Information
-
Patent Grant
-
6282918
-
Patent Number
6,282,918
-
Date Filed
Friday, January 21, 200025 years ago
-
Date Issued
Tuesday, September 4, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Doerrler; William
- Jones; Melvin
Agents
-
CPC
-
US Classifications
Field of Search
US
- 062 494
- 062 476
- 062 490
- 062 493
-
International Classifications
-
Abstract
In an absorption refrigerating apparatus (18) the pump pipe (42) is made of a material, which is more corrosion resistant to the working medium than the material of the rest of the apparatus. In order to prevent galvanic corrosion in the boiler the pump pipe (42) can be electrically insulated (72, 74) from the rest of the boiler.
Description
The invention refers to an absorption refrigerating apparatus of steel, where a refrigerant by means of an absorption liquid, in which the refrigerant is dissolvable, circulates through in turn a boiler where refrigerant is liberated from the absorption liquid, a condenser where the refrigerant condenses, an evaporator where the refrigerant evaporates, an absorber where the refrigerant is absorbed by the absorption liquid, and an absorber vessel for collecting the absorption liquid, from which absorber vessel the absorption liquid circulates back to the boiler, where the absorption liquid is heated in a so-called pump pipe so that the refrigerant is again liberated from the absorption liquid.
Such a refrigerating apparatus is known through e.g. EP patent No. 366 633.
Absorption refrigerating apparatuses are usually made of soft carbon steel. The reason for this is that the cold working qualities and weldability are very good at the soft carbon steel. In order to avoid corrosion in the apparatus, where the absorption liquid is water and the refrigerant ammonia, a small amount of sodium chromate (Na
2
CrO
4
) is added to the water-ammonia solution. A thin film consisting of chrome and iron oxides (Cr
2
O
3
and Fe
2
O
4
)is built up on the surface of the steel tubes and protects the apparatus from corrosion. If a crack would appear in the protecting film, more chromate is immediately taken from the solution to repair the crack.
Such hexavalent chrome combinations are, however, poisonous for human beings and possibly cancerogenic, and it is therefore desirable to exclude these substances from the apparatus.
If on the other hand a corrosion inhibitor is missing in the apparatus magnetite is formed under development of hydrogen gas according to the following sum reaction:
3Fe+4H
2
O→Fe
3
O
4
+4H
2(g)
The reaction velocity at room temperature is very low, but becomes considerable at temperatures exceeding 100° C. This results in that the apparatus will cease to work within very short time owing to corrosion products which are deposited and obstruct the pump pipe, which has the narrowest cross section for the circulating liquid.
The object of the invention is to bring about an absorption refrigerating apparatus of the kind introductorily set forth, where the construction is such, that corrosion, and by that obstruction of the pump pipe is suppressed.
This object is reached by the apparatus according to the invention thereby that the pump pipe is made of a material, which is more corrosion resistant to the media in the apparatus than the steel material in at least the condenser, evaporator, absorber and absorber vessel, and that in the boiler there are no joints between different materials, which can cause galvanic corrosion.
An embodiment of an absorption refrigerating apparatus according to the invention is described below in connection with the enclosed drawing, in which
FIG. 1
shows a schematic picture of an absorption refrigerating apparatus and
FIG. 2
shows an enlargement of a boiler of the apparatus.
By
10
is designated a refrigerator cabinet containing a refrigerated compartment
12
, which is closable by a door
14
. The compartment
12
is refrigerated by the evaporator
16
of an absorption refrigerating apparatus arranged behind the cabinet
10
.
The refrigerating apparatus
18
, which is of a known kind, e.g. through FIG. 1 of the previously mentioned EP patent No. 366 633, shows an absorber vessel
32
containing an absorption liquid, such as water, in which a refrigerant, such as ammonia, is dissolved. This solution, which is relatively rich in refrigerant, is called a rich solution. The rich solution exits from the absorber vessel
32
through a pipe
34
and enters a boiler
36
in which the rich solution is supplied with heat from an energy source, e.g. an electric heating cartridge
38
. Refrigerant vapour boils off from the rich solution which thereby becomes a so-called weak solution. The mixture of refrigerant vapour and weak solution is expelled through a pump pipe
42
, the refrigerant vapour continuing to a separator
44
, which separates out absorption liquid accompanying the refrigerant vapour and the weak solution being collected in an outer pipe
46
of the boiler
36
to a certain level
48
.
The refrigerant vapour flows from the separator
44
into a condenser
50
, where heat is transferred from the vapour to the surrounding air so that the vapour condenses. The refrigerant condensate leaves the condenser through a pipe
52
and enters the evaporator
16
, where the condensate meets a flow of an inert gas, such as hydrogen gas, and is vaporized in an outer pipe
54
in the inert gas during absorption of heat from the chamber
12
. The inert gas is supplied to the evaporator
16
through an inner pipe
56
which is located within the outer pipe
54
and the mixture of inert gas and vaporized refrigerant exits from the evaporator
16
through the pipe
54
and continues via a pipe
58
to the absorber vessel
32
.
