbent core formed by core wrap bond 27 between the two substrates will become deeper and more apparent to the eye and the touch. It is possible to create a sufficiently strong core wrap bond combined with a relatively low amount of SAP and/or a relatively extensible substrate material so that the channels remain permanent until complete saturation of the absorbent material. On the other hand, the core wrap bonds may in some cases also restrict the swelling of the absorbent material when the core is substantially loaded. The core wrap bond 27 may also be designed to gradually open in a controlled manner when exposed to a large amount of fluid. The bonds may thus remain substantially intact at least during a first phase as the absorbent material absorbs a moderate quantity of fluid, as shown on FIG. 11. In a second phase the core wrap bonds 27 in the channels can start opening to provide more space for the absorbent material to swell while keeping most of the benefits of the channels such as increased flexibility of the core in transversal direction and fluid management. In a third phase, corresponding to a very high saturation of the absorbent core, a more substantial part of the channel bonds can open to provide even more space for the swelling absorbent material to expand. The strength of core wrap bond 27 within the channels can be controlled for example by varying the amount and nature of the glue used for the attaching the two sides of the core wrap, the pressure used to make the core wrap bond and/or the distribution of the absorbent material, as more absorbent material will usually causes more swelling and will put more pressure on the bond. The extensibility of the material of the core wrap may also play a role.


Auxiliary Glue 72


The auxiliary glue 72 is optional. When present, the auxiliary glue 72 may be applied directly over the inner surface of one or both of the top side and bottom side of the core wrap. The auxiliary glue may at least partially form the bonds 27 between the inner surface of the first substrate 16 and the inner surface of the second substrate 16′ through areas substantially free of absorbent material. The auxiliary glue 72 may also be useful to improve the adhesion between the first substrate 16 and both the absorbent material (in the absorbent material land areas 75) and the fibrous thermoplastic material 74 (in the absorbent material-free junction areas 76).


The auxiliary glue may comprise or consist of any kind of thermoplastic hot-melt adhesives used in the field of absorbent core making. Such an adhesive generally includes one or more polymers to provide cohesive strength (e.g., aliphatic polyolefins such as ethylene-propylene copolymers, polyetheramides, polyetheresters, and combinations thereof; ethylene vinyl acetate copolymers; styrene-butadiene or styrene-isoprene block copolymers; etc.), a resin or analogous material (sometimes called a tackifier) to provide adhesive strength (e.g., hydrocarbons distilled from petroleum distillates; rosins and/or rosin esters; terpenes derived, for example, from wood or citrus, etc.); and optional waxes, plasticizers or other materials to modify viscosity (e.g., mineral oil, polybutene, paraffin oils, ester oils, and the like), and/or other additives including, but not limited to, antioxidants or other stabilizers. Exemplary suitable commercial adhesives are available from Fuller under reference number 1358LO and from Henkel under reference numbers DM3800 and DM526. Further information about hotmelt adhesive chemistry is discussed below for the fibrous thermoplastic adhesive layer. The auxiliary glue can be applied by any adhesive applicator known in the field, in particular bead, slot or spray nozzles.


The auxiliary glue 72 was discussed above with reference to the first absorbent substrate 16 which forms the upper side 288 of the absorbent core, and which is placed towards the topsheet 24 in the finished absorbent article 20. This is however not limiting, as the first substrate may alternatively form the bottom side 290 of the absorbent core which is placed towards the backsheet 25 of the article 20. It is also considered that a second auxiliary glue may be applied directly on the second substrate 16′ in addition to the first auxiliary glue applied directly on the first substrate 16, in particular in any of the configurations discussed above. This may be particular useful when the absorbent material within the core wrap is formed by two absorbent layers 61, 62 as discussed above.


Microfiber Glue 74, 74


The absorbent core may also comprise a fibrous thermoplastic adhesive material 74, to further immobilize the absorbent material 60 during the making process of the core and usage of the article. The fibrous thermoplastic adhesive material 74, 74′ may be in particular useful to immobilize the layers of absorbent material onto their respective substrate 16, 16′ where they have been deposited. These absorbent layers may comprise land areas 75, 75′ separated by junction areas 76, 76′ as discussed above and the fibrous thermoplastic adhesive material 74 may then be at least partially in contact with the absorbent material in the land areas and at least partially in contact with the substrate layer 16, 16′ in the junction areas. This imparts an essentially three-dimensional net-like structure to the fibrous layer of thermoplastic adhesive material, which in itself is essentially a two-dimensional structure of relatively small thickness, as compared to the dimension in length and width directions. Thereby, the fibrous thermoplastic adhesive material may provide cavities to cover the absorbent material in the land areas, and thereby immobilizes this absorbent material. The fibrous adhesive may be for example sprayed on an absorbent layer after it has been deposited on its substrate during the core making process.


The fibrous thermoplastic adhesive material may have a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or −6° C.<Tg<16° C. Typical concentrations of the polymer in a hotmelt are in the range of about 20% to about 40% by weight. The thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such. The B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof. Other suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins.


The tackifying resin may exemplarily have a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hotmelt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%. Exemplary commercial suitable adhesives are NW1151 ex. HB Fuller and H2898 ex. Bostik.


The thermoplastic adhesive used for the fibrous layer preferably has elastomeric properties, such that the web formed by the fibers on the SAP layer is able to be stretched as the SAP swell. Exemplary elastomeric, hotmelt adhesives include thermoplastic elastomers such as ethylene vinyl acetates, polyurethanes, polyolefin blends of a hard component (generally a crystalline polyolefin such as polypropylene or polyethylene) and a Soft component (such as ethylene-propylene rubber); copolyesters such as poly (ethylene terephthalate-co-ethylene azelate); and thermoplastic elastomeric block copolymers having thermoplastic end blocks and rubbery mid blocks designated as A-B-A block copolymers: mixtures of structurally different homopolymers or copolymers, e.g., a mixture of polyethylene or polystyrene with an A-B-A block copolymer; mixtures of a thermoplastic elastomer and a low molecular weight resin modifier, e.g., a mixture of a styrene-isoprenestyrene block copolymer with polystyrene; and the elastomeric, hot-melt, pressure-sensitive adhesives described herein. Elastomeric, hot-melt adhesives of these types are described in more detail in U.S. Pat. No. 4,81,066 (Korpman).


The thermoplastic adhesive material fibers may exemplarily have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5 mm to about 30 mm. The auxiliary glue may improve the adhesion of the thermoplastic adhesive material to the substrate. The fibers adhere to each other to form a fibrous layer, which can also be described as a mesh.


Exemplary Method and Apparatus for Making the Absorbent Core


The absorbent cores of the invention may be made by any conventional methods known in the art that allow a relative precise and controlled deposition of absorbent material. The articles may be hand-made or industrially produced at high speed on a modern converting line. As mentioned above, the absorbent core of the invention can in particular be made industrially by combining two absorbent structures 70 and 70′ using the SAP printing method first disclosed in WO2008/155699 (Hundorf et al.) and further developed in WO2012/170798A1 (Jackels et al.), with the adaptations required to obtain the specific SAP distribution of the invention. Such a method and apparatus is schematically disclosed in FIG. 12.


A first printing unit 132 for making an absorbent structure comprising a substrate 16 and SAP particles 60 is illustrated on the right side of FIG. 12. The first printing unit 132 comprise an auxiliary glue applicator 136 for applying the auxiliary glue 72 to the substrate 16, a first rotatable support roll 140 for receiving the first substrate 16, a first hopper 142 for holding and dispensing an absorbent particulate polymer material 60, a first printing roll 144 for collecting the SAP particles in a predetermined pattern from the hopper 142 and depositing the absorbent particulate polymer onto the support roll 140 to a deposition area on the substrate, and a first thermoplastic adhesive material applicator 146 for applying the fibrous thermoplastic adhesive material 74. The auxiliary glue applicator 136 may be a nozzle system which can provide a relatively thin but wide curtain of thermoplastic adhesive material as suggested in WO2008/155699, but may also alternatively and advantageously comprise a slot coater for applying simultaneously several slots of auxiliary glue 72 longitudinally along a desired width of the substrate.


The SAP printing rolls 144, 156 and the support rolls 140, 152 may be as generally taught in WO2012/170798A1, with the printing rolls further modified to provide the desired SAP deposition pattern of the invention. The absorbent material deposition step, or printing step, is schematically illustrated in FIG. 13, which shows separately how the printing roll 144 and the lay-on drum 140 cooperate to precisely deposit the SAP onto the substrate. The printing roll 144 comprises on its periphery a plurality of cavities 123 that can be filled with SAP particles. The cavities 123 have a pre-determined volume so that the amount of SAP filled is precisely controlled. The cavities may have any kind of shape, for example they may generally have an inverted dome-shape. These cavities may be arranged in a series of transversal rows but other arrangements are possible. The size, shape and spacing between adjacent cavities 123 corresponds to the size, shape and spacing between adjacent dots 23, 23′ as represented in FIGS. 5 and 7. Thus the cavities 123 will comprise larger cavities and smaller cavities corresponding to the larger and smaller SAP dots respectively that are to be deposited on the substrate. Each printing roll 144 and 156 may each deposit about half of the rows of SAP to provide the offset double layer structure discussed before.


The printing roll 144 shown further comprises a pair of areas 21 free of cavities and surrounded by the cavities 123. These areas 21 correspond to the absorbent material-free areas through which the channel-forming areas 26 will be formed. The areas 21 may be flush with the surface of the printing roll or may be raised. The cavities may be connected to a vacuum (shown by the minus sign “−” in the Figures through a grid (not shown) in the fill area of the drum, typically at the upper region of drum (corresponding ca. to the angle between ca. 11 to 3 o'clock in FIG. 13 as indicated by the inward pointing arrow and the minus “−” sign), the vacuum being also present in an absorbent material retention area (ca. 3 to 5 o'clock) to ensure that the material does not escape the cavities before being deposited. When the cavities approaches the meeting point, the vacuum is switched off and may be replaced by overpressure (represented by the plus signs + for “high” pressure area between ca. 5 and 7 o'clock) to completely blow the SAP out of the cavities onto the substrate. Another internal printing roll chamber with some overpressure (e.g from 7 to 10 'clock) may be provided to clean up the cavities from any remaining SAP before these are filled again for another printing cycle.


The printing-roll 144 comes in close proximity of the lay-on drum 140 at a meeting point so that the SAP can be accurately transferred to the substrate 16 supported on the lay-on drum. The lay-on drum is generally circular and comprises on its periphery at least one and, typically, a plurality of receptacles 133, each receptacle being substantially identical to the preceding and each receptacle providing a deposition area for one absorbent structure. A lay-on drum 140 may for example comprise about four such receptacles 133 for absorbent cores suitable in baby diapers having a size 4. For a given size of the drum, more receptacles may be present if the cores to be made are smaller. The diameter of the printing roll 144 may be as shown smaller than the lay-on drum 140, so that a complete turn of the lay-on drum corresponds to several turns of the printing rolls, e.g. in a relation of 4 to 1 for a medium sized absorbent core as exemplified above (size 4 diapers).


Each receptacle 133 comprises on its surface a pattern of depressions that may be designated by their usual term “air-slots” formed between transversally-oriented rods 36 (also called “CD bars”). The depressions are connected to a vacuum (represented by the minus sign “−” in FIG. 13) as they approach the SAP deposition area at the meeting point. This vacuum helps maintaining the substrate 16 taut on the lay-on drum. Furthermore, this vacuum somewhat pulls the substrate inwards of the surface of the lay-on drum through the depressions. In this way, small undulations are formed at the surface of the substrate matching the outline of the underlying depressions. A grid may be present at the bottom of the depressions. These undulations generally define the shape of the deposited absorbent material area, as the vacuum will also help sucking and directing the SAP from the print roll 144 at the meeting point onto the undulations. The vacuum exerted through each depressions combined by the over-blow pressure on the print roll will bring the deposited SAP to generally follow the shape of the depressions to form continuous areas, and this even if the cavities 122 have another shape such as discrete circular cavities. After passing the meeting point, a lower vacuum may be used to keep the substrate and the SAP in place while the microfiber glue 74 is applied (as shown in FIG. 12 but not shown on FIG. 13).


The receptacle 133 on the lay-on drum may comprise a pair of mating strips 31 that corresponds to the cavity-free areas 21 on the lay-on drum. The mating strips 31 may be flush with the surface of the lay-on drum but may be advantageously slightly raised by a few mm. Such mating strips/cavity-free areas combinations 21, 31 are exemplarily disclosed in further details in US2012/0312491 (Jackels). Of course the number and shape of the cavity-free areas 21/mating strips 31 combination can be adapted to obtain any desired number and shape of material free areas.


The absorbent structures 70, 70′ obtained by each printing unit 132, 134 may be combined in a face to face relationship so that the land areas 75, 75′ are offset relative to each other to form an absorbent core as illustrated in FIG. 3. The second printing unit 134 as shown on the left side of FIG. 12 may be generally identical to the first printing unit 132. The second printing unit 134 may comprise a second auxiliary glue applicator 148 which may be a slot coater for optionally applying a second auxiliary glue 72′ to the substrate 16′, a second rotatable support roll 152 for receiving the substrate 16′, a second hopper 154 for holding absorbent particulate polymer material, a second printing roll 156 for transferring the absorbent particulate polymer material to the substrate 16′, and a thermoplastic adhesive material applicator 158 for applying a thermoplastic fibrous adhesive material 74′ to the substrate 16′ and the SAP layer 75′ thereon.


The absorbent structures may be combined by applying pressure in the nip 162 between the two support rolls 140, 152, forming at the same time the core wrap bond 27 between the two substrates. The core wrap bonds may be alternatively formed further down the line by other methods such as ultrasonic bonding. The longitudinal side seals are formed as a C-wrap in the seal forming guide roller 160 by continuously folding the laterally extending flaps of one of the substrate. The absorbent cores 28 can then be individualized by forming the front and back seals and cutting the web of the core material at the required interval. The continuous flow of absorbent cores can then be integrated into a converting process for making an absorbent article.


General Description of the Absorbent Article 20


An exemplary absorbent article according to the invention in the form of a baby taped diaper 20 is represented in FIGS. 9 and 10. FIG. 9 is a top plan view of the exemplary diaper 20, in a flat-out state, with portions of the structure being cut-away to more clearly show the construction of the diaper 20. FIG. 10 is transversal cross-sectional view of the diaper 20 taken along line 10-10 in FIG. 9. This diaper 20 is shown for illustration purpose only as the invention may be used for making a wide variety of diapers or other absorbent articles such as training pants, adult incontinence pants or feminine sanitary pads.


The absorbent article 20 comprises a liquid permeable topsheet 24, a liquid impermeable backsheet 25 and an absorbent core 28 according to the invention between the topsheet and the backsheet. The absorbent article may also comprise further typical components such as an acquisition layer and/or a distribution layer (collectively referred to as acquisition-distribution system “ADS”, designated as 54), and elasticized gasketing cuffs 32 present between topsheet and backsheet and upstanding barrier leg cuffs 34, which will be further detailed in the following. The Figures also show other typical taped diaper components such as a fastening system comprising fastening tabs 42 attached towards the back edge 12 of the article and cooperating with a landing zone 44 towards the front edge 10 of the article. The absorbent article may also comprise other typical components, which are not represented in the Figures, such as a back elastic waist feature, a front elastic waist feature, transverse barrier cuffs, a lotion application, etc.


The absorbent article 20 comprises a front edge 10, a back edge 12, and two longitudinally-extending side (lateral) edges 13, 14. The front edge 10 is the edge of the article which is intended to be placed towards the front of the user when worn, and the back edge 12 is the opposite edge. The absorbent article may be notionally divided by a longitudinal axis 80′ extending from the front edge to the back edge of the article and dividing the article in two substantially symmetrical halves relative to this axis, when viewing the article from the wearer facing side in a flat out configuration, as exemplarily shown in FIG. 9. This axis 80′ may typically be concomitant with the longitudinal axis 80 of the core. If some part of the article is under tension due to elasticized components, the article may be typically flattened using clamps along the periphery of the article and/or a sticky surface, so that the topsheet and backsheet can be pulled taut so as to be substantially flat. Closed articles such as training pant may be cut open along the side seams to apply them on a flat surface. Unless otherwise indicated, dimensions and areas disclosed herein apply to the article in this flat-out configuration. The article has a length L″ as measured along the axis 80′ from the back edge to the front edge. The absorbent article 20 can also be notionally divided by a transversal axis 90′ into a front region and a back region of equal length measured on the longitudinal axis, when the article is in such a flat state. This article's transversal axis 90′ is perpendicular to the longitudinal axis 80′ and placed at half the length of the article.


