This invention relates to data clustering and, in particular, to accelerated discrete distribution (D2) clustering based on Wasserstein distance.
Clustering is a fundamental unsupervised learning methodology for data mining and machine learning. Additionally, clustering can be used in supervised learning for building non-parametric models (Beecks et al., 2011). The K-means algorithm (MacQueen, 1967) is one of the most widely used clustering algorithms because of its simple yet generally accepted objective function for optimization. Though several variants of K-means have evolved recently, a fundamental limitation of K-means and those variants is that they only apply to the Euclidean space.
In many emerging applications, however, the data to be processed are not vectors. In particular, bags of weighted vectors (e.g., bags of words, bags of visual words, sparsely represented histograms), which can be formulated as discrete distributions with finite but arbitrary supports, are often used as object descriptors (Chen and Wang, 2004; Pond et al., 2010). The discrete distribution clustering algorithm, also known as the D2-clustering (Li and Wang, 2008), tackles such type of data by optimizing an objective function defined in the same spirit as that used by K-means. Specifically, it minimizes the sum of squared distances between each object and its nearest centroid. D2-clustering is implemented and applied in a real-time image annotation system named ALIPR (Li and Wang, 2008).
There are several ways to measure the closeness between two discrete distributions, such as Kullback-Leibler divergence (Cover and Thomas, 2012) and L1 distance (Batu et al., 2013). Most metrics simply treat discrete distributions as regular histograms (after quantization if necessary) and measure their differences only by comparing the aligned bins among histograms. When the supports of discrete distributions are at arbitrary locations and of variable sizes, these metrics cannot effectively measure the distance because the supports of two distributions may not be aligned. In such situations, which are prevalent in applications using the bag-of-word representation, the transportation metric is useful because it measures the similarity by solving an optimal matching problem known as the transportation problem. The problem was initially formulated by French mathematician Monge (1781) and later by Russian mathematician Kantorovich (1942). The metric is known as the Kantorovich-Wasserstein metric. It also has several variants, as well as names, in part due to its wide application in different fields. Readers can refer to the book by Rachev and Ruschendorf (1998) for some of these applications. For example, the metric is better known as the earth mover's distance (EMD) (Rubner et al., 1998) in computer vision and the Mallows distance in statistics literature (Mallows, 1972). To simplify the discussion, hereafter we refer to the Kantorovich-Wasserstein metric as the Wasserstein distance.
The Wasserstein distance is robust to quantization noise and efficient with sparse representations. It is proved to be an effective metric for image retrieval and annotation. The D2-clustering algorithm is constructed based upon this distance and has been applied successfully to image annotation. In addition, this distance is also adopted in multiple data mining and machine learning applications such as video classification and retrieval (Xu and Chang, 2008), sequence categorization (Pond et al., 2010), and document retrieval (Wan, 2007), where objects are represented by discrete distributions. As a fundamental machine learning tool to group discrete distributions with Wasserstein distance, D2-clustering can be highly valuable in these areas.
A major concern in applying D2-clustering is its scalability. Because linear programming is needed in D2-clustering and the number of unknown variables grows with the number of objects in a cluster, the computational cost would normally increase polynomially with the sample size (assuming the number of clusters is roughly fixed). As a result, on a typical 2 GHz single-core CPU, ALIPR takes several minutes to learn each semantic category by performing D2-clustering on 80 images in it, but demands more than a day to complete the modeling of a semantic category containing thousands of training images. There are some alternative ways (Julien and Saitta, 2008; Yavlinsky et al., 2005) to perform the clustering faster, but they generally perform some indirect or sub-optimal clustering and hence lack the optimization properties of the D2-clustering.
The clustering problems researchers tackle today are often of very large scale. For instance, we are seeking to perform learning and retrieval on images from the Web containing millions of pictures annotated by one common word. This leads to demanding clustering tasks even if we perform learning only on a tiny fraction of the Web. Adopting bags of weighted vectors as descriptors, we can encounter the same issue in other applications such as video, biological sequence, and text clustering, where the amount of data can be enormous. In such cases, D2-clustering is computationally impractical.
