The invention relates to the field of controlling of field effect transistor (FET) devices and more specifically to the field of controlling a gate terminal of the FET device using charge pumping.
In many digital circuits, field effect transistor (FET) devices are used in order to control propagation of electrical signals. These FET devices are typically fabricated using PMOS or NMOS processes. Control of these FET devices is achieved by varying of a potential that is applied to the gate terminal thereof. Typically, for a FET disposed between two electrical power rails, the potential that is applied to the gate terminal varies between these two rails in order to control propagation of current between the drain and source terminals thereof.
FET devices do not significantly begin to conduct current between their drain and source terminals until a threshold voltage (Vt) for the device is reached, and surpassed. Thus, for a rising potential provided to the gate terminal of the FET, the FET does not conduct until the rising potential surpasses Vt for the FET device. Similarly, for a falling signal that is applied to the gate terminal of the FET device, the FET does not significantly cease to conduct current until the potential on the gate terminal drops below Vt. Thus, in either case, a delay is experience by the FET device because it doesn't respond with the same speed as the signal on it's gate terminal.
A solution to this problem is to drive the gate terminal of the FET with a bracketed voltage that is higher than the rail-to-rail voltage. Typically, various analog circuits are used in the art, which are known to consume large quantities of electrical power. These circuits, range from generating upper and lower supply voltages for the bracketed gate voltage using resistor divider networks and other forms of feedback loops, and so forth. These techniques work well for low speed switching environments, but lack the performance in maintaining of the transition edge in high-speed applications. These circuits typically present a strong pole at desired high speeds, which means rise and fall edges of digital signals tend to degrade and slow down at high speeds, which is undesirable.
A need therefore exists to provide a potential to a gate terminal of a FET device that is between two different potentials that are not rail-to-rail but are both higher than the rail-to-rail potentials. It is therefore an object of the invention to provide potentials to the gate terminal of a FET device that are not confined to a boundary of a rail-to-rail supply voltage. It is a further object of the invention to reduce electrical power consumption and to enhance performance of these FET devices in switching applications for high-speed circuits.
In accordance with the invention there is provided a circuit comprising: a first supply voltage port for receiving of a first potential; a second supply voltage port for receiving of a second potential that is lower than the first potential; an input port for receiving of a digital input signal having transitions between the first and second potentials; a FET device comprising a gate terminal having a threshold voltage and drain and source terminals electrically coupled between the first and second supply voltage ports; a coupling capacitor disposed between the input port and the gate terminal of the FET device, the coupling capacitor for AC coupling of the digital input signal to the gate terminal of the FET device and for forming a capacitor divider circuit with a capacitor formed at the gate terminal of the FET device; a reference bias circuit comprising a first bias port for providing a first bias voltage that is above the threshold voltage and at least one of the first potential and a potential higher than the first potential and a second bias port for providing a second bias voltage that is higher than the second potential and below the threshold voltage; and, switching circuitry for one of coupling of the first bias voltage and uncoupling of the second bias voltage and coupling of the second bias voltage and uncoupling of the first bias voltage to the gate terminal of the FET device in response to the transitions in the digital input signal.
In accordance with the invention there is provided a method of controlling a gate potential of a FET device comprising: providing a FET device having a threshold voltage and a gate terminal; providing of a first voltage level; providing of a second voltage level that is below that of the first voltage level; providing of a digital input signal having transient switching between approximately the first voltage level and approximately the second voltage level; capacitively coupling of the digital input signal to the gate terminal of the FET device; providing a first bias voltage that is at least at a potential of the first voltage level and higher than the potential of first voltage level, where the first voltage level is at a higher potential than the second voltage level; providing a second bias voltage that is higher than the second voltage level; determining whether the digital input signal is one of rising from the first voltage level to the second voltage level and falling from the second voltage level to the first voltage level; and, electrically coupling one of the first bias voltage and electrically uncoupling of the second bias voltage and electrically coupling of the second bias voltage and electrically uncoupling of the first bias voltage to the gate terminal of the FET device in response to the respective rising and falling of the digital input signal in dependence upon the determination.
In accordance with the invention there is provided a storage medium for storing of instruction data comprising: first instruction data for providing a FET device having a threshold voltage and a gate terminal; second instruction data for providing of a first voltage level; third instruction data for providing of a second voltage level that is below that of the first voltage level; fourth instruction data for providing of a digital input signal having transient switching between approximately the first voltage level and approximately the second voltage level; fifth instruction data for capacitively coupling of the digital input signal to the gate terminal of the FET device; sixth instruction data for providing a first bias voltage that is at least at a potential of the first voltage level and higher than the potential of first voltage level, where the first voltage level is at a higher potential than the second voltage level; seventh instruction data for providing a second bias voltage that is higher than the second voltage level; eighth instruction data for determining whether the digital input signal is one of rising from the first voltage level to the second voltage level and falling from the second voltage level to the first voltage level; and, ninth instruction data for electrically coupling one of the first bias voltage and electrically uncoupling of the second bias voltage and electrically coupling of the second bias voltage and electrically uncoupling of the first bias voltage to the gate terminal of the FET device in response to the respective rising and falling of the digital input signal in dependence upon the determination.
Exemplary embodiments of the invention will now be described in conjunction with the following drawings, in which:
a illustrates a coupling capacitor (Cc) that is disposed between a predriver circuit and the gate terminal of a field effect transistor (FET) device;
b illustrates a portion of the circuit shown in
In operation of the NMOS device 101 shown in
When the potential Vg is rising from the ground potential hardly any current flows until Vg is reached for the NMOS device 101, where VS<Vg<VG+Vt. For the NMOS device 101 to conduct substantial current, VG is higher, such as when VG>=VS+Vt and when Vg>VD+Vt. If Vg is a rail to rail signal (Vdd), and VS is ¼ Vdd, this translates into an at least 25% waste in the rising or falling edges of the gate voltage Vg, which means slower NMOS device 101 performance. Since for more than 25% of the time, the NMOS device 101 is off. If the potential Vg does not increase to VD+Vt, the speed performance of the NMOS device 101 degrades substantially.