The topsheet 24, the backsheet 25, the absorbent core 28 and the other article components may be assembled in a variety of well-known configurations, in particular by gluing and/or heat embossing. Exemplary diaper assemblies are for example generally described in U.S. Pat. Nos. 3,860,003, 5,221,274, 5,554,145, 5,569,234, 5,580,411, and 6,004,306. The absorbent article is preferably thin. The article may be advantageously thin at the intersection of the longitudinal and transversal axes, for example with a caliper of from 1.0 mm to 8.0 mm, in particular from 1.5 mm to 6.0 mm, as measured using the Absorbent Article Caliper Test described below.


Topsheet 24


The topsheet 24 typically forms the majority of the wearer-contacting surface of the article and is the first layer that the body exudates contact. The topsheet is preferably compliant, soft-feeling, and non-irritating to the wearer's skin. Further, at least a portion of the topsheet is liquid permeable, permitting liquids to readily penetrate through its thickness. Any known topsheet may be used in the present invention. A suitable topsheet may be manufactured from a wide range of materials. Most topsheets are nonwoven materials or apertured formed films, but other material are possible such as porous foams, reticulated foams, woven materials. Typical diaper topsheets have a basis weight of from about 10 g/m2 to about 28 g/m2, in particular between from about 12 g/m2 to about 18 g/m2 but higher basis weights are possible if it is desired to provide a very soft feeling wearer-contacting surface for example.


Nonwoven topsheets may be made of natural fibers (e.g., wood or cotton fibers), synthetic fibers or filaments (e.g. polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof), or a combination of natural and synthetic fibers. If the topsheet includes nonwoven fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art. In particular the topsheet may be a spunbond PP nonwoven. A suitable topsheet comprising a web of staple-length polypropylene fibers is manufactured by Veratec, Inc., a Division of International Paper Company, of Walpole, Mass. under the designation P-8.


Suitable formed film topsheets are also described in U.S. Pat. Nos. 3,929,135, 4,324,246, 4,342,314, 4,463,045, and 5,006,394. Other suitable topsheets may be made in accordance with U.S. Pat. Nos. 4,609,518 and 4,629,643. Such formed films are available from The Procter & Gamble Company of Cincinnati, Ohio as “DRI-WEAVE” and from Tredegar Corporation, based in Richmond, Va., as “CLIFF-T”. The topsheet may also have a three-dimensional appearance and feel, or there may be an additional, smaller, three-dimensional layer placed on top of the topsheet. Such three-dimensional additional layers may be for example particularly useful to receive low viscous exudates such as the stool of young babies Examples of such fluid entangled dual layered three-dimensional materials and processes to obtain them have been disclosed for example in US2014/0121623A1, US2014/0121621A1, US2014/0121624A1, US2014/0121625A1.


The topsheet may also be treated with a wetting agent to make it more hydrophilic. The wetting agent may be a surfactant as is known in the art. Other possible treatments are for example special coating by nanoparticles, as for example described in U.S. Pat. Nos. 6,645,569, 6,863,933, US2003/148684 and US2005/008839 (Cramer et al.) and U.S. Pat. No. 7,112,621 (Rohrbaugh et al). Any portion of the topsheet may also coated with a lotion as is known in the art. Examples of suitable lotions include those described in U.S. Pat. Nos. 5,607,760, 5,609,587, 5,643,588, 5,968,025 and 6,716,441. The topsheet 24 may also include or be treated with antibacterial agents, some examples of which are disclosed in WO 95/24173. Further, the topsheet, the backsheet or any portion of the topsheet or backsheet may be embossed and/or matte finished to provide a more cloth like appearance.


The topsheet 24 may comprise one or more apertures to ease penetration of exudates therethrough, such as urine and/or feces (solid, semi-solid, or liquid). The size of at least the primary aperture is important in achieving the desired waste encapsulation performance. If the primary aperture is too small, the waste may not pass through the aperture, either due to poor alignment of the waste source and the aperture location or due to fecal masses having a diameter greater than the aperture. If the aperture is too large, the area of skin that may be contaminated by “rewet” from the article is increased. Typically, the total area of the apertures at the surface of a diaper may have an area of between about 10 cm2 and about 50 cm2, in particular between about 15 cm2 and 35 cm2. Examples of apertured topsheet are disclosed in U.S. Pat. No. 6,632,504. WO 2011/163582 also discloses suitable colored topsheet having a basis weight of from 12 g/m2 to 18 g/m2 and comprising a plurality of bonded points. Each of the bonded points has a surface area of from 2 mm2 to 5 mm2 and the cumulated surface area of the plurality of bonded points is from 10 to 25% of the total surface area of the topsheet.


Backsheet 25


The backsheet may be any backsheet known in the art for absorbent articles. The backsheet may be positioned directly adjacent the garment-facing surface of the absorbent core. The backsheet prevents, or at least inhibits, the exudates absorbed and contained therein from soiling articles such as bedsheets and undergarments. The backsheet is typically impermeable, or at least substantially impermeable, to liquids (e.g., urine). The backsheet may, for example, be or comprise a thin plastic film such as a thermoplastic film having a thickness of about 0.012 mm to about 0.051 mm. The basis weight of those films is usually as low as possible to save material costs, typically from 10 gsm to 30 gsm, in particular below 20 gsm. A covering low basis weight nonwoven may be attached to the external surface of the film to provide for a softer touch.


Suitable backsheet materials include breathable materials which permit vapors to escape from the absorbent article while still preventing, or at least inhibiting, exudates from passing through the backsheet. Example breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by Tredegar Corporation of Richmond, Va., and sold under the designation EXAIRE, and monolithic films such as manufactured by Clopay Corporation, Cincinnati, Ohio under the name HYTREL blend P18-3097.


The film may include at least about 20 weight percent filler particles, for example filler particles that include calcium carbonate, so that wherein the film has been stretched in the machine direction, e.g. to at least about 150 percent, fractures are formed where said filler particles are located. The films may be biaxially stretched at least about 150 percent in the machine direction and a transverse direction to cause fractures to form where said filler particles are located. Breathable films may generally have Water Vapor Transmission Rates (WVTR) in excess of 300 grams per square meter per 24 hours. The WVTR may be measured by the Desiccant Method as indicated in ASTM E96/E96M-14.


U.S. Pat. No. 6,075,179 for example discloses a suitable multilayer film comprising: a core layer made from an extrudable thermoplastic polymer, the core layer having a first exterior surface and a second exterior surface, a first skin layer attached to the first exterior surface of said core layer to form the multilayer film, the multilayer film defining an overall thickness. The first skin layer defines a first skin thickness, and comprising less than about ten percent of said overall thickness. The overall thickness is not exceeding about 30 micrometers and the multilayer film is a liquid barrier and has a WVTR of at least 300 g/m2/24 hours.


The backsheet may further typically comprise a nonwoven on its most external side to improve softness. Exemplary laminates comprising a breathable film and a nonwoven layer are for example disclosed in WO2014/022,362A1, WO2014/022,652A1 and U.S. Pat. No. 5,837,352. The nonwoven web may in particular comprise a spunbond nonwoven web and/or a laminate of a spunbond nonwoven web and a meltblown nonwoven web. The laminate may also have a water vapor transmission rate of at least 300 g/m2/24 hours. U.S. Pat. No. 5,843,056 for example discloses substantially liquid impermeable, vapor permeable composite backsheet.


Acquisition-Distribution System 54


The absorbent articles of the invention may comprise an acquisition layer, a distribution layer, or a combination of both (herein collectively referred to as acquisition-distribution system “ADS”). The function of the ADS is typically to quickly acquire the fluid and distribute it to the absorbent core in an efficient manner. The ADS may comprise one, two or more layers, which may form a unitary layer or remain discrete layers which may be attached to each other. For the benefit of simplicity, the ADS is represented in FIGS. 9-11 as a single layer 54. The ADS may however comprise in particular two layers: a distribution layer directly under the topsheet and an acquisition layer disposed between the distribution layer and the absorbent core, but the invention is not restricted to this example. Typically, the ADS will not comprise SAP as this may slow the acquisition and distribution of the fluid. The prior art discloses many type of acquisition-distribution system, see for example WO2000/59430 (Daley), WO95/10996 (Richards), U.S. Pat. No. 5,700,254 (McDowall), WO 02/067809 (Graef).


Any of the acquisition layer and/or in particular the distribution layer may be profiled in the longitudinal direction and/or the transversal direction, as exemplary disclosed in WO2014/93323 (Bianchi et al.), so that more material of these layers is present towards the front of the article rather than the back. Any of the acquisition layer and/or in particular the distribution layer may also comprise material free-areas disposed within the acquisition or distribution layer. These material free areas can generally match the shape and position of the channel-forming areas 26 of the absorbent core to provide a channel for the fluid to directly quickly reach a large area of the absorbent core. The topsheet may be bonded through these material areas directly or indirectly to the zones of the core wrap corresponding to the channel-forming areas. These material free areas in the distribution layer (and/or the acquisition layer) may be smaller than the channel-forming areas, as typically the acquisition and distribution layers are smaller than the absorbent core. Examples of such distribution layers having material-free channels matching the channel-forming areas of the absorbent core are disclosed for example in WO2015/31225, WO2015/31229, WO2015/31243, WO 2015/031256 (Roe et al.).


Examples of materials that can be used as distribution layer and acquisition layer are exemplified in more detail in the following sections.


Acquisition Layer


The absorbent article 20 may comprise an acquisition layer, whose function is to quickly acquire the fluid away from the topsheet so as to provide a good dryness for the wearer. The acquisition layer is typically placed directly under the topsheet. If present, the distribution layer may be at least partially disposed under the acquisition layer. The acquisition layer may typically be or comprise a non-woven material, for example a SMS or SMMS material, comprising a spunbonded, a melt-blown and a further spunbonded layer, or a spunlaced nonwoven, or alternatively a carded chemical-bonded nonwoven. The non-woven material may in particular be latex bonded. Exemplary upper acquisition layers are disclosed in U.S. Pat. No. 7,786,341. Carded, resin-bonded nonwovens may be used, in particular where the fibers used are solid round or round and hollow PET staple fibers (50/50 or 40/60 mix of 6 denier and 9 denier fibers). An exemplary binder is a butadiene/styrene latex. Nonwovens have the advantage that they can be manufactured outside the converting line and stored and used as a roll of material. Further useful nonwovens are described in U.S. Pat. No. 6,645,569 (Cramer et al.), U.S. Pat. No. 6,863,933 (Cramer et al.), U.S. Pat. No. 7,112,621 (Rohrbaugh et al.), US2003/148684 (Cramer et al.) and US2005/008839 (Cramer et al.). The acquisition layer may be stabilized by a latex binder, for example a styrene-butadiene latex binder (SB latex). Processes for obtaining such latices are known, for example, from EP 149880 (Kwok) and US 2003/0105190 (Diehl et al.). The binder may typically be present in the acquisition layer in amount ranging from about 12% to about 50%, for example about 30%, by total weight of the acquisition layer. SB latex is available under the trade name GENFLO™ 3160 (OMNOVA Solutions Inc.; Akron, Ohio).


Another typical acquisition layer, sometimes referred to as secondary topsheet, may for example be a through-air bonded carded web (“TABCW”) but many other alternatives material are known in the art and may be used instead. “Bonded carded web” refers to webs that are made from staple fibers that are sent through a combing or carding unit, which breaks apart and aligns the staple fibers in the machine direction to form a generally machine direction-oriented fibrous nonwoven web. This web is then drawn through a heated drum, creating bonds throughout the fabric without applying specific pressure (thru air bonding process). The TABCW material provides a low density, lofty through-air bonded carded web. The web may for example have a specific weight basis level at about 15 gsm to about 120 gsm (gram per m2), in particular about 30 gsm to about 80 gsm. The TABCW material can for example comprise about 3 to about 10 denier staple fibers. Examples of such TABCW are disclosed in WO2000/71067 (KIM DOO-HONG et al.). TABCW are available directly from all usual suppliers of nonwoven webs for use in absorbent articles, for example Fitesa Ltd or Fiberweb Technical Nonwovens.


A further acquisition layer (not shown) may be used in addition to the first acquisition layer described above. For example a tissue layer may be placed between the first acquisition layer and the distribution layer. The tissue may have enhanced capillarity distribution properties compared to the acquisition layers described above. The tissue and the first acquisition layer may be of the same size or may be of different size, for example the tissue layer may extend further in the back of the absorbent article than the first acquisition layer. An example of a hydrophilic tissue is a 13 to 15 gsm high wet strength tissue made of cellulose fibers from supplier Havix.


Distribution Layer


The absorbent article 20 may also comprise a distribution layer, whose function is to spread the insulting fluid liquid over a larger surface within the article so that the absorbent capacity of the core can be more efficiently used. Typically the distribution layer is made of a nonwoven material based on synthetic or cellulosic fibers and having a relatively low density. The density of the distribution layer may vary depending on the compression of the article, but may typically range from 0.03 g/cm3 to 0.25 g/cm3, in particular from 0.05 g/cm3 to 0.15 g/cm3 measured at 0.30 psi (2.07 kPa). The material used to make the distribution layer may have a Water Retention Value of from 2 to 60, in particular from 3 to 40, more particularly from 4 to 20, measured as indicated in Water Retention Value Measurement Procedure below. The distribution layer may typically have an average basis weight of from 30 g/m2 to 400 g/m2, in particular from 100 g/m2 to 300 g/m2. When a nonwoven acquisition layer is present, the distribution layer may be first deposited on the acquisition layer as substrate before being further joined to absorbent core as is known in the art.


The distribution layer may for example comprise at least 50% by weight of cross-linked cellulose fibers. The cross-linked cellulosic fibers may be crimped, twisted, or curled, or a combination thereof including crimped, twisted, and curled. This type of material has been used in the past in disposable diapers as part of an acquisition system, for example US 2008/0312622 A1 (Hundorf). The cross-linked cellulosic fibers provide higher resilience and therefore higher resistance against the compression in the product packaging or in use conditions, e.g. under baby weight.


Exemplary chemically cross-linked cellulosic fibers suitable for a distribution layer are disclosed in U.S. Pat. Nos. 5,549,791, 5,137,537, WO95/34329 or US2007/118087. Exemplary cross-linking agents include polycarboxylic acids such as citric acid and/or polyacrylic acids such as acrylic acid and maleic acid copolymers. For example, the cross-linked cellulosic fibers may have between about 0.5 mole % and about 10.0 mole % of a C2-C9 polycarboxylic acid cross-linking agent, calculated on a cellulose anhydroglucose molar basis, reacted with said fibers in an intrafiber ester crosslink bond form. The C2-C9 polycarboxylic acid cross-linking agent may be selected from the group consisting of:

    • aliphatic and alicyclic C2-C9 polycarboxylic acids having at least three carboxyl groups per molecule; and
    • aliphatic and alicyclic C2-C9 polycarboxylic acids having two carboxyl groups per molecule and having a carbon-carbon double bond located alpha, beta to one or both of the carboxyl groups, wherein one carboxyl group in said C2-C9 polycarboxylic acid cross-linking agent is separated from a second carboxyl group by either two or three carbon atoms. The fibers may have in particular between about 1.5 mole % and about 6.0 mole % cross-linking agent, calculated on a cellulose anhydroglucose molar basis, reacted therewith in the form of intrafiber ester crosslink bonds. The cross-linking agent may be selected from the group consisting of citric acid, 1, 2, 3, 4 butane tetracarboxylic acid, and 1, 2, 3 propane tricarboxylic acid, in particular citric acid.


Polyacrylic acid cross-linking agents may also be selected from polyacrylic acid homopolymers, copolymers of acrylic acid, and mixtures thereof. The fibers may have between 1.0 weight % and 10.0 weight %, preferably between 3 weight % and 7 weight %, of these cross-linking agents, calculated on a dry fiber weight basis, reacted therewith in the form of intra-fiber crosslink bonds. The cross-linking agent may be a polyacrylic acid polymer having a molecular weight of from 500 to 40,000, preferably from 1,000 to 20,000. The polymeric polyacrylic acid cross-linking agent may be a copolymer of acrylic acid and maleic acid, in particular wherein the weight ratio of acrylic acid to maleic acid is from 10:1 to 1:1, preferably from 5:1 to 1.5:1. An effective amount of citric acid may be further mixed with said polymeric polyacrylic acid cross-linking agent.