Given the application potential of D2-clustering and its theoretical optimization advantages, it is of great interest to develop a variant of the algorithm with a substantially lower computational complexity, especially under a parallel computing environment. With the increasing popularity of large-scale cloud computing in real-world information systems, we are well motivated to exploit parallel computing.
K-means is one of the most widely applied clustering algorithms on vectors. Given a set of N vectors {right arrow over (v)}1, {right arrow over (v)}2, . . . , {right arrow over (v)}N, K-means groups them into k clusters with centroids {right arrow over (Z)}1, {right arrow over (Z)}2, . . . , {right arrow over (Z)}k. Each vector v is assigned with a clustering label C(i)=j, jε{1, 2, . . . , k} if vi belongs to the j-th cluster. The objective of K-means clustering is to minimize the total within-cluster dispersion
ε=Σj=1kΣi:C(i)=j∥{right arrow over (v)}i−{right arrow over (z)}j∥2. (1)
Both the labeling C(•) and the centroids {right arrow over (z)}j's are involved in the optimization. Because they interlace with each other in the optimization, they are iteratively updated in two stages. Within each iteration, C(i) is updated by assigning each {right arrow over (v)}i with the label of its closest cluster centroid and then the centroid {right arrow over (z)}j for each cluster is updated by averaging the vectors attached to the cluster. For each of the two stages the updating decreases the objective in Eq. (1) monotonically. The iteration terminates when the objective stabilizes below a certain value, as defined in the stopping criteria.
A discrete distribution gives the probability masses of a random variable at values within a finite set of range. It can be formulated by a bag of value-probability tuples at all possible values of the random variable. For instance, if a random variable v takes value at v(1), v(2), . . . , v(t) with probability pv(1), pv(2) . . . pv(t) (Σα=1tpv(α)=1), the discrete distribution is written as
v={(v(1),pv(1)), . . . ,(v(t),pv(t))}.
Given another discrete distribution u={(u(1),pu(1)), (u(1),pu(1)), . . . , (u(t),pu(t))}, the Wasserstein distance D(v,u) between v and u is solved by the following linear program:
subject to:
Σα=1tωα,β=pu(β),∀β=1, . . . ,t′,
Σβ=1t′ωα,β=pv(α),∀α=1, . . . ,t,
ωα,β≧0,∀α=1, . . . ,t,∀β=1, . . . ,t′.
In Eq. (2), ωα,β is the matching weights between the α-th element in v and β-th element in u. We denote d(v(α),u(β)) as the distance between v(α) and u(β) in the sample space of the random variable. If the sample space is a Euclidean space, L2 norm is normally adopted as the measure, i.e., d(v(α), u(β))=∥v(α)−u(β)∥. Hereafter we assume that the random variable of a discrete distribution is sampled from an Euclidean space unless otherwise noted. In fact, the metric used by the sample space is not essential for the Wasserstein distance because what make the computation elaborate are the matching weights solved in the linear programming.
D2-clustering is a clustering algorithm for any collection of discrete distributions within the same sample space. Working in the same spirit as K-means, it also aims at minimizing the total within-cluster dispersion. Because the distances between discrete distributions are calculated using Wasserstein distance, the objective function to be minimized is the total squared Wasserstein distance between the data and the centroids.
Suppose there are N discrete distributions and k centroids, we denote the discrete distributions as the objective is then formulated as
v
i={(vi(1),pv
z
j={(zj(1),pz
ε=Σj=1kΣi:C(i)=jD2(zj,vi)
Although this optimization criterion is used by K-means, the computation in D2-clustering is much more sophisticated due to the nature of the Wasserstein distance, which is chosen because of its advantageous properties. The D2-clustering algorithm is analogous to K-means in that it iterates the update of the partition and the update of the centroids. There are two stages within each iteration. First, the cluster label of each sample is assigned to be the label of its closest centroid; and second, centroids are updated by minimizing the within-cluster sum of squared distances. To update the partition in D2-clustering, we need to compute the Wasserstein distance between a sample and each centroid. To update the centroids, an embedded iterative procedure is needed which involves a large-scale linear programming problem in every iteration. The number of unknowns in the optimization grows with the number of samples in the cluster.