From the absorber vessel
32
, the mixture of refrigerant vapour and inert gas is elevated through an absorber
60
and meets the weak solution, which, driven by the level
48
, comes from the pipe
46
via a pipe
62
into the upper part of the absorber
60
at
64
. While flowing downwards through the absorber
60
, the weak solution absorbs refrigerant vapour flowing upwards during rejecting of heat to the surrounding air, the weak solution thereby becoming a rich solution again before it flows down into the absorber vessel
32
at
66
. The elevating inert gas continues from the absorber
60
to the pipe
56
and enters into the evaporator
16
and permits the refrigerant condensate to vaporize in it.
In order to prevent refrigerant vapour, which possibly has not condensed in the condenser, from collecting in the condenser and blocking the outflow of refrigerant condensate from the condenser, a vent pipe
68
is arranged between the outlet of the condenser
50
and the pipe
58
, which pipe
68
leads gaseous medium to the absorber vessel
32
.
The pump pipe
42
is made of another material than the rest of the apparatus, which material resists corrosion by the ammonia-water solution better than the rest of the apparatus. This material can e.g. be stainless steel. The boiler
36
and the rest of the apparatus
18
are made of a soft carbon steel.
By the different materials the pump pipe
42
and the rest of the apparatus will get different electrochemical potential, which can result in so-called galvanic corrosion. In order to prevent such galvanic corrosion the pump pipe
42
is electrically insulated from the boiler
36
and the rest of the apparatus
18
by at its lower end being connected with the pipe
34
by an electrically insulating bushing
72
and at its upper end being fixed laterally in the pipe
46
by an electrically insulating element
74
.
The boiler
36
passes at its lower end into a heat exchanger
82
, where rich solution on its way to the boiler
36
through the pipe
34
is heated by weak solution, which is on its way from the boiler
36
to the absorber
60
.
According to a variant of the invention the pipe
34
is made of the same stainless steel as the pump pipe
42
and welded together with it. Electrically insulating elements keep the pipes
34
and
42
at a distance from the pipe
46
, so that galvanic corrosion does not arise in the boiler. At this joints between different materials will occur at two places, viz. on one hand at
84
, where the pipe
34
is welded together with the pipe
46
and on the other hand at
86
, where the pipe
34
is welded together with the absorber vessel
32
. At these two places the corrosion is not as problematic as in the boiler, as the temperature here is substantially lower than in the boiler.
According to a further variant of the invention as well the boiler
36
as the heat exchanger
82
with the pipes
46
and
34
are made of the same stainless steel as the pump pipe
42
. At this no measures have to be taken to prevent galvanic corrosion in the boiler. At this joints between different materials will occur at three places, viz., besides at
86
, also at
88
, where the pipe
62
is welded together with the pipe
46
, and at
90
, where the boiler
36
is welded together with the pipe, which leads to the separator
44
. At the joints
86
and
88
the corrosion is not as problematic as in the boiler as a consequence of the temperature here being substantially lower than in the boiler. At the joint
90
the concentration of water is low and the corrosion therefore becomes less problematic here than in the rest of the boiler.
The improved protection against corrosion which is obtained by the apparatus according to the invention can at need be made more complete by a suitable, more environmentally friendly corrosion inhibitor, which is added to the media in the apparatus and which does not have to be as effective against corrosion as the sodium chromate mentioned in the introduction.
Claims
- 1. Absorption refrigerating apparatus (18) of steel, wherea dissolvable refrigerant by means of an absorption liquid, circulates through in turn a boiler (36) where refrigerant is liberated from the absorption liquid; a condenser (50) where the refrigerant condenses; an evaporator (16) where the refrigerant evaporates; an absorber (60) where the refrigerant is absorbed by the absorption liquid, and an absorber vessel (32) for collecting the absorption liquid, from which absorber vessel (32) the absorption liquid circulates back to the boiler (36), where the absorption liquid is heated in a pump pipe (42) so that the refrigerant is again liberated from the absorption liquid, characterized in that the pump pipe (42) is made of a more corrosion resistant material, than the steel material used in the condenser (50), the evaporator (16), the absorber (60) and in the absorber vessel (32), and that in the boiler (36) there are no joints between different materials, which can cause galvanic corrosion.
- 2. Apparatus according to claim 1, characterized by a pipe (34), which conducts refrigerant dissolved in the absorption liquid from the absorber vessel (32) through a heat exchanger (82) to the pump pipe (42), is made of the same material as the pump pipe (42).
- 3. Apparatus according to claim 2, characterized in that the boiler (36) and the rest of the heat exchanger (82) are made of the same material as the pump pipe (42).
- 4. Apparatus according to claim 1, characterized in that the pump pipe (42) alone is made of the more corrosion resistant material, galvanic corrosion being prevented by the pump pipe (42) being electrically insulated from the rest of the boiler.
- 5. Apparatus according to claim 4, characterized in that the electrical insulation is constituted by a bushing (72) of an electrically insulating material.
- 6. Apparatus according to claim 5, characterized in that the pipe (42) is kept on place in the boiler (36) by a further electrically insulating element (74).
Priority Claims (1)
Number |
Date |
Country |
Kind |
9900301 |
Jan 1999 |
SE |
|
US Referenced Citations (4)