The distribution layer comprising cross-linked cellulose fibers may comprise other fibers, but this layer may advantageously comprise at least 50%, or 60%, or 70%, or 80%, or 90% or even up to 100%, by weight of the layer, of cross-linked cellulose fibers (including the cross-linking agents). Examples of such mixed layer of cross-linked cellulose fibers may comprise about 70% by weight of chemically cross-linked cellulose fibers, about 10% by weight polyester (PET) fibers, and about 20% by weight untreated pulp fibers. In another example, the layer of cross-linked cellulose fibers may comprise about 70% by weight chemically cross-linked cellulose fibers, about 20% by weight lyocell fibers, and about 10% by weight PET fibers. In another example, the layer may comprise about 68% by weight chemically cross-linked cellulose fibers, about 16% by weight untreated pulp fibers, and about 16% by weight PET fibers. In another example, the layer of cross-linked cellulose fibers may comprise from about 90-100% by weight chemically cross-linked cellulose fibers.


Fastening System 42, 44


The absorbent article may include a fastening system, especially when the article is a taped diaper as exemplified in FIG. 9. The fastening system can be used to provide lateral tensions about the circumference of the absorbent article to hold the absorbent article on the wearer. Such a fastening system is not necessary for training pant articles since the waist region of these articles is already bonded and elasticized. The fastening system usually comprises a fastener 42 such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs & slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable. A landing zone 44 is normally provided on the front waist region of the article for the fastener 42 to be releasably attached. Some exemplary surface fastening systems are disclosed in U.S. Pat. Nos. 3,848,594, 4,662,875, 4,846,815, 4,894,060, 4,946,527, 5,151,092 and 5,221,274 (Buell). An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140 (Robertson et al.)


The fastening system may also include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622 to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. Nos. 5,242,436, 5,499,978, U.S. Pat. No. 5,507,86, and U.S. Pat. No. 5,591,152.


Front and Back Ears 46, 40


The absorbent article may comprise front ears 46 and back ears 40 as is known in the art in taped diapers. Training pants which are already sealed along the waist edges typically do not require front ears and back ears. The ears can be integral part of the chassis, for example formed from the topsheet and/or backsheet as side panel. Alternatively, as represented in FIG. 9, they may be separate elements attached by gluing and/or heat embossing. The back ears 40 are optionally stretchable to facilitate the attachment of the tabs 42 on the landing zone 44 and maintain the taped diapers in place around the wearer's waist. The front ears 46 may also be optionally elastic or extensible to provide a more comfortable and contouring fit.


Barrier Leg Cuffs 34 and Gasketing Cuffs 32


Absorbent articles such as taped diapers, training pants or adult incontinence pants may typically further comprise cuff components 30 that improve the fit of the article around the legs of the wearer, in particular the cuffs typically comprise barrier leg cuffs 34 and gasketing cuffs 32. The cuffs 30 may comprise a piece of material, typically a nonwoven, which is one side partially bonded to the article and on the other side can be partially raised away from the topsheet and thus stand up from the plane defined by the topsheet as shown for example in FIG. 10. Both part of the cuffs may be advantageously elasticized. The raised part of the cuff components is referred to herein as barrier leg cuffs 34 and can provide improved containment of liquids and other body exudates approximately at the junction of the torso and legs of the wearer. The barrier leg cuffs 34 extend at least partially between the front edge and the back edge of the absorbent article on opposite sides of the longitudinal axis and are at least present adjacent to the crotch point (C).


For example, U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (a gasketing cuff). U.S. Pat. No. 4,808,178 (Aziz) and U.S. Pat. No. 4,909,803 (Aziz) describe disposable diapers having “stand-up” elasticized flaps (barrier leg cuffs) which improve the containment of the leg regions. U.S. Pat. No. 4,695,278 (Lawson) and U.S. Pat. No. 4,795,454 (Dragoo) describe disposable diapers having dual cuffs, including gasketing cuffs and barrier leg cuffs. All or a portion of the barrier leg and/or gasketing cuffs may be treated with a lotion.


The barrier leg cuffs 34 may be delimited by a proximal edge 36 joined to the rest of the article, typically the topsheet, and a free terminal edge 38 intended to contact and form a seal with the wearer's skin. The barrier leg cuffs 34 may be joined at the proximal edge 36 with the chassis of the article by a bond 37 which may be made for example by adhesive bonding, fusion bonding or combination of known bonding means, for example as disclosed in WO2014/168810A1 (Bianchi et al.). The bond 37 at the proximal edge 36 may be continuous or intermittent.


The barrier leg cuffs 34 can be integral with (i.e. formed from) the topsheet or the backsheet, or more typically be formed from a separate material joined to the rest of the article. Typically the material of the barrier leg cuffs may extend through the whole length of the article but is “tack bonded” to the topsheet towards the front edge and back edge of the article so that in these sections the barrier leg cuff material remains flush with the topsheet. Each barrier leg cuff 34 may comprise one, two or more elastic strings 35 close to its free terminal edge 38 to provide a better seal.


In addition to the barrier leg cuffs 34, the article may comprise gasketing cuffs 32, which are formed in the same plane as the chassis of the absorbent article, in particular may be at least partially enclosed between the topsheet and the backsheet, and typically placed further laterally outwardly relative to the barrier leg cuffs 34. The gasketing cuffs 32 can provide a better seal around the thighs of the wearer. Usually each gasketing leg cuff 32 will comprise one or more elastic string or elastic element 33 comprised in the chassis of the diaper for example between the topsheet and backsheet in the area of the leg openings. Typically the barrier leg cuffs 34 are disposed more internally than the gasketing cuffs 32. The barrier leg cuffs are thus also referred to as inner cuffs and the gasketing cuffs as outer cuffs.


Other Components


The absorbent articles of the invention can further comprise any other typical components known for the intended purpose of the article that are not illustrated in the Figures, such as a transverse barrier element extending across the topsheet to form a receptacle for bowel movement, a lotion application on the topsheet, a wetness indicator comprising a pH indicator disposed between the absorbent core and the backsheet, etc. These components are well-known in the art and will not be further discussed herein. Reference is made to WO2014/093310 where several examples of these components are disclosed in more details.


The absorbent article may also comprise at least one elastic waist band (also called elastic waist feature) disposed parallel to and along the back edge of the article and less commonly parallel to and along the front edge of the article. Such waistbands help providing improved fit and containment at the back and/or front edge of the article. The elastic waist feature is generally intended to elastically expand and contract to dynamically fit the wearer's waist. The elastic waist feature may be constructed in a number of different configurations. Non-limiting examples of back and front waistbands can be found in WO2012/177400 and WO2012/177401 (Lawson), and U.S. Pat. Nos. 4,515,595, 4,710,189, 5,221,274 and 6,336,922 (VanGompel et al.).


Packages


A plurality of articles according to the invention may be packaged in a package for transport and sale. At least 50% of the articles in the package may be according to the invention, and preferably substantially all the articles. The articles may be folded and packaged as is known in the art. The package may be for example a plastic bag or a cardboard box. Diapers may typically bi-folded along the transversal axis and the ears folded inwardly before being packaged. The absorbent articles may be packed under compression so as to reduce the size of the packages, while still providing an adequate amount of absorbent articles per package. By packaging the absorbent articles under compression, caregivers can easily handle and store the packages, while also providing distribution and inventory savings to manufacturers owing to the size of the packages.


The absorbent articles may thus be packaged compressed at an In-Bag Compression Rate of at least 10%, in particular of from 10% to 50%, in particular from 20% to 40%. The “In-Bag Compression Rate” as used herein is one minus the height of a stack of 10 folded articles measured while under compression within a bag (“In-Bag Stack Height”) divided by the height of a stack of 10 folded articles of the same type before compression, multiplied by 100; i.e. (1-In-Bag Stack Height/stack height before compression)*100, reported as a percentage. Of course, the stack in the bag does not need to have exactly 10 articles, rather the value measured for the height of stack of article in the package is divided by the number of articles in the stack and then multiplied by 10. The method used to measure the In-Bag Stack Height is described in further details in the Test Procedures. The articles before compression may be typically sampled from the production line between the folding unit and the stack packing unit. The stack height before compression is measured by taking 10 articles before compression and packing, and measuring their stack height as indicated for the IBSH.


Packages of the absorbent articles of the present disclosure may in particular have an In-Bag Stack Height of less than 110 mm, less than 105 mm, less than 100 mm, less than 95 mm, less than 90 mm, specifically reciting all 0.1 mm increments within the specified ranges and all ranges formed therein or thereby, according to the In-Bag Stack Height Test described herein. For each of the values indicated in the previous sentence, it may be desirable to have an In-Bag Stack Height of greater than 60, or greater than 70 mm, or greater than 75 mm, or greater than 80 mm. Alternatively, packages of the absorbent articles of the present disclosure may have an In-Bag Stack Height of from 60 mm to 110 mm, from 75 mm to 110 mm, from 80 mm to 110 mm, from 80 mm to 105 mm, or from 80 mm to 100 mm, specifically reciting all 0.1 mm increments within the specified ranges and all ranges formed therein or thereby, according to the In-Back Stack Height Test described herein.


Relations Between the Layers and Components


Typically, adjacent layers will be joined together using conventional bonding method such as adhesive coating via slot coating or spraying on the whole or part of the surface of the layer, or thermo-bonding, or pressure bonding or combinations thereof. Most of the bonding between components is for clarity and readability not represented in the Figure. Bonding between the layers of the article should be considered to be present unless specifically excluded. Adhesives may be typically used to improve the adhesion of the different layers, for example between the backsheet and the core wrap. The adhesives used may be any standard hotmelt glue as known in the art. The individual components may be converted into an absorbent article according to any process as is known in the art.


Test Procedures


The values indicated herein are measured according to the methods indicated herein below, unless specified otherwise. All measurements are performed at 21° C.±2° C. and 50%±5% RH, unless specified otherwise. All samples should be kept at least 24 hours in these conditions to equilibrate before conducting the tests, unless indicated otherwise. All measurements should be reproduced on at least 4 samples and the average value obtained indicated, unless otherwise indicated.


Centrifuge Retention Capacity (CRC)


The CRC measures the liquid absorbed by the superabsorbent polymer particles for free swelling in excess liquid. The CRC is measured according to EDANA method WSP 241.2.R3 (12).


Dry Absorbent Core Caliper Test


This test may be used to measure the caliper of the absorbent core (before use i.e. without fluid loading) in a standardized manner.


Equipment: Mitutoyo manual caliper gauge with a resolution of 0.01 mm, or equivalent instrument.


Contact Foot: Flat circular foot with a diameter of 17.0 mm (±0.2 mm). A circular weight may be applied to the foot (e.g., a weight with a slot to facilitate application around the instrument shaft) to achieve the target weight. The total weight of foot and added weight (including shaft) is selected to provide 2.07 kPa (0.30 psi) of pressure to the sample.


The caliper gauge is mounted with the lower surface of the contact foot in an horizontal plane so that the lower surface of the contact foot contacts the center of the flat horizontal upper surface of a base plate approximately 20×25 cm. The gauge is set to read zero with the contact foot resting on the base plate.


Ruler: Calibrated metal ruler graduated in mm.


Stopwatch: Accuracy 1 second.


Sample preparation: The core is conditioned at least 24 hours as indicated above.


Measurement procedure: The core is laid flat with the bottom side, i.e. the side intended to be placed towards the backsheet in the finished article facing down. The point of measurement (e.g. the crotch point C) is carefully drawn on the top side of the core taking care not to compress or deform the core.


The contact foot of the caliper gauge is raised and the core is placed flat on the base plate of the caliper gauge with the top side of the core up so that when lowered, the center of the foot is on the marked measuring point.


The foot is gently lowered onto the article and released (ensure calibration to “0” prior to the start of the measurement). The caliper value is read to the nearest 0.01 mm, 10±1 seconds after the foot is released.


The procedure is repeated for each measuring point. If there is a fold at the measuring point, the measurement is done in the closest area to this point but without any folds. Ten articles are measured in this manner for a given product and the average caliper is calculated and reported with an accuracy of one tenth mm.


Absorbent Article Caliper Test


The Absorbent Article Caliper Test can be performed as for the Dry Absorbent Core Caliper Test with the difference that the caliper of the finished absorbent article is measured instead of the caliper of the core. The point of measurement may be the intersection of the longitudinal axis 80′ and transversal axis 90′ of the absorbent article. If the absorbent articles were provided folded and/or in a package, the articles to be measured are unfolded and/or removed from the center area of the package. If the package contains more than 4 articles, the outer most two articles on each side of the package are not used in the testing. If the package contains more than 4 but fewer than 14 articles, then more than one package of articles is required to complete the testing. If the package contains 14 or more articles, then only one package of articles is required to perform the testing. If the package contains 4 or fewer articles then all articles in the package are measured and multiple packages are required to perform the measurement. Caliper readings should be taken 24±1 hours after the article is removed from the package, unfolded and conditioned. Physical manipulation of product should be minimal and restricted only to necessary sample preparation.


Any elastic components of the article that prevent the article from being laid flat under the caliper foot are cut or removed. These may include leg cuffs or waistbands. Pant-type articles are opened or cut along the side seams as necessary. Apply sufficient tension to flatten out any folds/wrinkles. Care is taken to avoid touching and/or compressing the area of measurement.


Water Retention Value Measurement Procedure


The following procedure is utilized to determine the water retention value of fibers using a centrifugal method. A sample of 0.35±0.05 grams of fibers is soaked in a covered container with 100 mL distilled water at 23±2° C. for 17 hours. The soaked fibers are collected on a filter and transferred to a US standard 80-mesh wire basket supported 40 mm above a 60-mesh screened bottom of a centrifuge tube. The tube is covered with a plastic cover and the sample is centrifuged at a relative centrifuge acceleration of 1600±100 gravities (15.7±1.0 km/s2) for 20 minutes. The centrifuged fibers are then removed from the basket and weighed. The weighed fibers are dried to a constant weight at 105° C. in a forced-air oven located in a controlled temperature and humidity environment at 23±2° C. and 50±5% RH. The water retention value (WRV) is calculated as follows:






WRV
=



(

W
-
D

)

D

×
100





where


W=wet weight of centrifuged fibers


D=dry weight of centrifuged fibers, and


W−D=weight of absorbed water


In-Bag Stack Height Test


The In-Bag stack height of a package of absorbent articles is determined as follows:


Equipment: A thickness tester with a flat, rigid horizontal sliding plate is used. The thickness tester is configured so that the horizontal sliding plate moves freely in a vertical direction with the horizontal sliding plate always maintained in a horizontal orientation directly above a flat, rigid horizontal base plate. The thickness tester includes a suitable device for measuring the gap between the horizontal sliding plate and the horizontal base plate to within ±0.5 mm. The horizontal sliding plate and the horizontal base plate are larger than the surface of the absorbent article package that contacts each plate, i.e. each plate extends past the contact surface of the absorbent article package in all directions. The horizontal sliding plate exerts a downward force of 850±1 gram-force (8.34 N) on the absorbent article package, which may be achieved by placing a suitable weight on the center of the non-package-contacting top surface of the horizontal sliding plate so that the total mass of the sliding plate plus added weight is 850±1 grams. Such a testing apparatus is for example illustrated on FIG. 19 of US2008/0312624A1.


Test Procedure: Absorbent article packages are equilibrated at 21±2° C. and 50±5% relative humidity prior to measurement. The horizontal sliding plate is raised and an absorbent article package is placed centrally under the horizontal sliding plate in such a way that the absorbent articles within the package are in a horizontal orientation. Any handle or other packaging feature on the surfaces of the package that would contact either of the plates is folded flat against the surface of the package so as to minimize their impact on the measurement. The horizontal sliding plate is lowered slowly until it contacts the top surface of the package and then released. The gap between the horizontal plates is measured to within ±0.5 mm ten seconds after releasing the horizontal sliding plate. Five identical packages (same size packages and same absorbent articles counts) are measured and the arithmetic mean is reported as the package width. The “In-Bag Stack Height”=(package width/absorbent article count per stack)×10 is calculated and reported to within ±0.5 mm.