To update a certain centroid zj for a cluster of discrete distributions v1, v2 . . . , vn
minz
where
z
j={(zj(1),pz
v
i={(vi(1),pv
D
2(zj,vi)=min ωα,β(i)Σα=1s
subject to:
p
z
(α)≧0,α=1, . . . ,sj,Σα=1s
Σβ=1t
Σr=1s
ωα,β(i)>0,i=1, . . . ,nj,α=1, . . . ,sj,β=1, . . . ,ti.
Because zj is not fixed in Eq. (3), we cannot separately optimize the Wasserstein distances (zj,vi), i=1, . . . , nj, because zj is involved and the variables ωα,β(i) for different i's affect each other through zj. To solve the complex optimization problem, the D2-clustering algorithm adopts an iterative process as shown in Algorithm 1.
Inside the “while” loop of Algorithm 1, the linear programming in line 1 is the primary cost in the centroid update process. It solves pz
The analysis of the time complexity of K-means remains an unsolved problem because the number of iterations for convergence is difficult to determine. Theoretically, the worst case time complexity for K-means is Ω(2√{square root over (n)}) (Arthur and Vassilvitskii, 2006). Arthur et al. (2011) show recently that K-means has polynomial smoothed complexity, which reflects the fact that K-means converges in a relatively short time in real cases (although no tight upper or lower bound of time complexity has been proved). In practice, K-means usually converges fast, and seldom costs an exponential number of iterations. In many cases K-means converges in linear or even sub-linear time (Duda et al., 2012). Kumar et al. (2010) present a random sampling and estimation approach to guarantee K-means to compete in linear time. Although there is still a gap between the theoretical explanation and practice, we can consider K-means an algorithm with at most polynomial time.
Although the D2-clustering algorithm interlaces the update of clustering labels and centroids in the same manner as K-means, the update of centroids is much more complicated. As described above, to update each centroid involves an iterative procedure where a large-scale linear programming problem detailed in (3) has to be solved in every round. This makes D2-clustering polynomially more complex than K-means in general.
The discrete distribution, or discrete probability measure, is a well-adopted way to summarize a mass of data. It often serves as a descriptor for complex instances encountered in machine learning, e.g., images, sequences, and documents, where each instance itself is converted to a data collection instead of a vector. In a variety of research areas including multimedia retrieval and document analysis, the celebrated bag of “words” data model is intrinsically a discrete distribution. The widely used normalized histogram is a special case of discrete distributions with a fixed set of support points across the instances. In many applications involving moderate or high dimensions, the number of bins in the histograms is enormous because of the diversity across instances, while the histogram for any individual instance is highly sparse. This is frequently observed for collections of images and text documents.
The discrete distribution can function as a sparse representation for the histogram, where support points and their probabilities are specified in pairs, eliminating the restriction of a fixed quantization codebook across instances.
The Wasserstein distance is a true metric for measures and can be traced back to the mass transport problem proposed by Monge in 1780s and the relaxed formulation by Kantorovich in the 1940s. Mallows used this distance to prove some theoretical results in statistics, and thus the name Mallows distance has been used by statisticians. In computer science, it is better known as the Earth Mover's Distance. In signal processing, it is closely related to the Optimal Sub-Pattern Assignment (OSPA) distance used recently for multi-target tracking. The Wasserstein distance is computationally costly because the calculation of the distance has no closed form solution and its worst time complexity is at least O(n3 log n) subject to the number of support points in the distribution.
