1. Technical Field
The present disclosure pertains to micro grid power systems and, more particularly, to a system for controlling diverted AC energy.
2. Description of the Related Art
DC, in an uncontrolled manner. In this operating mode, the battery based inverter 12 behaves as a battery charger; however, because the output voltage regulation is the key parameter regulated by the inverter 12, any battery charging will proceed in an uncontrolled fashion—dictated by the transformer turns ratio in the battery inverter 12. Consequently, as the grid tie inverters 18 attempt to push current into the output of the battery inverter 12, the battery voltage will rise, as indicated in
Previous AC coupled inverter systems attempted to prevent battery overcharging by adding a diversion load 24 on the DC side of the system across the battery 12 as shown in
Another known method to protect the battery from over voltage consists of having the battery based inverter monitor the battery voltage and shift the ac output frequency in an attempt to force any grid tie inverters off-line when the battery voltage rises above a set point. A grid tie inverter must respond to a frequency shift of ±0.5 Hz by disconnecting from the AC power source. Hence in a system as described, a grid tie inverter would cease to push the battery above the limit set by the inverter's frequency shift set point. Once the battery voltage falls below a maximum battery threshold (typically with some hysteresis to prevent rapid cycling), the grid connected inverter would attempt to reconnect, and the cycle would repeat itself, with the grid tie inverters alternately causing the battery voltage to fluctuate between two limits at the upper end of operation for the inverter.
If the system were to contain either a small battery bank with respect to the grid tie inverters that arc available, or a large number of grid tie inverters or inverters having a large rating, the system battery voltage could cycle on a 5 minute basis. It is unlikely that damage would occur, since the battery based inverter would protect against over voltage from the battery. But the total available renewable resource would spend substantial time offline.
In systems where the renewable source is directly connected to a grid tied inverter, such as an integrated wind turbine/ac inverter, the fluctuating operation caused by the 5 min on/off cycling could cause significant mechanical wear and tear as the system could transition from full load to unloaded in a single cycle of the AC output. In such a system, a constant load for the turbine is desirable.
Constant power sources like micro hydro generators and small wind turbines require connection to a load that will absorb all the power that they generate. They cannot utilize a system which simply turns off the grid tie inverters. The turbines must have a load connected at all times to protect the turbine from over-speed and self-destruction conditions. Typically such systems utilize a ‘diversion load’ to absorb any energy beyond that required by the useful load that they are powering. Most small systems use the battery as the point of common coupling, with rectifiers converting the output of the turbine or hydro and charging the battery through a three phase rectifier.
DC side diversion mode controllers typically utilize a charge controller in series with a DC load having sufficient capacity to absorb the total output of the turbine or hydro. The DC side mode controllers serve two functions: (1) to protect the turbine against over-speed, and (2) to protect the battery by diverting any surplus current to a dump load when the battery is fully charged.
The present disclosure addresses the need for a diversion load to absorb any surplus energy from the renewable system while at the same time regulating the charging of the battery in the mode where the inverter is not operating as a battery charger per se.
Also, the present disclosure diverts the power in a proportional way, so as to maintain a smooth and continuous load from no load to full load for the renewable portion of the system. This allows the renewable resource to continue to produce energy even if the battery is full. The present disclosure also applies the diversion load to the AC output of the renewable system. This mode of interconnecting inverters on the AC side of the system is called “AC-coupling” because the common point of interconnection of the inverters is the AC output. Unlike systems that use a diversion load on the battery side of the system, this AC diversion load does not stress the inverter by forcing it to process the surplus power, thus reducing wear and tear on the inverter and allowing a smaller inverter to form the reference for a much larger system made up of larger grid tie inverters.
In accordance with one embodiment of the present disclosure, a circuit is provided that includes a battery monitoring circuit structured to monitor at least one from among power grid current, battery output current, and time and to determine at least one of a battery charging profile and a battery type, and to output a digital communication data stream; and a controller coupled to the power grid and to the battery monitoring circuit to receive the data stream and to output a control signal to direct all or a proportion of the power grid current to a diversion load.
The foregoing and other features and advantages of the present disclosure will be more readily appreciated as the same become better understood from the following detailed description when taken in conjunction with the accompanying drawings, wherein:
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the disclosure. However, one skilled in the art will understand that the disclosure may be practiced without these specific details. In other instances, well-known structures associated with micro grid power systems, such as inverters, grid tie inverters, batteries, and related components have not been described in detail to avoid unnecessarily obscuring the descriptions of the embodiments of the present disclosure.
Unless the context requires otherwise, throughout the specification and claims that follow, the word “comprise” and variations thereof, such as “comprises” and “comprising,” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.” In addition, the term “grid tied” will be used synonymously with “grid tie” throughout this specification.
In addition, reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the drawings, identical reference numbers identify similar features or elements. The size and relative positions of features in the drawings are not necessarily drawn to scale. For example, the shapes of various features are not drawn to scale, and some of these features are enlarged and positioned to improve drawing legibility.