Determination of the Basis Weight of the Absorbent Material


The basis weight distribution of the absorbent material in the central and the lateral absorbent zones of the absorbent core is determined by the manufacturer based on the desired product specification. For example, if a SAP printing process as exemplified in FIGS. 12-13 is used, the SAP distribution will be determined by the distribution of the cavities 123 on the printing roll and the size of the depressions between the bars 36. If an air-laid core making process is used, for example to deposit a mix of cellulose fibers and SAP particles as absorbent material, the absorbent material distribution will be determined by the shape of the core mold on which the fibers and SAP particles are deposited. The local basis weight of the absorbent material in the different areas of the absorbent core can be thus directly determined from the manufacturer's specification for the absorbent core's manufacturing tool. For the purpose of calculating the basis weight in the different absorbent zones of the core, any absorbent material-free areas in the plane of the absorbent core such as in the channel-forming areas or any material free recesses at the longitudinal sides of the core (in a profiled core, not represented) are disregarded. The distribution of material can be displayed in a diagram as shown on FIG. 6 and FIG. 8, which clearly shows the repartition of the different transversal sections.


If the manufacturer specifications are not known for a given absorbent core, in particular if the absorbent core was made by a third party, the basis weight of the absorbent material in different sections of the different absorbent zones can be determined in the following manner. The absorbent core is carefully separated from the other components of the article (topsheet, backsheet, . . . ) so as not to damage the absorbent core or modify the distribution of the absorbent material. Then a particular area of interest of the core can be cut out using a die or another suitable means to avoid loss of material, and the area weighted. The absorbent material basis weight in the cut-out area is calculated by dividing the weight of the area (minus the weight of the core wrap) by the size of the area. The basis weight of the core wrap can be determined by taking a sample in an area of the core wrap not comprising the absorbent material and weighing this sample. This procedure can further be repeated on a sufficient amount of similar articles to obtain a good approximation of the basis weight distribution across different sections of the absorbent zones and to smooth out any small variations between individual articles due to process variability.


Misc


As used herein, the terms “comprise(s)” and “comprising” are open-ended; each specifies the presence of the feature that follows, e.g. a component, but does not preclude the presence of other features, e.g. elements, steps, components known in the art or disclosed herein. These terms based on the verb “comprise” should be read as encompassing the narrower terms “consisting essentially of” which excludes any element, step or ingredient not mentioned which materially affect the way the feature performs its function, and the term “consisting of” which excludes any element, step, or ingredient not specified. Any preferred or exemplary embodiments described below are not limiting the scope of the claims, unless specifically indicated to do so. The words “typically”, “normally”, “preferably”, “advantageously”, “in particular” and the likes also qualify features which are not intended to limit the scope of the claims unless specifically indicated to do so.


Unless indicated otherwise, the description and claims refer to the absorbent core and article before use (i.e. dry, and not loaded with a fluid) and conditioned at least 24 hours at 21° C.+/−2° C. and 50+/−5% Relative Humidity (RH).


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.


Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. An absorbent core extending in a longitudinal direction parallel to a longitudinal axis from a length L and a transversal direction perpendicular to the longitudinal direction, wherein the absorbent core comprises: a front edge and a back edge;a core wrap comprising a top side and a bottom side;an absorbent material between the top side and the bottom side of the core wrap;a first and second longitudinally-extending channel-forming areas substantially free of absorbent material and each having a length, and wherein the first channel-forming area is on one side of the longitudinal axis and the second channel-forming area is on another side of the longitudinal axis;a central absorbent zone comprising absorbent material and disposed between the first and the second channel-forming areas; anda first lateral absorbent zone and a second lateral absorbent zone comprising absorbent material and disposed laterally outwardly of and extending along the length of the first channel-forming area and the second channel-forming area respectively; anda transversal axis disposed a distance of 0.45 L from the front edge;a crotch region extending from the transversal axis towards the back edge and front edge of the core by a distance of a quarter of L (L/4) in both directions for a total length of L/2;wherein:a basis weight of the absorbent material in the central absorbent zone is higher than a basis weight of the absorbent material in each of the lateral absorbent zones for at least a first transversal section (S1) of the core having a first length in the longitudinal direction of at least 10 mm and a first width in the lateral direction that extends across the first lateral absorbent zone, the central absorbent zone, and the second lateral absorbent zone; andthe basis weight of the absorbent material in the central absorbent zone is lower than the basis weight of the absorbent material in each of the lateral absorbent zones for at least a second transversal section (S2) of the core, wherein the second transversal section (S2) is adjacent to the first transversal section (S1) and has a second length in the longitudinal direction of at least 10 mm and a first width in the lateral direction that extends across the first lateral absorbent zone, the central absorbent zone, and the second lateral absorbent zone; andwherein the basis weight of the first lateral absorbent zone in the first transversal section (S1) is less than the basis weight of the first lateral absorbent zone in the second transversal zone, and the basis weight of the central absorbent zone is greater in the first transversal zone (S1) than in the second transversal section (S2) andwherein at least one transversal folding line is formed in a transversal section (S4) of the core in the crotch region and having a minimum basis weight in the lateral absorbent zones relative to the neighboring regions of the lateral absorbent zones, so that the transversal section (S4) of minimum basis weight acts as a folding line and wherein the transversal section (S4) comprises a longitudinal length of 5 mm to 30 mm.
  • 2. The absorbent core of claim 1, wherein the basis weight of the absorbent material in the central absorbent zone is about equal to the basis weight of the absorbent material in the lateral absorbent zones along a third transversal sections (S3) of the core having a length of at least 10 mm in the longitudinal direction.
  • 3. The absorbent core of claim 1, wherein: the basis weight difference between a maximum basis weight value in the central absorbent zone and a minimum basis weight value in any of the lateral absorbent zones in the first transversal section (S1) is of at least 20 g/m2; andthe basis weight difference between a maximum basis weight value in any of the lateral absorbent zones and a minimum basis weight value in the central absorbent zone in the second transversal section (S2) is of at least 10 g/m2.
  • 4. The absorbent core of claim 3, wherein the basis weight difference between the maximum basis weight value in the central absorbent zone and the minimum basis weight value in any of the lateral absorbent zones in the first transversal section (S1) is of at least 50 g/m2.
  • 5. The absorbent core of claim 3, wherein the basis weight difference between the maximum basis weight value in any of the lateral absorbent zones and the minimum basis weight value in the central absorbent zone in the second transversal section (S2) is of at least 30 g/m2.
  • 6. The absorbent core of claim 1, wherein the first and second channel-forming areas are at least partially curved or angled so that the width of the central absorbent zone varies along at least a portion of the length of the core.
  • 7. The absorbent core of claim 1, wherein the amount of absorbent material in the central absorbent zone ranges from about 15% to about 55% of the total amount of absorbent material in the absorbent core, and the combined amount of absorbent material in both lateral absorbent zones ranges from about 20% to about 80% of the total amount of absorbent material in the absorbent core.
  • 8. The absorbent core of claim 1, wherein a minimum width (D) of the central absorbent zone is at least 10 mm.
  • 9. The absorbent core of claim 1, wherein the top side of the core wrap is attached to the bottom side of the core wrap in the first and second channel-forming areas.
  • 10. The absorbent core of claim 1, wherein the absorbent material consists essentially of superabsorbent polymer particles.
  • 11. The absorbent core of claim 10, wherein the superabsorbent polymer particles are at least partially immobilized by an adhesive.
  • 12. The absorbent core of claim 1, further comprising a front absorbent zone comprising absorbent material and disposed longitudinally outwardly of the central absorbent zone and the lateral absorbent zones towards the front edge of the core, and a back absorbent zone comprising absorbent material and disposed longitudinally outwardly of the central absorbent zone and the lateral absorbent zones towards the back edge of the core.
  • 13. The absorbent core of claim 1, comprising an auxiliary glue between the absorbent material and at least one of the top side or the bottom side of the core wrap.
  • 14. The absorbent core of claim 1, wherein the top side of the core wrap is attached to the bottom side of the core wrap in the channel-forming areas by at least one selected from ultrasonic bonding, fusion bonding, and adhesive bonding.
Priority Claims (1)
Number Date Country Kind
16167637 Apr 2016 EP regional
US Referenced Citations (1165)
Number Name Date Kind
1733997 Marr Oct 1929 A
1734499 Marinsky Nov 1929 A
1989283 Limacher Jan 1935 A
2058509 Rose Oct 1936 A
2271676 Bjornbak Feb 1942 A
2450789 Frieman Oct 1948 A
2508811 Best et al. May 1950 A
2568910 Condylis Sep 1951 A
2570796 Gross Oct 1951 A
2570963 Mesmer Oct 1951 A
2583553 Faure Jan 1952 A
2705957 Mauro Apr 1955 A
2788003 Norden Morin George Van Apr 1957 A
2788786 Dexter Apr 1957 A
2798489 Behrman Jul 1957 A
2807263 Newton Sep 1957 A
2830589 Doner Apr 1958 A
2890700 Lönberg-Holm Jun 1959 A
2890701 Weinman Jun 1959 A
2898912 Adams Aug 1959 A
2931361 Sostsrin Apr 1960 A
2977957 Clyne Apr 1961 A
3071138 Gustavo Jan 1963 A
3180335 Duncan et al. Apr 1965 A
3207158 Yoshitake et al. Sep 1965 A
3227160 Joy Jan 1966 A
3386442 Sabee Jun 1968 A
3561446 Jones Feb 1971 A
3572342 Lindquist et al. Mar 1971 A
3572432 Burton Mar 1971 A
3575174 Mogor Apr 1971 A
3578155 Small et al. May 1971 A
3606887 Roeder Sep 1971 A
3610244 Jones Oct 1971 A
3618608 Brink Nov 1971 A
3642001 Sabee Feb 1972 A
3653381 Warnken Apr 1972 A
3670731 Harmon Jun 1972 A
3688767 Goldstein Sep 1972 A
3710797 Marsan Jan 1973 A
3731688 Litt et al. May 1973 A
3756878 Willot Sep 1973 A
3774241 Zerkle Nov 1973 A
3776233 Schaar Dec 1973 A
3814100 Nystrand et al. Jun 1974 A
3828784 Sabee Oct 1974 A
3840418 Sabee Oct 1974 A
3847702 Jones Nov 1974 A
3848594 Buell Nov 1974 A
3848595 Endres Nov 1974 A
3848597 Endres Nov 1974 A
3860003 Buell Jan 1975 A
3863637 MacDonald et al. Feb 1975 A
3882870 Hathaway May 1975 A
3884234 Taylor May 1975 A
3900032 Heurlen Aug 1975 A
3911173 Sprague, Jr. Oct 1975 A
3920017 Karami Nov 1975 A
3924626 Lee et al. Dec 1975 A
3926189 Taylor Dec 1975 A
3929134 Karami Dec 1975 A
3929135 Thompson Dec 1975 A
3930501 Schaar Jan 1976 A
3938523 Gilliland et al. Feb 1976 A
3968799 Schrading Jul 1976 A
3978861 Schaar Sep 1976 A
3981306 Krusko Sep 1976 A
3987794 Schaar Oct 1976 A
3995637 Schaar Dec 1976 A
3995640 Schaar Dec 1976 A
3999547 Hernandez Dec 1976 A
4014338 Schaar Mar 1977 A
4034760 Amirsakis Jul 1977 A
4055180 Karami Oct 1977 A
4074508 Reid Feb 1978 A
4079739 Whitehead Mar 1978 A
4084592 Tritsch Apr 1978 A
4100922 Hernandez Jul 1978 A
4232674 Melican Nov 1980 A
4257418 Hessner Mar 1981 A
4259220 Bunnelle et al. Mar 1981 A
4296750 Woon et al. Oct 1981 A
4315508 Bolick Feb 1982 A
4324246 Mullane et al. Apr 1982 A
4340706 Obayashi et al. Jul 1982 A
4341216 Obenour Jul 1982 A
4342314 Radel et al. Aug 1982 A
4360021 Stima Nov 1982 A
4381783 Elias May 1983 A
4388075 Mesek et al. Jun 1983 A
4410571 Korpman Oct 1983 A
4461621 Karami et al. Jul 1984 A
4463045 Ahr et al. Jul 1984 A
4469710 Rielley et al. Sep 1984 A
4475912 Coates Oct 1984 A
4490148 Beckeström Dec 1984 A
4507438 Obayashi et al. Mar 1985 A
4515595 Kievet et al. May 1985 A
4527990 Sigl Jul 1985 A
4541871 Obayashi et al. Sep 1985 A
4551191 Kock et al. Nov 1985 A
4573986 Minetola et al. Mar 1986 A
4578072 Lancaster Mar 1986 A
4578702 Campbell Mar 1986 A
4585448 Enloe Apr 1986 A
4585450 Rosch et al. Apr 1986 A
4589878 Mitrani May 1986 A
4596568 Flug Jun 1986 A
4601717 Blevins Jul 1986 A
4606964 Wideman Aug 1986 A
4609518 Curro et al. Sep 1986 A
4610678 Weisman et al. Sep 1986 A
4623342 Ito et al. Nov 1986 A
4624666 Derossett Nov 1986 A
4629643 Curro et al. Dec 1986 A
4636207 Buell Jan 1987 A
4641381 Heran et al. Feb 1987 A
4646510 McIntyre Mar 1987 A
4662875 Hirotsu et al. May 1987 A
4666983 Tsubakimoto et al. May 1987 A
4670011 Mesek Jun 1987 A
4670012 Johnson Jun 1987 A
4680030 Coates et al. Jul 1987 A
4681579 Toussant et al. Jul 1987 A
4681581 Coates Jul 1987 A
4681793 Linman et al. Jul 1987 A
4685915 Hasse Aug 1987 A
4690680 Higgins Sep 1987 A
4695278 Lawson Sep 1987 A
4699622 Toussant et al. Oct 1987 A
4704115 Buell Nov 1987 A
4704116 Enloe Nov 1987 A
4710189 Lash Dec 1987 A
4720321 Smith Jan 1988 A
4731066 Korpman Mar 1988 A
4731070 Koci Mar 1988 A
RE32649 Brandt et al. Apr 1988 E
4741941 Englebert et al. May 1988 A
4747846 Boland et al. May 1988 A
4753648 Jackson Jun 1988 A
4773905 Molee Sep 1988 A
4784892 Storey et al. Nov 1988 A
4785996 Ziecker et al. Nov 1988 A
4787896 Houghton et al. Nov 1988 A
4795454 Dragoo Jan 1989 A
4800102 Takada Jan 1989 A
4802884 Fröidh et al. Feb 1989 A
4806408 Pierre et al. Feb 1989 A
4806598 Morman Feb 1989 A
4808176 Kielpikowski Feb 1989 A
4808178 Aziz Feb 1989 A
4826880 Lesniak et al. May 1989 A
4834735 Alemany et al. May 1989 A
4834740 Suzuki et al. May 1989 A
4834742 Wilson et al. May 1989 A
4838886 Kent Jun 1989 A
4842666 Werenicz Jun 1989 A
4846815 Scripps Jul 1989 A
4846825 Enloe et al. Jul 1989 A
4848815 Molloy Jul 1989 A
4861652 Lippert et al. Aug 1989 A
4869724 Scripps Sep 1989 A
4886697 Perdelwitz, Jr. et al. Dec 1989 A
4888231 Angstadt Dec 1989 A
4892528 Suzuki et al. Jan 1990 A
4892535 Bjornberg Jan 1990 A
4892536 DesMarais et al. Jan 1990 A
4894060 Nestegard Jan 1990 A
4894277 Akasaki Jan 1990 A
4904251 Igaue et al. Feb 1990 A
4900317 Buell Mar 1990 A
4909802 Ahr et al. Mar 1990 A
4909803 Aziz et al. Mar 1990 A
4936839 Molee Jun 1990 A
4940463 Leathers et al. Jul 1990 A
4940464 Van Gompel et al. Jul 1990 A
4946527 Battrell Aug 1990 A
4950264 Osborn Aug 1990 A
4960477 Mesek Oct 1990 A
4963140 Robertson et al. Oct 1990 A
4966809 Tanaka et al. Oct 1990 A
4968313 Sabee Nov 1990 A
4990147 Freeland Feb 1991 A
4994053 Lang Feb 1991 A
5006394 Baird Apr 1991 A
5019063 Marsan et al. May 1991 A
5019072 Polski May 1991 A
5021051 Hiuke Jun 1991 A
5030314 Lang Jul 1991 A
5032120 Freeland et al. Jul 1991 A
5034008 Breitkopf Jul 1991 A
5037416 Allen et al. Aug 1991 A
5071414 Elliott Aug 1991 A
5072687 Mitchell Dec 1991 A
5085654 Buell Feb 1992 A
5087255 Sims et al. Feb 1992 A
5092861 Nomura et al. Mar 1992 A
5102597 Roe et al. Apr 1992 A
5114420 Igaue et al. May 1992 A
5124188 Roe et al. Jun 1992 A
5135522 Fahrenkrug et al. Aug 1992 A
5137537 Herron et al. Aug 1992 A
D329697 Fahrenkrug et al. Sep 1992 S
5143679 Weber et al. Sep 1992 A
5147343 Kellenberger Sep 1992 A
5147345 Young et al. Sep 1992 A
5149334 Roe et al. Sep 1992 A
5149335 Kellenberger et al. Sep 1992 A
5151091 Glaug Sep 1992 A
5151092 Buell et al. Sep 1992 A
5156793 Buell et al. Oct 1992 A
5167653 Igaue et al. Dec 1992 A
5167897 Weber et al. Dec 1992 A
5175046 Nguyen Dec 1992 A
5180622 Berg et al. Jan 1993 A
5190563 Herron et al. Mar 1993 A
5190606 Merkatoris et al. Mar 1993 A
5204997 Suzuki et al. Apr 1993 A
5213817 Pelley May 1993 A
5221274 Buell et al. Jun 1993 A
5235515 Ungpiyakul et al. Aug 1993 A
5242436 Weil et al. Sep 1993 A
5246431 Minetola et al. Sep 1993 A
5246432 Suzuki et al. Sep 1993 A
5246433 Hasse et al. Sep 1993 A
5248309 Serbiak et al. Sep 1993 A
5260345 Desmarais et al. Nov 1993 A
5269775 Freeland et al. Dec 1993 A
5281683 Yano et al. Jan 1994 A
H1298 Ahr Apr 1994 H
5300565 Berg et al. Apr 1994 A
5312386 Correa et al. May 1994 A
5331059 Engelhardt et al. Jul 1994 A
5336552 Strack et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5358500 LaVon et al. Oct 1994 A
5366782 Curro et al. Nov 1994 A
5382610 Harada et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387208 Ashton et al. Feb 1995 A
5387209 Yamamoto et al. Feb 1995 A
5389095 Suzuki Feb 1995 A
5397316 Lavon et al. Mar 1995 A
5397317 Thomas Mar 1995 A
5399175 Glaug Mar 1995 A
5401792 Babu et al. Mar 1995 A