Thus, a need exists for a bracketed gate voltage that is a fraction of the supply voltage, which has minimum voltages that is greater that the ground potential (0V) and a maximum voltage that is at least the potential of the supply voltage or greater. Of course, similar reasoning is also contemplated for a PMOS device.
A series capacitor is typically used to couple an AC, or transient, signal between a signal source and a load. These types of capacitors block any DC current form flowing between the signal source and the load. Furthermore, the series capacitor is a high fidelity medium for propagating of high-speed signals since it doesn't degrade the signal and preserves signal edges for digital signals. Because of these two known capacitor characteristics, and since the gate terminal of PMOS and NMOS devices is a capacitor, a capacitor voltage divider circuit is constructed, as illustrated in
a illustrates a coupling capacitor (Cc) 202 that is disposed between a predriver circuit 203 and the gate terminal of a field effect transistor (FET) device 201, in this example the FET device 201 is in the form of a NMOS FET. Electrically coupled to the source terminal of the FET device 201 is a second voltage source 212 with a potential of VS. Electrically coupled to the drain terminal of the FET device 201 is a third voltage source 213 with a potential of VD. The potentials VS and VD are all relative to a second supply voltage port, which is a common ground terminal 200b electrically coupled with each of the voltage sources 212 and 213. A first supply voltage port is electrically coupled with each of the voltage sources, 213 and 212, and the predriver circuit 203 for providing of a positive supply voltage thereto (Vdd).
b illustrates a portion of the circuit shown in
Vg=VG*(Cc/(Cc+Cg)
or
Cc=Vg*Cg*(VG−Vg)
Thus, for a very large value Cc, Cc=>Vg=VG and if Cc=Cg=>Vg=VG/2. Therefore, when the Cc is used in CMOS environment with a FET device, such as a NMOS or a PMOS FET, provides a capacitor divider configuration in order to provide the voltage-swing for the bracketed gate voltage.
Preferably, these coupling capacitors are MOS capacitors, which are typically manufactures as NMOS in Nwell devices, which share a same NMOS or PMOS FET gate characteristic. Therefore, the capacitor divider is a geometrical ratio of CMOS FET devices to a first order. Because of the first order, this facilitates generation of the voltage swing for the bracketed gate voltage.
However, in order for AC coupling to be implemented, there are two issues: charge leakage and level shifting of the gate voltage for the FET device to predetermined voltage levels. During long period of inactivity, the gate charge on the gate capacitor 201a that forms the gate terminal of the FET device 201 is known to leak and this results in a depletion of electrical potential on the gate terminal. AC coupling by itself provides a voltage ratio, but in order to provide a gate potential that is within predetermined upper and lower limits, additional circuitry is used, such as a charge pump, in order to charge the gate terminal to the predetermined voltage levels.
In order to prevent leakage of current from the gate terminal of the FET device 301, during long periods of inactivity, switching circuitry is used. The switching circuitry includes a first switch 304 and a second switch 305 electrically coupled with the first junction 301b and the gate terminal of the FET device 310. The first switch 304, in the form of an integrated CMOS switch, is disposed between a first bias port 300d and the first junction 301b. A second switch 305, in the form of an integrated CMOS switch, is disposed between a second bias port 300e and the first junction 301b. A control circuit 307 is used to control each of the switches, 304 and 305, for opening and closing thereof. Preferably a potential of the third voltage port 300d is higher than that of the fourth voltage port 300e.
The potentials on the first and second bias ports, 300d and 300e, are generated by a low power reference bias circuit 306. The reference bias circuit 306 is either in the form of a charge pump circuit, or the reference bias voltages are provide by a high voltage source. The voltage swing is predetermined by the Cc 302 and Cg 301 a ratio during design of the circuitry 300.
In use, the first switch 304, or the upper switch, is used for providing of the first bias voltage to the gate terminal of the FET device 301 in order to restore the DC voltage on the gate terminal of the FET device 301 with an upper voltage limit when the gate terminal is provided with a logic HIGH signal. The second switch 305, or lower switch, is used for providing of a second bias voltage to the gate terminal of the FET device 301 for discharging of the gate terminal of the FET device 301 when the gate terminal is provided with a logic LOW signal.
Referring to
Referring to
Advantageously, the embodiment of the invention utilizes a Cc electrically coupled with the gate terminal of the FET device 301 to AC couple an input signal to the gate terminal. The gate terminal and Cc act as a subsequent stage. Because of AC coupling and because of the switching circuitry, the bracketed gate voltage is provided by the capacitor divider circuit, which is formed from the Cc 302 and the Cg 301a. Since the Cc 302 is transparent and acts as an AC short for propagating an alternating signal with fast transitions, the capacitor divider structure provides added performance to the operation of the circuit 300.
Advantageously, because the embodiment of the invention utilizes a capacitor ratio between the Cc and the Cg, it results in repeatable and predictable behavior for the circuit 300 that is relatively process independent and is thus implementable in a semiconductor substrate using a CMOS process.
Numerous other embodiments may be envisaged without departing from the spirit or scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/051281 | 4/19/2005 | WO | 00 | 11/21/2007 |
Number | Date | Country | |
---|---|---|---|
60563452 | Apr 2004 | US |