The headings herein are for convenience only and do not interpret the scope or meaning of the embodiments.
In accordance with one embodiment of the present disclosure, an error amplifier is provided that compares the battery voltage to a predetermined set point as determined by the battery type and charging profile. The preferred method is to use a three stage battery charging algorithm, which senses both the battery charging current, (in this case reverse inferred from AC output current), battery voltage, and time.
Generally, a power factor corrected AC to DC converter, which receives the AC line current and operates under control from the battery information and adjusts the current drawn from the line to hold the battery voltage at its reference level using feedback. An average current mode control scheme is utilized to improve power factor to greater than 0.9 for the diversion load to reduce waveform distortion as much as possible and thereby avoid disturbing the inverter low harmonics.
A load, which may contain resistors, or any utility voltage load with sufficient capacity, is provided to dissipate the total energy produced by the grid tie inverters in the system. Standard water or space heater elements may be utilized to receive the energy in a useful application.
Referring to
The AC diversion mode controller 54 consists of a means to monitor battery inverter output current, battery voltage, and battery type. The preferred embodiment of the device would have those signals communicated digitally from the battery inverter 12, hence requiring no further sensors. It is within the scope of the present disclosure to provide those signals if an inverter does not provide them.
In this operating mode, as the grid tie inverters 18 attempt to push current into the output of the battery inverter 12, the battery voltage will be directed in whole or in part to the diversion load 52, as indicated in
Referring next to
A modified battery based inverter 58 is shown in dashed lines to include the inverter 12, battery system 14, and a battery monitoring circuit 60 having a first input coupled to the AC side of the battery inverter 12, a second input coupled to the DC side of the inverter 12, and a data stream output coupled to the AC diversion load controller 54.
The battery monitoring circuit 60 receives AC current on a first input 61, DC battery voltage on a second input 63 and processes the signals received on these two inputs 61, 63 to monitor AC current on the grid 16, battery output current, and time and to determine at least one of the battery charging profile and battery type. The data stream output from the battery monitoring circuit 60 is received at a first input or process 55 of the AC diversion load controller 54. Preferably, an average current mode control scheme is utilized to improve the power factor to greater than 0.75 and preferably greater than 0.9 for the diversion load in order to reduce waveform distortion as much as possible and avoid disturbing the inverter's low harmonics.
As further shown in
These signals are processed by the Power Factor Corrected (PFC) converter diversion load control circuit 62, which directs all or a proportion of current to the resistive load 52. As stated above, the load may contain resistors or consist of any utility voltage load with sufficient capacity to dissipate the total energy produced by the grid tie inverters in the system or, as indicated in
Ideally, a user interface 59 is provided that enables setting of a maximum load current through the resistive load 52 to prevent improper operation or overload. The PFC controller microprocessor 57 utilizes data provided by the digital communication as shown in the bubble inside the boxed area for the PFC diversion load controller 54. The data stream, the AC current command, and the input from the optional external current and voltage sensors are all used by the PFC controller 54 to determine actions to be taken within the diversion load. This is more fully shown in the detailed circuit schematic of
The power factor corrected AC to DC converter 62, which receives the AC line and operates under control from the battery monitoring circuit data stream information, adjusts the current drawn from the grid line 16 to hold the battery voltage at its reference level by using feedback.
Referring next to
Also included is (7) An output current magnitude control circuit 130 to cause the output current to be adjusted by the battery voltage on the grid reference inverter. The magnitude of the current controlled by each of the interleaved buck power stages 114, 116 is set by a voltage command and a maximum current command. The command signals are provided by a microprocessor control system (shown in
Additionally, battery state of charge information may be provided by a system battery monitor, and generator run information in the case of systems that contain a back-up generator.
All of the communications are digitally transmitted between the various parts of the system. In the event that a third party inverter is used as the grid reference, the battery voltage information may be measured and transmitted by a stand-alone battery monitor.
In addition, a diversion load 132 is provided. In a preferred embodiment, this is a large power resistor. It could be a water heater element, or other space heater element sized to be at least equal to the total input power from the grid tied inverters feeding the AC coupled inverter system.
The signal Vbatt_feedback is provided by data generated by an AID converter in the battery-based inverter. The signal Imax is a user settable constant that is used to set a maximum current of the diversion load 132. Because resistive loads are user provided, as indicated above, provision for setting the maximum load current must be included to prevent improper operation or overload.
The other circuit elements that are shown but not described herein are known, commercially available components that are readily understood from their schematic symbols by one of ordinary skill in this technology. Briefly, these include, without limitation, pulse width modulation amplifiers PWMA, PWMB, multipliers MULT1, MULT2, and a summer.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/61504 | 12/21/2010 | WO | 00 | 5/21/2012 |
Number | Date | Country | |
---|---|---|---|
61289290 | Dec 2009 | US |