5409771 Dahmen et al. Apr 1995 A
H1440 New et al. May 1995 H
5411497 Tanzer et al. May 1995 A
5415644 Enloe May 1995 A
5425725 Tanzer et al. Jun 1995 A
5429630 Beal et al. Jul 1995 A
5433715 Tanzer et al. Jul 1995 A
5451219 Suzuki Sep 1995 A
5451442 Pieniak Sep 1995 A
5460622 Dragoo et al. Oct 1995 A
5460623 Emenaker et al. Oct 1995 A
5462541 Bruemmer et al. Oct 1995 A
5476458 Glaug et al. Dec 1995 A
5486166 Bishop et al. Jan 1996 A
5486167 Dragoo et al. Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5492962 Lahrman et al. Feb 1996 A
5494622 Heath et al. Feb 1996 A
5499978 Buell et al. Mar 1996 A
5507736 Clear et al. Apr 1996 A
5507895 Suekane Apr 1996 A
5509915 Hanson et al. Apr 1996 A
5514104 Cole May 1996 A
5518801 Chappell et al. May 1996 A
5520674 Hines et al. May 1996 A
5522810 Allen, Jr. Jun 1996 A
5527300 Sauer Jun 1996 A
5531730 Dreier Jul 1996 A
5532323 Yano et al. Jul 1996 A
5542943 Sageser Aug 1996 A
5549592 Fries et al. Aug 1996 A
5549593 Ygge et al. Aug 1996 A
5549791 Herron et al. Aug 1996 A
5554145 Roe et al. Sep 1996 A
5559335 Zing et al. Sep 1996 A
5560878 Dragoo et al. Oct 1996 A
5562634 Flumene et al. Oct 1996 A
5562646 Goldman et al. Oct 1996 A
5569234 Buell et al. Oct 1996 A
5571096 Dobrin et al. Nov 1996 A
5574121 Irie et al. Nov 1996 A
5575783 Clear et al. Nov 1996 A
5580411 Nease et al. Dec 1996 A
5584829 Lavash et al. Dec 1996 A
5586979 Thomas Dec 1996 A
5591152 Buell et al. Jan 1997 A
5591155 Nishikawa et al. Jan 1997 A
5593399 Tanzer et al. Jan 1997 A
5599335 Goldman et al. Feb 1997 A
5601542 Melius et al. Feb 1997 A
5607414 Richards et al. Mar 1997 A
5607537 Johnson et al. Mar 1997 A
5607760 Roe et al. Mar 1997 A
5609587 Roe Mar 1997 A
5609588 DiPalma et al. Mar 1997 A
5611879 Morman Mar 1997 A
5613959 Roessler et al. Mar 1997 A
5613960 Mizutani Mar 1997 A
5614283 Potnis et al. Mar 1997 A
5622589 Johnson et al. Apr 1997 A
5624423 Anjur Apr 1997 A
5624424 Saisaka et al. Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5607416 Yamamoto et al. May 1997 A
5626571 Young et al. May 1997 A
5628741 Buell et al. May 1997 A
5628845 Murray et al. May 1997 A
5635191 Roe et al. Jun 1997 A
5635271 Zafiroglu Jun 1997 A
5637106 Mitchell Jun 1997 A
5643238 Baker Jul 1997 A
5643243 Klemp Jul 1997 A
5643588 Roe et al. Jul 1997 A
5649914 Glaug Jul 1997 A
5650214 Anderson Jul 1997 A
H1674 Ames et al. Aug 1997 H
5658268 Johns et al. Aug 1997 A
5662634 Yamamoto et al. Sep 1997 A
5662638 Johnson et al. Sep 1997 A
5662758 Hamilton et al. Sep 1997 A
5669894 Goldman et al. Sep 1997 A
5674215 Ronnberg Oct 1997 A
5681300 Ahr Oct 1997 A
5683374 Yamamoto Nov 1997 A
5685874 Buell et al. Nov 1997 A
5690624 Sasaki et al. Nov 1997 A
5690627 Clear et al. Nov 1997 A
5691035 Chappell et al. Nov 1997 A
5691036 Chappell et al. Nov 1997 A
5695488 Sosalla Dec 1997 A
5700254 McDowall et al. Dec 1997 A
5702376 Glaug Dec 1997 A
5714156 Schmidt et al. Feb 1998 A
5723087 Chappell et al. Mar 1998 A
5733275 Davis et al. Mar 1998 A
5749866 Roe et al. May 1998 A
5752947 Awolin May 1998 A
5756039 Mcfall et al. May 1998 A
H1732 Johnson Jun 1998 H
5762641 Bewick Sonntag et al. Jun 1998 A
5766388 Pelley Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5772825 Schmitz Jun 1998 A
5776121 Roe et al. Jul 1998 A
5779831 Schmitz Jul 1998 A
5788684 Abuto et al. Aug 1998 A
5795345 Mizutani Aug 1998 A
5797892 Glaug Aug 1998 A
5797894 Cadieux et al. Aug 1998 A
5807365 Luceri Sep 1998 A
5810796 Kimura et al. Sep 1998 A
5810800 Hunter et al. Sep 1998 A
5814035 Gryskiewicz et al. Sep 1998 A
5820618 Roberts et al. Oct 1998 A
5827257 Fujioka Oct 1998 A
5830202 Bogdanski et al. Nov 1998 A
5833678 Ashton et al. Nov 1998 A
5837789 Stockhausen et al. Nov 1998 A
5840404 Graff Nov 1998 A
5843059 Niemeyer et al. Dec 1998 A
5846231 Fujioka et al. Dec 1998 A
5846232 Serbiak et al. Dec 1998 A
5849816 Suskind et al. Dec 1998 A
5851204 Mitzutani Dec 1998 A
5855572 Schmidt Jan 1999 A
5858013 Kling Jan 1999 A
5858515 Stokes et al. Jan 1999 A
5865823 Curro Feb 1999 A
5865824 Chen Feb 1999 A
5873868 Nakahata Feb 1999 A
5876391 Roe et al. Mar 1999 A
5879751 Bogdanski Mar 1999 A
5891118 Toyoshima Apr 1999 A
5891544 Chappell et al. Apr 1999 A
5897545 Kline et al. Apr 1999 A
5904673 Roe et al. May 1999 A
5925439 Haubach Jul 1999 A
5928184 Etheredge Jul 1999 A
5931825 Kuen et al. Aug 1999 A
5938648 Lavon et al. Aug 1999 A
5938650 Baer et al. Aug 1999 A
5941862 Haynes et al. Aug 1999 A
5944706 Palumbo et al. Aug 1999 A
5947949 Inoue et al. Sep 1999 A
5951536 Osborn, III et al. Sep 1999 A
5957908 Kline et al. Sep 1999 A
5968025 Roe et al. Oct 1999 A
5968029 Chappell et al. Oct 1999 A
5980500 Shimizu et al. Nov 1999 A
5981824 Luceri Nov 1999 A
5989236 Roe et al. Nov 1999 A
6004306 Roe et al. Dec 1999 A
6010490 Freeland et al. Jan 2000 A
6022430 Blenke et al. Feb 2000 A
6022431 Blenke et al. Feb 2000 A
6042673 Johnson et al. Mar 2000 A
6050984 Fujioka Apr 2000 A
6054631 Gent Apr 2000 A
6056732 Fujioka et al. May 2000 A
6060115 Borowski et al. May 2000 A
6068620 Chmielewski May 2000 A
6080909 Osterdahl et al. Jun 2000 A
6083210 Young et al. Jul 2000 A
6090994 Chen Jul 2000 A
6091336 Zand Jul 2000 A
6093474 Sironi Jul 2000 A
6099515 Sugito Aug 2000 A
6102892 Putzer et al. Aug 2000 A
6103814 Van Drongelen et al. Aug 2000 A
6107537 Elder et al. Aug 2000 A
6110157 Schmidt Aug 2000 A
6117121 Faulks et al. Sep 2000 A
6117803 Morman et al. Sep 2000 A
6120486 Toyoda et al. Sep 2000 A
6120487 Ashton Sep 2000 A
6120489 Johnson et al. Sep 2000 A
6120866 Arakawa et al. Sep 2000 A
6121509 Ashraf et al. Sep 2000 A
6129717 Fujioka et al. Oct 2000 A
6129720 Blenke et al. Oct 2000 A
6132411 Huber et al. Oct 2000 A
6139912 Onuschak Oct 2000 A
6143821 Houben Nov 2000 A
6152908 Widlund Nov 2000 A
6156023 Yoshioka Dec 2000 A
6156424 Taylor Dec 2000 A
6160197 Lassen Dec 2000 A
6165160 Suzuki et al. Dec 2000 A
6174302 Kumasaka Jan 2001 B1
6177606 Etheredge Jan 2001 B1
6177607 Blaney et al. Jan 2001 B1
6186996 Martin Feb 2001 B1
6210386 Inoue Apr 2001 B1
6210390 Karlsson Apr 2001 B1
6231556 Osborn, III May 2001 B1
6231566 Lai May 2001 B1
6238380 Sasaki May 2001 B1
6241716 Rönnberg Jun 2001 B1
6254294 Muhar Jul 2001 B1
6258996 Goldman Jul 2001 B1
6265488 Fujino et al. Jul 2001 B1
6290686 Tanzer et al. Sep 2001 B1
6306122 Narawa et al. Oct 2001 B1
6315765 Datta Nov 2001 B1
6319239 Daniels et al. Nov 2001 B1
6322552 Blenke et al. Nov 2001 B1
6325787 Roe et al. Dec 2001 B1
6326525 Hamajima Dec 2001 B1
6330735 Hahn et al. Dec 2001 B1
6334858 Rönnberg et al. Jan 2002 B1
6336922 Van Gompel et al. Jan 2002 B1
6340611 Shimizu Jan 2002 B1
6342715 Shimizu Jan 2002 B1
6402731 Suprise et al. Jan 2002 B1
6350332 Thomas et al. Feb 2002 B1
6368687 Joseph et al. Apr 2002 B1
6371948 Mizutani Apr 2002 B1
6372952 Lash et al. Apr 2002 B1
6375644 Mizutani Apr 2002 B2
6376034 Brander Apr 2002 B1
6383431 Dobrin et al. May 2002 B1
6383960 Everett et al. May 2002 B1
6394989 Mizutani May 2002 B2
6403857 Gross et al. Jun 2002 B1
6406467 Dilnik et al. Jun 2002 B1
6409883 Makolin Jun 2002 B1
6410820 McFall et al. Jun 2002 B1
6410822 Mizutani Jun 2002 B1
6402729 Boberg et al. Jul 2002 B1
6413248 Mizutani Jul 2002 B1
6413249 Turi et al. Jul 2002 B1
6414214 Engelhardt et al. Jul 2002 B1
6416502 Connelly et al. Jul 2002 B1
6416697 Venturino et al. Jul 2002 B1
6419667 Avalon et al. Jul 2002 B1
6423046 Fujioka et al. Jul 2002 B1
6423048 Suzuki et al. Jul 2002 B1
6423884 Oehmen Jul 2002 B1
6429350 Tanzer et al. Aug 2002 B1
6432094 Fujioka et al. Aug 2002 B1
6432098 Kline et al. Aug 2002 B1
6432099 Rönnberg Aug 2002 B2
6437214 Everett et al. Aug 2002 B1
6441268 Edwardsson Aug 2002 B1
6443933 Suzuki et al. Sep 2002 B1
6444064 Henry et al. Sep 2002 B1
6447496 Mizutani Sep 2002 B1
6458111 Onishi et al. Oct 2002 B1
6458877 Ahmed et al. Oct 2002 B1
6459016 Rosenfeld et al. Oct 2002 B1
6461034 Schaefer et al. Oct 2002 B1
6461342 Tanji et al. Oct 2002 B2
6461343 Schaefer et al. Oct 2002 B1
6472478 Funk et al. Oct 2002 B1
6475201 Saito et al. Nov 2002 B2
6494872 Suzuki et al. Dec 2002 B1
6494873 Karlsson et al. Dec 2002 B2
6500159 Carvalho Dec 2002 B1
6503233 Chen Jan 2003 B1
6503979 Funk et al. Jan 2003 B1
6506186 Roessler Jan 2003 B1
6506961 Levy Jan 2003 B1
6515195 Lariviere Feb 2003 B1
6517525 Berthou Feb 2003 B1
6518479 Graef Feb 2003 B1
6520947 Tilly et al. Feb 2003 B1
6521811 Lassen Feb 2003 B1
6521812 Graef Feb 2003 B1
6524294 Hilston et al. Feb 2003 B1
6525240 Graef Feb 2003 B1
6528698 Mizutani et al. Mar 2003 B2
6529860 Strumolo et al. Mar 2003 B1
6531025 Lender et al. Mar 2003 B1
6531027 Lender et al. Mar 2003 B1
6534149 Daley et al. Mar 2003 B1
6559081 Erspamer May 2003 B1
6559239 Riegel et al. May 2003 B1
6562168 Schmitt et al. May 2003 B1
6562192 Hamilton May 2003 B1
6569137 Suzuki et al. May 2003 B2
6573422 Rosenfeld Jun 2003 B1
6585713 LeMahieu et al. Jul 2003 B1
6585858 Otto et al. Jul 2003 B1
6602234 Klemp et al. Aug 2003 B2
6605070 Ludwig et al. Aug 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605752 Magnusson et al. Aug 2003 B2
6610900 Tanzer Aug 2003 B1
6630054 Graef Oct 2003 B1
6632209 Chmielewski Oct 2003 B1
6632504 Gillespie et al. Oct 2003 B1
6645569 Cramer et al. Nov 2003 B2
6646180 Chmielewski Nov 2003 B1
6648869 Gillies et al. Nov 2003 B1
6648870 Itoh et al. Nov 2003 B2
6648871 Kusibojoska et al. Nov 2003 B2
6649807 Mizutani Nov 2003 B2
6649810 Minato et al. Nov 2003 B1
6657015 Riegel et al. Dec 2003 B1
6657102 Furuya Dec 2003 B2
6667424 Hamilton Dec 2003 B1
6670522 Graef Dec 2003 B1
6673982 Chen Jan 2004 B1
6673983 Graef Jan 2004 B1
6673985 Mizutani Jan 2004 B2
6682515 Mizutani et al. Jan 2004 B1
6682516 Johnston Jan 2004 B2
6689115 Popp et al. Feb 2004 B1
6689934 Dodge, II et al. Feb 2004 B2
6695827 Chen Feb 2004 B2
6700034 Lindsay et al. Mar 2004 B1
6703538 Lassen Mar 2004 B2
6705465 Ling et al. Mar 2004 B2
6706129 Ando et al. Mar 2004 B2
6706943 Onishi Mar 2004 B2
6710224 Chmielewski et al. Mar 2004 B2
6710225 Everett et al. Mar 2004 B1
6716205 Popp et al. Apr 2004 B2
6716441 Roe et al. Apr 2004 B1
6717029 Baker Apr 2004 B2
6726668 Underhill et al. Apr 2004 B2
6726792 Johnson et al. Apr 2004 B1
6730387 Rezai et al. May 2004 B2
6734335 Graef May 2004 B1
6746976 Urankar et al. Jun 2004 B1
6790798 Suzuki et al. Sep 2004 B1
6802834 Melius et al. Oct 2004 B2
6809158 Ikeuchi et al. Oct 2004 B2
6811642 Ochi Nov 2004 B2
6818083 Mcamish et al. Nov 2004 B2
6818166 Edwardson et al. Nov 2004 B2
6830800 Curro et al. Dec 2004 B2
6832905 Delzer et al. Dec 2004 B2
6840929 Kurata Jan 2005 B2
6846374 Popp Jan 2005 B2
6858771 Yoshimasa Feb 2005 B2
6863933 Cramer et al. Mar 2005 B2
6863960 Curro et al. Mar 2005 B2
6867345 Shimoe et al. Mar 2005 B2
6867346 Dopps Mar 2005 B1
6878433 Curro et al. Apr 2005 B2
6878647 Rezai Apr 2005 B1
6880211 Jackson et al. Apr 2005 B2
6891080 Minato May 2005 B2
6904865 Klofta Jun 2005 B2
6911574 Mizutani Jun 2005 B1
6923797 Shinohara et al. Aug 2005 B2
6923926 Walter et al. Aug 2005 B2
6926703 Sugito Aug 2005 B2
6929629 Drevik et al. Aug 2005 B2
6939914 Qin et al. Sep 2005 B2
6946585 Brown Sep 2005 B2
6953451 Berba Oct 2005 B2
6955733 Henry et al. Oct 2005 B2
6962578 Lavon Nov 2005 B1
6962645 Graef Nov 2005 B2
6965058 Raidel Nov 2005 B1
6969781 Graef Nov 2005 B2
6972010 Pesce et al. Dec 2005 B2
6972011 Maeda et al. Dec 2005 B2
6979564 Glucksmann et al. Dec 2005 B2
6982052 Daniels et al. Jan 2006 B2
7001167 Venturino Feb 2006 B2
7014632 Takino et al. Mar 2006 B2
7015370 Watanabe Mar 2006 B2
7037299 Turi et al. May 2006 B2
7037571 Fish et al. May 2006 B2
7048726 Kusagawa et al. May 2006 B2
7056311 Kinoshita Jun 2006 B2
7067711 Kinoshita et al. Jun 2006 B2
7073373 La Fortune Jul 2006 B2
7078583 Kudo Jul 2006 B2
7090665 Ohashi Aug 2006 B2
7108759 You Sep 2006 B2
7108916 Ehrnsperger et al. Sep 2006 B2
7112621 Rohrbaugh et al. Sep 2006 B2
7122713 Komatsu Oct 2006 B2
7125470 Graef Oct 2006 B2
7132585 Kudo Nov 2006 B2
7147628 Drevik Dec 2006 B2
7150729 Shimada Dec 2006 B2
7154019 Mishima et al. Dec 2006 B2
7160281 Leminh et al. Jan 2007 B2
7163528 Christon et al. Jan 2007 B2
7166190 Graef Jan 2007 B2
7169136 Otsubo Jan 2007 B2
7176149 Dutkiewicz Feb 2007 B2
7183360 Daniel et al. Feb 2007 B2
7189888 Wang et al. Mar 2007 B2
7196241 Kinoshita Mar 2007 B2
7199211 Popp et al. Apr 2007 B2
7204830 Mishima Apr 2007 B2
7207978 Takino Apr 2007 B2
7219403 Miyamoto et al. May 2007 B2
7220251 Otsubo et al. May 2007 B2
7241280 Christen et al. Jul 2007 B2
7249570 Roberson Jul 2007 B1
7250481 Jaworek et al. Jul 2007 B2
7252657 Mishima Aug 2007 B2
7265258 Hamilton Sep 2007 B2
7270651 Adams et al. Sep 2007 B2
7285178 Mischler et al. Oct 2007 B2
7306582 Adams et al. Dec 2007 B2
7311696 Christen et al. Dec 2007 B2
7311968 Ehrnsperger et al. Dec 2007 B2
7312372 Miyama Dec 2007 B2
7318820 LaVon Jan 2008 B2
7329244 Otsubo Feb 2008 B2
7329246 Kinoshita Feb 2008 B2
7335810 Yoshimasa et al. Feb 2008 B2
7377914 LaVon May 2008 B2
7429689 Chen Sep 2008 B2
7435244 Schroer et al. Oct 2008 B2
7465373 Graef Dec 2008 B2
7500969 Mishima Mar 2009 B2
7504552 Tamura Mar 2009 B2
7521109 Suzuki et al. Apr 2009 B2
7521587 Busam et al. Apr 2009 B2
7537832 Carlucci et al. May 2009 B2
7547815 Ohashi Jun 2009 B2
7550646 Tamura Jun 2009 B2
7563257 Nakajima Jul 2009 B2
7588561 Kenmochi Sep 2009 B2
7594904 Rosenfeld Sep 2009 B2
7598428 Gustaysson et al. Oct 2009 B2
7625363 Yoshimasa Dec 2009 B2
7641642 Murai et al. Jan 2010 B2
7648490 Kuroda Jan 2010 B2
7652111 Hermeling et al. Jan 2010 B2
7666173 Mishima Feb 2010 B2
7666174 Kawakami et al. Feb 2010 B2
7686790 Rasmussen et al. Mar 2010 B2
7687596 Hermeling et al. Mar 2010 B2
7695461 Rosenfeld Apr 2010 B2
7696402 Nishikawa Apr 2010 B2
7708725 Tamagawa May 2010 B2
7717150 Manabe May 2010 B2
7718844 Olson May 2010 B2
7722587 Suzuki et al. May 2010 B2
7722590 Tsuji May 2010 B2
7727217 Hancock-Cooke Jun 2010 B2
7732039 Chakravarty Jun 2010 B2
7736351 Nigam Jun 2010 B2
7737324 LaVon et al. Jun 2010 B2
7744576 Busam et al. Jun 2010 B2
7744578 Tanio et al. Jun 2010 B2
7750203 Busam et al. Jul 2010 B2
7754822 Daniel et al. Jul 2010 B2
7754940 Brisebois Jul 2010 B2
7759540 Litvay et al. Jul 2010 B2
7763004 Beck Jul 2010 B2
7767875 Olson Aug 2010 B2
7767876 Davis et al. Aug 2010 B2
7767878 Suzuki Aug 2010 B2
7772420 Hermeling et al. Aug 2010 B2
7786341 Schneider et al. Aug 2010 B2
7795492 Vartiainen Sep 2010 B2
7803145 Rosenfeld Sep 2010 B2
7825291 Elfsberg et al. Nov 2010 B2
7838722 Blessing et al. Nov 2010 B2
7850672 Guidotti et al. Dec 2010 B2
7851667 Becker et al. Dec 2010 B2
7855314 Hanao Dec 2010 B2
7857797 Kudo Dec 2010 B2
7858842 Komatsu Dec 2010 B2
7884259 Hanao Feb 2011 B2
7888549 Jansson et al. Feb 2011 B2
7910797 Nandrea Mar 2011 B2
7931636 LaVon et al. Apr 2011 B2
7935207 Zhao May 2011 B2
7935861 Suzuki May 2011 B2
7938813 Wang et al. May 2011 B2
7942858 Francoeur May 2011 B2
7951126 Nanjyo May 2011 B2
7956236 Ponomarenko et al. Jun 2011 B2
7959620 Miura et al. Jun 2011 B2
7982091 Konawa Jul 2011 B2
7993319 Sperl Aug 2011 B2
8017827 Hundorf et al. Sep 2011 B2
8029486 Nakajima Oct 2011 B2
8030536 Ponomarenko et al. Oct 2011 B2
8034991 Bruzadin et al. Oct 2011 B2
8039684 Guidotti et al. Oct 2011 B2
8052454 Polnyi Nov 2011 B2
8057620 Perego et al. Nov 2011 B2
8109915 Shimoe Feb 2012 B2
8124828 Kline et al. Feb 2012 B2
8133212 Takada Mar 2012 B2
8148598 Tsang et al. Apr 2012 B2
8163124 Moriura et al. Apr 2012 B2
8167862 Digiacomantonio et al. May 2012 B2
8173858 Kuroda May 2012 B2
8178747 Venturino et al. May 2012 B2
8183430 Hakansson et al. May 2012 B2
8186296 Brown et al. May 2012 B2
8187239 LaVon et al. May 2012 B2
8187240 Busam et al. May 2012 B2
8198506 Venturino et al. Jun 2012 B2
8211815 Baker Jul 2012 B2
8236715 Schmidt et al. Aug 2012 B2
8237012 Miyama Aug 2012 B2
8246594 Sperl Aug 2012 B2
8258367 Lawson et al. Sep 2012 B2
8268424 Suzuki Sep 2012 B1
8273943 Noda Sep 2012 B2
8282617 Kaneda Oct 2012 B2
8283516 Litvay Oct 2012 B2
8317766 Naoto Nov 2012 B2
8317768 Larsson Nov 2012 B2
8319005 Becker et al. Nov 2012 B2
8343123 Noda Jan 2013 B2
8343296 Blessing et al. Jan 2013 B2
8360977 Marttila Jan 2013 B2
8361047 Mukai Jan 2013 B2
8377025 Nakajima Feb 2013 B2
8450555 Nahn et al. May 2013 B2
8496637 Hundorf et al. Jul 2013 B2
8519213 Venturino et al. Aug 2013 B2
8524355 Nakaoka Sep 2013 B2
8552252 Hundorf et al. Oct 2013 B2
8568566 Jackels et al. Oct 2013 B2
8569571 Kline et al. Oct 2013 B2
8581019 Carlucci et al. Nov 2013 B2
8603058 Sprerl et al. Dec 2013 B2
8604270 Venturino et al. Dec 2013 B2
8633347 Bianco et al. Jan 2014 B2
8664468 Lawson et al. Mar 2014 B2
8674170 Busam et al. Mar 2014 B2
8734417 LaVon et al. May 2014 B2
8766031 Becker et al. Jul 2014 B2
8772570 Kawakami et al. Jul 2014 B2
8784594 Blessing et al. Jul 2014 B2
8785715 Wright et al. Jul 2014 B2
8791318 Becker et al. Jul 2014 B2
8936584 Zander et al. Jan 2015 B2
9056034 Akiyama Jun 2015 B2
9326896 Schaefer et al. May 2016 B2
9375358 Ehrnsperger et al. Jun 2016 B2
20010007065 Blanchard Jul 2001 A1
20010008964 Kurata et al. Jul 2001 A1
20010016548 Kugler et al. Aug 2001 A1
20010020157 Mizutani Sep 2001 A1
20010037101 Allan et al. Nov 2001 A1
20010044610 Kim Nov 2001 A1
20020007167 Dan Jan 2002 A1
20020007169 Graef et al. Jan 2002 A1
20020016122 Curro et al. Feb 2002 A1
20020016579 Stenberg Feb 2002 A1
20020045881 Kusibojoska et al. Apr 2002 A1
20020056516 Ochi May 2002 A1
20020058919 Hamilton et al. May 2002 A1
20020062112 Mizutani May 2002 A1
20020062115 Wada et al. May 2002 A1
20020062116 Mizutani et al. May 2002 A1
20020065498 Ohashi May 2002 A1
20020072471 Ikeuchi et al. Jun 2002 A1
20020082575 Dan Jun 2002 A1
20020087139 Popp et al. Jul 2002 A1
20020095127 Fish et al. Jul 2002 A1
20020102392 Fish et al. Aug 2002 A1
20020115969 Maeda et al. Aug 2002 A1
20020123728 Graef et al. Sep 2002 A1
20020123848 Schneiderman et al. Sep 2002 A1
20020151634 Rohrbaugh et al. Oct 2002 A1
20020151861 Klemp et al. Oct 2002 A1
20020173767 Popp et al. Nov 2002 A1
20020192366 Cramer et al. Dec 2002 A1
20020197695 Glucksmann et al. Dec 2002 A1
20030036741 Abba et al. Feb 2003 A1
20030078553 Wada Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030088223 Vogt et al. May 2003 A1
20030105190 Diehl et al. Jun 2003 A1
20030109839 Costea et al. Jun 2003 A1
20030114811 Christon et al. Jun 2003 A1
20030114816 Underhill Jun 2003 A1
20030114818 Benecke et al. Jun 2003 A1
20030115969 Koyano et al. Jun 2003 A1
20030120235 Boulanger Jun 2003 A1
20030120249 Wulz et al. Jun 2003 A1
20030135176 Delzer et al. Jul 2003 A1
20030135181 Chen et al. Jul 2003 A1
20030135182 Woon et al. Jul 2003 A1
20030139712 Dodge Jul 2003 A1
20030139715 Dodge Jul 2003 A1
20030139718 Graef Jul 2003 A1
20030144642 Dopps Jul 2003 A1
20030144644 Murai et al. Jul 2003 A1
20030148684 Cramer et al. Aug 2003 A1
20030148694 Ghiam Aug 2003 A1
20030158530 Diehl et al. Aug 2003 A1
20030158531 Chmielewski Aug 2003 A1
20030158532 Magee et al. Aug 2003 A1
20030167045 Graef Sep 2003 A1
20030171727 Graef Sep 2003 A1
20030208175 Gross Nov 2003 A1
20030225385 Glaug Dec 2003 A1
20030233082 Kline et al. Dec 2003 A1
20030236512 Baker Dec 2003 A1
20040019338 Litvay et al. Jan 2004 A1
20040022998 Miyamoto et al. Feb 2004 A1
20040033750 Everett et al. Feb 2004 A1
20040063367 Dodge Apr 2004 A1
20040064113 Erdman Apr 2004 A1
20040064115 Arora Apr 2004 A1
20040064116 Arora Apr 2004 A1
20040064125 Justmann et al. Apr 2004 A1
20040065420 Graef Apr 2004 A1
20040082928 Pesce et al. Apr 2004 A1
20040097895 Busam et al. May 2004 A1
20040122411 Hancock-Cooke Jun 2004 A1
20040127131 Potnis Jul 2004 A1
20040127871 Odorzynski Jul 2004 A1
20040127872 Petryk Jul 2004 A1
20040134596 Rosati et al. Jul 2004 A1
20040138633 Mishima et al. Jul 2004 A1
20040147890 Nakahata et al. Jul 2004 A1
20040158212 Ponomarenko et al. Aug 2004 A1
20040162536 Becker et al. Aug 2004 A1
20040167486 Busam et al. Aug 2004 A1
20040167489 Kellenberger et al. Aug 2004 A1
20040170813 Digiacomantonio et al. Sep 2004 A1
20040193127 Hansson Sep 2004 A1
20040214499 Qin et al. Oct 2004 A1
20040215160 Chmielewski Oct 2004 A1
20040220541 Suzuki et al. Nov 2004 A1
20040225271 Datta et al. Nov 2004 A1
20040231065 Daniel et al. Nov 2004 A1
20040236299 Tsang et al. Nov 2004 A1
20040236455 Woltman et al. Nov 2004 A1
20040249355 Tanio et al. Dec 2004 A1
20040260259 Baker Dec 2004 A1
20050001929 Waksmundzki et al. Jan 2005 A1
20050004543 Schroer et al. Jan 2005 A1
20050004548 Otsubo et al. Jan 2005 A1
20050008839 Cramer et al. Jan 2005 A1
20050018258 Miyagi Jan 2005 A1
20050038401 Suzuki et al. Feb 2005 A1
20050070867 Beruda et al. Mar 2005 A1
20050085784 LeMinh et al. Apr 2005 A1
20050090789 Graef Apr 2005 A1
20050101929 Waksmundzki et al. May 2005 A1
20050148258 Chakravarty Jul 2005 A1
20050148961 Sosalla et al. Jul 2005 A1
20050148990 Shimoe Jul 2005 A1
20050154363 Minato Jul 2005 A1
20050159720 Gentilcore Jul 2005 A1
20050165208 Popp et al. Jul 2005 A1
20050171499 Nigam et al. Aug 2005 A1
20050176910 Jaworek et al. Aug 2005 A1
20050203475 LaVon et al. Sep 2005 A1
20050215752 Popp et al. Sep 2005 A1
20050217791 Costello et al. Oct 2005 A1
20050229543 Tippey Oct 2005 A1
20050234414 Liu et al. Oct 2005 A1
20050245684 Daniel et al. Nov 2005 A1
20050288645 LaVon Dec 2005 A1
20050288646 LaVon Dec 2005 A1
20060004334 Schlinz et al. Jan 2006 A1
20060021695 Blessing et al. Feb 2006 A1
20060024433 Blessing et al. Feb 2006 A1
20060069367 Waksmundzki et al. Mar 2006 A1
20060069371 Ohashi et al. Mar 2006 A1
20060073969 Torli et al. Apr 2006 A1
20060081348 Graef Apr 2006 A1
20060129114 Mason et al. Jun 2006 A1
20060142724 Watanabe Jun 2006 A1
20060155057 Hermeling et al. Jul 2006 A1
20060155254 Sanz et al. Jul 2006 A1
20060167215 Hermeling et al. Jul 2006 A1
20060177647 Schmidt et al. Aug 2006 A1
20060178071 Schmidt et al. Aug 2006 A1
20060184146 Suzuki Aug 2006 A1
20060184149 Kasai et al. Aug 2006 A1
20060189954 Kudo Aug 2006 A1
20060202380 Bentley Sep 2006 A1
20060206091 Cole Sep 2006 A1
20060211828 Daniel et al. Sep 2006 A1
20060240229 Ehrnsperger et al. Oct 2006 A1
20060264860 Beck Nov 2006 A1
20060264861 Lavon et al. Nov 2006 A1
20060271010 LaVon et al. Nov 2006 A1
20070049892 Lord et al. Jan 2007 A1
20070027436 Nakagawa et al. Feb 2007 A1
20070043191 Hermeling et al. Feb 2007 A1
20070043330 Lankhof et al. Feb 2007 A1
20070044903 Wisneski et al. Mar 2007 A1
20070049897 LaVon et al. Mar 2007 A1
20070073253 Miyama Mar 2007 A1
20070078422 Glaug Apr 2007 A1
20070088308 Ehrnsperger et al. Apr 2007 A1
20070093164 Nakaoka Apr 2007 A1
20070093767 Carlucci et al. Apr 2007 A1
20070100307 Nomoto May 2007 A1
20070106013 Adachi et al. May 2007 A1
20070118087 Flohr et al. May 2007 A1
20070123834 McDowall et al. May 2007 A1
20070156108 Becker et al. Jul 2007 A1
20070167928 Becker et al. Jul 2007 A1
20070179464 Becker et al. Aug 2007 A1
20070179469 Takahashi et al. Aug 2007 A1
20070191798 Glaug Aug 2007 A1
20070219521 Hird et al. Sep 2007 A1
20070219523 Bruun Sep 2007 A1
20070239125 Erdman et al. Oct 2007 A9
20070244455 Hansson et al. Oct 2007 A1
20070246147 Venturino et al. Oct 2007 A1
20070267763 Kasai Oct 2007 A1
20070275491 Kusakawa Oct 2007 A1
20070255245 Asp et al. Nov 2007 A1
20070282288 Noda Dec 2007 A1
20070282290 Cole Dec 2007 A1
20070282291 Cole Dec 2007 A1
20080027402 Schmidt et al. Jan 2008 A1
20080032035 Schmidt et al. Feb 2008 A1
20080080150 Matsuoka Apr 2008 A1
20080091159 Carlucci et al. Apr 2008 A1
20080093289 Sato Apr 2008 A1
20080119081 Furuta May 2008 A1
20080119810 Kuroda May 2008 A1
20080125735 Busam et al. May 2008 A1
20080132864 Lawson et al. Jun 2008 A1
20080136739 Yamaguchi Jun 2008 A1
20080136877 Kimura Jun 2008 A1
20080154606 Makino Jul 2008 A1
20080208154 Oetjen et al. Aug 2008 A1
20080221538 Zhao Sep 2008 A1
20080221539 Zhao Sep 2008 A1
20080228158 Sue et al. Sep 2008 A1
20080246089 Kudo Oct 2008 A1
20080262459 Kamoto Oct 2008 A1
20080268194 Kim et al. Oct 2008 A1
20080274227 Boatman et al. Nov 2008 A1
20080281287 Marcelo Nov 2008 A1
20080295475 Konawa Dec 2008 A1
20080295713 Norimoto Dec 2008 A1
20080312617 Hundorf et al. Dec 2008 A1
20080312618 Hundorf et al. Dec 2008 A1
20080312619 Hundorf et al. Dec 2008 A1
20080312620 Ashton et al. Dec 2008 A1
20080312621 Hundorf et al. Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20080312623 Hundorf et al. Dec 2008 A1
20080312624 Hundorf et al. Dec 2008 A1
20080312625 Hundorf et al. Dec 2008 A1
20080312627 Takeuchi Dec 2008 A1
20080312628 Hundorf et al. Dec 2008 A1
20090028186 Oji Feb 2009 A1
20090056867 Moriura et al. Mar 2009 A1
20090062760 Wright et al. Mar 2009 A1
20090112173 Bissah Apr 2009 A1
20090112175 Bissah et al. Apr 2009 A1
20090112590 Domoto May 2009 A1
20090136001 Makino Jun 2009 A1
20090157022 Macdonald Jun 2009 A1
20090142401 Tsukita Jul 2009 A1
20090192035 Stueven et al. Jul 2009 A1
20090201878 Nishitani Sep 2009 A1
20090240220 Macdonald Sep 2009 A1
20090058994 Stueven et al. Oct 2009 A1
20090232987 Sakano Oct 2009 A1
20090247977 Takeuchi Oct 2009 A1
20090258994 Stueven et al. Oct 2009 A1
20090270825 Wciorka et al. Oct 2009 A1
20090261777 Ito Nov 2009 A1
20090291473 Hirose Dec 2009 A1
20090297048 Hirose Dec 2009 A1
20090298963 Matsumoto et al. Dec 2009 A1
20090299312 Macdonald Dec 2009 A1
20090306618 Kudo Dec 2009 A1
20090318884 Meyer et al. Dec 2009 A1
20090326494 Uchida et al. Dec 2009 A1
20090326497 Schmidt Dec 2009 A1
20100004614 Ashton et al. Jan 2010 A1
20100017342 Tashiro et al. Jan 2010 A1
20100022560 Sato Jan 2010 A1
20100046155 Kami Mar 2010 A1
20100051166 Hundorf et al. Mar 2010 A1
20100051654 Maeda Mar 2010 A1
20100062165 Suzuki Mar 2010 A1
20100062934 Suzuki Mar 2010 A1
20100063470 Suzuki Mar 2010 A1
20100063814 Saito Mar 2010 A1
20100063944 Nemoto Mar 2010 A1
20100068520 Stueven et al. Mar 2010 A1
20100068954 Sakai Apr 2010 A1
20100075462 Onishi et al. Apr 2010 A1
20100082059 Konawa Apr 2010 A1
20100100065 Bianco Apr 2010 A1
20100104545 Kizawa May 2010 A1
20100104547 Tanaka May 2010 A1
20100115237 Brewer et al. May 2010 A1
20100121296 Noda May 2010 A1
20100013206 Mizobuchi Jun 2010 A1
20100110535 Kawakami Jun 2010 A1
20100119454 Sakahashi Jun 2010 A1
20100119605 Kawakami Jun 2010 A1
20100119743 Nakano Jun 2010 A1
20100131131 Matsunaga Jun 2010 A1
20100131132 Matsunaga Jun 2010 A1
20100131297 Yamamoto Jun 2010 A1
20100137773 Gross Jun 2010 A1
20100137823 Corneliusson Jun 2010 A1
20100198179 Noda Aug 2010 A1
20100228210 Busam et al. Sep 2010 A1
20100241096 LaVon et al. Sep 2010 A1
20100241097 Nigam et al. Sep 2010 A1
20100262099 Klofta Oct 2010 A1
20100262104 Carlucci et al. Oct 2010 A1
20100274208 Gabrielii Oct 2010 A1
20100274210 Noda Oct 2010 A1
20100305537 Ashton et al. Dec 2010 A1
20100312208 Bond et al. Dec 2010 A1
20100324521 Mukai Dec 2010 A1
20100324523 Mukai Dec 2010 A1
20110034603 Fujino et al. Feb 2011 A1
20110041999 Hundorf et al. Feb 2011 A1
20110060301 Nishikawa et al. Mar 2011 A1
20110060303 Bissah Mar 2011 A1
20110066127 Kuwano Mar 2011 A1
20110071486 Harada Mar 2011 A1
20110092944 Sagisaka Apr 2011 A1
20110112498 Nhan et al. May 2011 A1
20110125120 Nishitani May 2011 A1
20110130732 Jackels et al. Jun 2011 A1
20110130737 Sagisaka Jun 2011 A1
20110137276 Yoshikawa Jun 2011 A1
20110144602 Long Jun 2011 A1
20110144604 Noda Jun 2011 A1
20110144606 Nandrea Jun 2011 A1
20110152813 Ellingson Jun 2011 A1
20110166540 Yang et al. Jul 2011 A1
20110172630 Nomoto Jul 2011 A1
20110174430 Zhao Jul 2011 A1
20110196330 Hammons et al. Aug 2011 A1
20110208147 Kawakami et al. Aug 2011 A1
20110250413 Lu et al. Oct 2011 A1
20110268932 Catalan et al. Nov 2011 A1
20110274834 Brown et al. Nov 2011 A1
20110288513 Hundorf et al. Nov 2011 A1
20110288514 Kuroda Nov 2011 A1
20110295222 Becker et al. Dec 2011 A1
20110319846 Rinnert et al. Dec 2011 A1
20110319848 McKiernan et al. Dec 2011 A1
20110319851 Kudo Dec 2011 A1
20120004633 Marcelo Jan 2012 A1
20120016326 Brennan et al. Jan 2012 A1
20120022479 Cotton Jan 2012 A1
20120035566 Sagisaka Feb 2012 A1
20120035576 Ichikawa Feb 2012 A1
20120064792 Bauduin Mar 2012 A1
20120071848 Zhang Mar 2012 A1
20120165771 Ruman et al. Jun 2012 A1
20120165776 Rinnert et al. Jun 2012 A1
20120175056 Tsang Jul 2012 A1
20120184934 Venturino Jul 2012 A1
20120220972 Kawamura et al. Aug 2012 A1
20120232514 Baker Sep 2012 A1
20120238977 Oku Sep 2012 A1
20120253306 Otsubo Oct 2012 A1
20120256750 Novak Oct 2012 A1
20120271262 Venturino Oct 2012 A1
20120170779 Rosati et al. Dec 2012 A1
20120312491 Jackels et al. Dec 2012 A1
20120316046 Jackels et al. Dec 2012 A1
20120316523 Hippe et al. Dec 2012 A1
20120316526 Rosati et al. Dec 2012 A1
20120316527 Rosati et al. Dec 2012 A1
20120316528 Kreuzer et al. Dec 2012 A1
20120316529 Kreuzer Dec 2012 A1
20120316530 Armstrong-Ostle Dec 2012 A1
20120323195 Ehrnsperger et al. Dec 2012 A1
20120323201 Bissah Dec 2012 A1
20120323202 Bissah Dec 2012 A1
20130035656 Moriya et al. Feb 2013 A1
20130041334 Prioleau Feb 2013 A1
20130053808 Hill Feb 2013 A1
20130178811 Kikuchi et al. Jul 2013 A1
20130211354 Tsuji et al. Aug 2013 A1
20130211358 Kikkawa et al. Aug 2013 A1
20130218115 Katsuragawa et al. Aug 2013 A1
20130226119 Katsuragawa et al. Aug 2013 A1
20130226120 Van De Maele Aug 2013 A1
20130310784 Bryant et al. Nov 2013 A1
20140005622 Wirtz et al. Jan 2014 A1
20140005623 Wirtz et al. Jan 2014 A1
20140027066 Jackels et al. Jan 2014 A1
20140039437 Van De Maele Feb 2014 A1
20140102183 Agami et al. Apr 2014 A1
20140121623 Kirby et al. May 2014 A1
20140121625 Kirby et al. May 2014 A1
20140135726 Busam et al. May 2014 A1
20140142531 Sasayama et al. May 2014 A1
20140163500 Roe et al. Jun 2014 A1
20140163501 Ehrnsperger Jun 2014 A1
20140163502 Arizti et al. Jun 2014 A1
20140163503 Arizti et al. Jun 2014 A1
20140163504 Bianchi Jun 2014 A1
20140163506 Roe et al. Jun 2014 A1
20140163511 Roe et al. Jun 2014 A1
20140171893 Lawson et al. Jun 2014 A1
20140299815 Ueda et al. Oct 2014 A1
20140318694 Blessing et al. Oct 2014 A1
20140324007 Hundorf et al. Oct 2014 A1
20140324008 Hundorf et al. Oct 2014 A1
20140371701 Bianchi et al. Dec 2014 A1
20150065975 Roe et al. Mar 2015 A1
20150065981 Roe et al. Mar 2015 A1
20150065986 Blessing et al. Mar 2015 A1
20150073366 Ehrnsperger Mar 2015 A1
20150080821 Peri Mar 2015 A1
20150080837 Rosati et al. Mar 2015 A1
20150080839 Trapp et al. Mar 2015 A1
20150173967 Kreuzer et al. Jun 2015 A1
20150173968 Joseph Jun 2015 A1
20150250662 Isele et al. Sep 2015 A1
20150250663 Wagner et al. Sep 2015 A1
20150273433 Nakatsuru et al. Oct 2015 A1
20150342796 Bianchi Dec 2015 A1
Foreign Referenced Citations (524)
Number Date Country
2001370 Apr 1990 CA
2291997 Jun 2000 CA
2308961 Nov 2000 CA
2487027 Dec 2003 CA
2561521 Mar 2007 CA
2630713 Nov 2008 CA
2636673 Jan 2009 CA
2712563 Aug 2010 CA
2702001 Oct 2010 CA
1238171 Dec 1999 CN
2362468 Feb 2000 CN
1371671 Feb 2001 CN
2527254 Dec 2002 CN
2535020 Feb 2003 CN
2548609 May 2003 CN
1539391 Oct 2004 CN
1939242 Apr 2007 CN
101292930 Oct 2008 CN
201263750 Jul 2009 CN
201591689 Sep 2010 CN
201855366 Jun 2011 CN
3205931 Sep 1983 DE
3608114 Sep 1987 DE
19732499 Feb 1999 DE
10204937 Aug 2003 DE
083022 Jul 1983 EP
149880 Jul 1985 EP
0149880 Jul 1985 EP
203289 Dec 1986 EP
0203289 Dec 1986 EP
0206208 Dec 1986 EP
209561 Jan 1987 EP
297411 Jan 1989 EP
304957 Mar 1989 EP
374542 Jun 1990 EP
394274 Oct 1990 EP
0403832 Dec 1990 EP
481322 Apr 1992 EP
530438 Mar 1993 EP
547847 Jun 1993 EP
555346 Aug 1993 EP
559476 Sep 1993 EP
591647 Apr 1994 EP
597273 May 1994 EP
601610 Jun 1994 EP
632068 Jan 1995 EP
0640330 Mar 1995 EP
0668066 Sep 1995 EP
685214 Dec 1995 EP
687453 Dec 1995 EP
0689817 Jan 1996 EP
0691133 Jan 1996 EP
0700673 Mar 1996 EP
0394274 Jul 1996 EP
724418 Aug 1996 EP
725613 Aug 1996 EP
725615 Aug 1996 EP
725616 Aug 1996 EP
758543 Feb 1997 EP
0761194 Mar 1997 EP
769284 Apr 1997 EP
0781537 Jul 1997 EP
783877 Jul 1997 EP
787472 Aug 1997 EP
788874 Aug 1997 EP
796068 Sep 1997 EP
799004 Oct 1997 EP
822794 Feb 1998 EP
826351 Mar 1998 EP
844861 Jun 1998 EP
0737055 Aug 1998 EP
863733 Sep 1998 EP
971751 Sep 1998 EP
0875224 Nov 1998 EP
875224 Nov 1998 EP
880955 Dec 1998 EP
891758 Jan 1999 EP
0893115 Jan 1999 EP
0724418 Mar 1999 EP
0725613 Mar 1999 EP
0725616 Mar 1999 EP
904755 Mar 1999 EP
0916327 May 1999 EP
925769 Jun 1999 EP
933074 Aug 1999 EP
937736 Aug 1999 EP
941157 Sep 1999 EP
947549 Oct 1999 EP
951887 Oct 1999 EP
0951890 Oct 1999 EP
2295493 Oct 1999 EP
2305749 Oct 1999 EP
2330152 Oct 1999 EP
953326 Nov 1999 EP
0978263 Feb 2000 EP
985397 Mar 2000 EP
0988846 Mar 2000 EP
0778762 Apr 2000 EP
1005847 Jun 2000 EP
1008333 Jun 2000 EP
1013252 Jun 2000 EP
1018999 Jul 2000 EP
1019002 Jul 2000 EP
1019003 Jul 2000 EP
1022008 Jul 2000 EP
1023884 Aug 2000 EP
1053729 Nov 2000 EP
1059072 Dec 2000 EP
1063954 Jan 2001 EP
1071388 Jan 2001 EP
1078618 Feb 2001 EP
1088537 Apr 2001 EP
0796068 May 2001 EP
752892 Jul 2001 EP
1116479 Jul 2001 EP
0790839 Aug 2001 EP
1132069 Sep 2001 EP
1173128 Jan 2002 EP
1175194 Jan 2002 EP
1184018 Mar 2002 EP
1192312 Apr 2002 EP
1196122 Apr 2002 EP
1199059 Apr 2002 EP
1199327 Apr 2002 EP
1208824 May 2002 EP
0793469 Jun 2002 EP
1210925 Jun 2002 EP
1224922 Jul 2002 EP
1225857 Jul 2002 EP
1253231 Oct 2002 EP
1262531 Dec 2002 EP
1263374 Dec 2002 EP
0737056 Jan 2003 EP
1275358 Jan 2003 EP
1275361 Jan 2003 EP
1293187 Mar 2003 EP
1304986 May 2003 EP
1332742 Aug 2003 EP
1339368 Sep 2003 EP
1374817 Jan 2004 EP
1388334 Feb 2004 EP
1402863 Mar 2004 EP
962208 Aug 2004 EP
1447066 Aug 2004 EP
1447067 Aug 2004 EP
1460987 Sep 2004 EP
963749 Nov 2004 EP
1495739 Jan 2005 EP
1524955 Apr 2005 EP
1920743 Apr 2005 EP
1541103 Jun 2005 EP
1551344 Jul 2005 EP
1586289 Oct 2005 EP
1588723 Oct 2005 EP
1605882 Dec 2005 EP
1609448 Dec 2005 EP
1621166 Feb 2006 EP
1621167 Feb 2006 EP
1632206 Mar 2006 EP
1642556 Apr 2006 EP
1403419 May 2006 EP
1656162 May 2006 EP
1669046 Jun 2006 EP
1688114 Aug 2006 EP
2314265 Aug 2006 EP
1723939 Nov 2006 EP
1738727 Jan 2007 EP
1754461 Feb 2007 EP
1787611 May 2007 EP
1813238 Aug 2007 EP
2008626 Dec 2008 EP
2055279 May 2009 EP
2093049 Aug 2009 EP
2130522 Dec 2009 EP
1621165 Apr 2010 EP
2444046 Apr 2012 EP
2532328 Dec 2012 EP
2532329 Dec 2012 EP
2532332 Dec 2012 EP
2656826 Oct 2013 EP
2679210 Jan 2014 EP
2740449 Jun 2014 EP
2740450 Jun 2014 EP
2740452 Jun 2014 EP
2213491 Aug 2004 ES
2566631 Jan 1986 FR
2583377 Dec 1986 FR
2612770 Sep 1988 FR
2810234 Dec 2001 FR
1333081 Aug 1971 GB
1307441 Feb 1973 GB
1513055 Jun 1978 GB
2101468 Jan 1983 GB
2170108 Jul 1986 GB
2262873 Jul 1993 GB
2288540 Jun 1994 GB
2354449 Mar 2001 GB
2452260 Oct 2007 GB
851769 Nov 1985 GR
0984KOL1999 Oct 2005 IN
212479 Mar 2007 IN
208543 Aug 2007 IN
0980MUM2009 Jun 2009 IN
5572928 May 1980 JP
598322 Jan 1984 JP
630148323 Sep 1988 JP
2107250 Apr 1990 JP
03224481 Oct 1991 JP
04122256 Apr 1992 JP
04341368 Nov 1992 JP
06191505 Jul 1994 JP
06269475 Sep 1994 JP
07124193 May 1995 JP
08215629 Aug 1996 JP
H10295728 Nov 1998 JP
10328232 Dec 1998 JP
11033056 Feb 1999 JP
11318980 Nov 1999 JP
11320742 Nov 1999 JP
2000232985 Aug 2000 JP
2000238161 Sep 2000 JP
2001037810 Feb 2001 JP
2001046435 Feb 2001 JP
2001120597 May 2001 JP
2001158074 Jun 2001 JP
2001178768 Jul 2001 JP
2001198157 Jul 2001 JP
2001224626 Aug 2001 JP
2001277394 Oct 2001 JP
2001301857 Oct 2001 JP
03420481 Nov 2001 JP
2001321397 Nov 2001 JP
2001353174 Dec 2001 JP
2002052042 Feb 2002 JP
2002065718 Mar 2002 JP
2002113800 Apr 2002 JP
2002165832 Jun 2002 JP
2002165836 Jun 2002 JP
2002178429 Jun 2002 JP
2002272769 Sep 2002 JP
2002320641 Nov 2002 JP
2002325792 Nov 2002 JP
2002325799 Nov 2002 JP
2002369841 Dec 2002 JP
2003126140 May 2003 JP
2003153955 May 2003 JP
2003265523 Sep 2003 JP
2003265524 Sep 2003 JP
2003275237 Sep 2003 JP
2003325563 Nov 2003 JP
2004089269 Mar 2004 JP
03566012 Jun 2004 JP
03568146 Jun 2004 JP
03616077 Nov 2004 JP
2004337314 Dec 2004 JP
2004337385 Dec 2004 JP
2004350864 Dec 2004 JP
03640475 Jan 2005 JP
2005000312 Jan 2005 JP
03660816 Mar 2005 JP
03676219 May 2005 JP
2005118339 May 2005 JP
03688403 Jun 2005 JP
03705943 Aug 2005 JP
03719819 Sep 2005 JP
03724963 Sep 2005 JP
03725008 Sep 2005 JP
03737376 Nov 2005 JP
2006014792 Jan 2006 JP
03781617 Mar 2006 JP
2006110329 Apr 2006 JP
2006513824 Apr 2006 JP
03801449 May 2006 JP
2006116036 May 2006 JP
03850102 Sep 2006 JP
03850207 Sep 2006 JP
03856941 Sep 2006 JP
03868628 Oct 2006 JP
03874499 Nov 2006 JP
03877702 Nov 2006 JP
2006325639 Dec 2006 JP
2006346021 Dec 2006 JP
03904356 Jan 2007 JP
2007007455 Jan 2007 JP
2007007456 Jan 2007 JP
03926042 Mar 2007 JP
03934855 Mar 2007 JP
2007089906 Apr 2007 JP
2007105198 Apr 2007 JP
2007130504 May 2007 JP
2007152033 Jun 2007 JP
03986210 Jul 2007 JP
03986222 Jul 2007 JP
2007167453 Jul 2007 JP
2007175515 Jul 2007 JP
2007195665 Aug 2007 JP
04035341 Nov 2007 JP
04058281 Dec 2007 JP
04061086 Dec 2007 JP
04092319 Mar 2008 JP
04124322 May 2008 JP
04148594 Jul 2008 JP
04148620 Jul 2008 JP
04162609 Aug 2008 JP
04162637 Aug 2008 JP
04166923 Aug 2008 JP
04167406 Aug 2008 JP
04173723 Aug 2008 JP
04190675 Sep 2008 JP
04190693 Sep 2008 JP
04208338 Oct 2008 JP
4177770 Nov 2008 JP
04230971 Dec 2008 JP
04261593 Feb 2009 JP
04322228 Jun 2009 JP
04392936 Oct 2009 JP
04458702 Feb 2010 JP
04459013 Feb 2010 JP
04481325 Mar 2010 JP
04492957 Apr 2010 JP
2010136917 Jun 2010 JP
2010136973 Jun 2010 JP
04540563 Jul 2010 JP
04587947 Sep 2010 JP
2010194124 Sep 2010 JP
2010194218 Sep 2010 JP
2010201093 Sep 2010 JP
2010221067 Oct 2010 JP
4577766 Nov 2010 JP
04620299 Nov 2010 JP
04627472 Nov 2010 JP
04627473 Nov 2010 JP
04638087 Dec 2010 JP
04652626 Dec 2010 JP
2010273842 Dec 2010 JP
2010284418 Dec 2010 JP
2011000480 Jan 2011 JP
2011030700 Feb 2011 JP
04693574 Mar 2011 JP
2011067484 Apr 2011 JP
2011072720 Apr 2011 JP
2011104014 Jun 2011 JP
2011104122 Jun 2011 JP
2011120661 Jun 2011 JP
2011125360 Jun 2011 JP
2011125537 Jun 2011 JP
04776516 Jul 2011 JP
2011130797 Jul 2011 JP
2011130799 Jul 2011 JP
2011156032 Aug 2011 JP
2011156070 Aug 2011 JP
2011156254 Aug 2011 JP
04824882 Sep 2011 JP
4850272 Oct 2011 JP
04855533 Nov 2011 JP
2011239858 Dec 2011 JP
2011240050 Dec 2011 JP
04931572 Feb 2012 JP
04937225 Mar 2012 JP
04953618 Mar 2012 JP
04969437 Apr 2012 JP
04969640 Apr 2012 JP
4971491 Apr 2012 JP
04974524 Apr 2012 JP
04979780 Apr 2012 JP
05016020 Jun 2012 JP
05027364 Jun 2012 JP
2012115378 Jun 2012 JP
05031082 Jul 2012 JP
05042351 Jul 2012 JP
05043569 Jul 2012 JP
05043591 Jul 2012 JP
05046488 Jul 2012 JP
2012125452 Jul 2012 JP
2012125625 Jul 2012 JP
05053765 Aug 2012 JP
05070275 Aug 2012 JP
05079931 Sep 2012 JP
05080189 Sep 2012 JP
05084442 Sep 2012 JP
05084476 Sep 2012 JP
5085770 Sep 2012 JP
05089269 Sep 2012 JP
2012179286 Sep 2012 JP
05113146 Oct 2012 JP
05129536 Nov 2012 JP
2012223230 Nov 2012 JP
2012223231 Nov 2012 JP
05105884 Dec 2012 JP
5715806 May 2015 JP
20010005620 Jan 2001 KR
20020035634 May 2002 KR
20080028771 Apr 2008 KR
9400916 Mar 1994 SE
9704893 Dec 1997 SE
WO9015830 Dec 1990 WO
WO9219198 Nov 1992 WO
WO9321237 Oct 1993 WO
WO9321879 Nov 1993 WO
WO9510996 Apr 1995 WO
WO9511652 May 1995 WO
WO9516746 Jun 1995 WO
WO9514453 Jun 1995 WO
WO9515139 Jun 1995 WO
WO9516424 Jun 1995 WO
WO9519753 Jul 1995 WO
WO9521596 Aug 1995 WO
WO9524173 Sep 1995 WO
WO9526209 Oct 1995 WO
WO9529657 Nov 1995 WO
WO9534329 Dec 1995 WO
WO9532698 Dec 1995 WO
WO9616624 Jun 1996 WO
WO9619173 Jun 1996 WO
WO96029967 Oct 1996 WO
WO9711659 Apr 1997 WO
WO9717922 May 1997 WO
WO9724096 Jul 1997 WO
WO9816179 Apr 1998 WO
WO9816180 Apr 1998 WO
WO9843684 Oct 1998 WO
WO9913813 Mar 1999 WO
WO9934841 Jul 1999 WO
WO9951178 Oct 1999 WO
WO200000235 Jan 2000 WO
WO200032145 Jun 2000 WO
WO200059430 Oct 2000 WO
WO200115647 Mar 2001 WO
WO200126596 Apr 2001 WO
WO0135886 May 2001 WO
WO200207663 Jan 2002 WO
WO200232962 Apr 2002 WO
WO2002064877 Aug 2002 WO
WO2002067809 Sep 2002 WO
WO2003009794 Feb 2003 WO
WO2003039402 May 2003 WO
WO2003053297 Jul 2003 WO
WO03079946 Oct 2003 WO
WO03101622 Dec 2003 WO
WO2003105738 Dec 2003 WO
WO2004021946 Mar 2004 WO
WO2004049995 Jun 2004 WO
WO2004071539 Aug 2004 WO
WO2004084784 Oct 2004 WO
WO2004105664 Dec 2004 WO
WO2005018694 Mar 2005 WO
WO2005087164 Sep 2005 WO
WO2005102237 Nov 2005 WO
WO2006104024 May 2006 WO
WO2006059922 Jun 2006 WO
WO2006062258 Jun 2006 WO
WO2006066029 Jun 2006 WO
WO2006083584 Aug 2006 WO
WO2006134904 Dec 2006 WO
WO2006134906 Dec 2006 WO
WO2007000315 Jan 2007 WO
WO2007046052 Apr 2007 WO
WO2007047598 Apr 2007 WO
WO2007049725 May 2007 WO
WO2007061035 May 2007 WO
WO2007141744 Dec 2007 WO
WO2007142145 Dec 2007 WO
WO2007148502 Dec 2007 WO
WO2008018922 Feb 2008 WO
WO2008065945 Jun 2008 WO
WO2008146749 Dec 2008 WO
WO2008155699 Dec 2008 WO
WO2009004941 Jan 2009 WO
WO2009005431 Jan 2009 WO
WO2009139248 Jan 2009 WO
WO2009139255 Jan 2009 WO
WO2009041223 Apr 2009 WO
WO2009096108 Aug 2009 WO
WO2009107435 Sep 2009 WO
WO2009122830 Oct 2009 WO
WO2009152018 Dec 2009 WO
WO2009155264 Dec 2009 WO
WO2009155265 Dec 2009 WO
WO2010071508 Jun 2010 WO
WO2010074319 Jul 2010 WO
WO2010107096 Sep 2010 WO
WO2010114052 Oct 2010 WO
WO2010117015 Oct 2010 WO
WO2010118272 Oct 2010 WO
WO201153044 May 2011 WO
WO2011118725 Sep 2011 WO
WO2011118842 Sep 2011 WO
WO2011145653 Nov 2011 WO
WO2011150955 Dec 2011 WO
WO2011163582 Dec 2011 WO
WO2012002252 Jan 2012 WO
WO2012014436 Feb 2012 WO
WO2012052172 Apr 2012 WO
WO2012042908 Apr 2012 WO
WO2012043077 Apr 2012 WO
WO2012043078 Apr 2012 WO
WO2012043082 May 2012 WO
WO2012067216 May 2012 WO
WO2012073499 Jun 2012 WO
WO2012074466 Jun 2012 WO
WO201291016 Jul 2012 WO
WO2012090508 Jul 2012 WO
WO2012101934 Aug 2012 WO
WO2012102034 Aug 2012 WO
WO2012117764 Sep 2012 WO
WO2012117824 Sep 2012 WO
WO2012132460 Oct 2012 WO
WO2012170778 Dec 2012 WO
WO2012170779 Dec 2012 WO
WO2012170781 Dec 2012 WO
WO2012170783 Dec 2012 WO
WO2012170808 Dec 2012 WO
WO2012174026 Dec 2012 WO
WO2012177400 Dec 2012 WO
WO2013001788 Jan 2013 WO
WO2013046701 Apr 2013 WO
WO2013056978 Apr 2013 WO
WO2013060733 May 2013 WO
WO2013077074 May 2013 WO
WO2014073636 May 2014 WO
WO2014078247 May 2014 WO
WO 2014093310 Jun 2014 WO
WO2015095514 Jun 2015 WO
WO2016040091 Mar 2016 WO
Related Publications (1)
Number Date Country
20170312145 A1 Nov 2017 US