Clustering Distributions:
Distribution clustering can be done subject to different affinity definitions. For example, Bregman clustering pursues the minimal distortion between the cluster prototype—called the Bregman representative—and cluster members according to a certain Bregman divergence (Banerjee et al. 2005). In comparison, D2-clustering is an extension of K-means to discrete distributions under the Wasserstein distance (Li and Wang 2008), and the cluster prototype is an approximate Wasserstein barycenter with sparse support. In the D2-clustering framework, solving the cluster prototype or the centroid for discrete distributions under the Wasserstein distance is computationally challenging (Cuturi and Doucet 2014; Ye and Li 2014; Zhang, Wang, and Li 2015). In order to scale up the computation of D2-clustering, a divide-and-conquer approach has been proposed (Zhang, Wang, and Li 2015), but the method is ad-hoc from optimization perspective. A standard ADMM approach has also been explored (Ye and Li 2014), but its efficiency is still inadequate for large datasets. Although fast computation of Wasserstein distances has been much explored (Pele and Werman 2009; Cuturi 2013; H. Wang and Banerjee 2014), how to perform top-down clustering efficiently based on the distance has not. We present below the related work and discuss their relationships with our current work.
The True Discrete Wasserstein Barycenter and Two Approximation Strategies:
The centroid of a collection of distributions minimizing the average pth-order power of the Lp Wasserstein distance is called Wasserstein barycenter (Agueh and Carlier 2011). In the D2-clustering algorithm (Li and Wang 2008), the 2nd order Wasserstein barycenter is simply referred to as a prototype or centroid; and is solved for the case of an unknown support with a pre-given cardinality. The existence, uniqueness, regularity and other properties of the 2nd order Wasserstein barycenter have been established mathematically for continuous measures in the Euclidean space (Agueh and Carlier 2011). But the situation is more intricate for discrete distributions, as will be explained later.
Given N arbitrary discrete distributions each with
To achieve good approximation, there are two computational strategies one can adopt in an optimization framework:
The first strategy of fixing the support of a barycenter can yield adequate approximation quality in low dimensions (e.g. 1D/2D histogram data) (Cuturi and Doucet 2014; Benamou et al. 2015), but can face the challenge of exponentially growing support size when the dimension increases. The second strategy allows one to use a possibly much smaller number of support points in a barycenter to achieve the same level of accuracy (Li and Wang 2008; Zhang, Wang, and Li 2015; Ye and Li 2014; Cuturi and Doucet 2014). Because the time complexity per iteration of existing iterative methods is O(
In applications on high-dimensional data, it is desirable to optimize the support points rather than fix them from the beginning. This however leads to a non-convex optimization problem. Our work aims at developing practical numerical methods. In particular, the method optimizes jointly the locations and weights of the support points in a single loop without resorting to a bi-level optimization reformulation, as was done in earlier work (Li and Wang 2008; Cuturi and Doucet 2014).
Solving Discrete Wasserstein Barycenter in Different Data Settings:
Recently, a series of works have been devoted to solving the Wasserstein barycenter given a set of distributions (e.g. (Carlier, Obennan, and Oudet 2014; Cuturi and Doucet 2014; Benamou et al. 2015; Ye and Li 2014; Cuturi, Peyre, and Rolet 2015)). How our method compares with the existing ones depends strongly on the specific data setting. We discuss the comparisons in details below and motivate the use of our new method in D2-clustering.
In (Benamou et al. 2015; Cuturi and Doucet 2014; Cuturi 2013), novel algorithms have been developed for solving the Wasserstein barycenter by adding an entropy regularization term on the optimal transport matching weights. The regularization is imposed on the transport weights, but not the barycenter distribution. In particular, iterative Bregman projection (IBP) (Benamou et al. 2015) can solve an approximation to the Wasserstein barycenter. IBP is highly memory efficient for distributions with a shared support set (e.g. histogram data), with a memory complexity O((m+
First of all, it is interesting to note that if the distributions do not share the support set, IBP (Benamou et al. 2015) has the same memory complexity O(m
Optimization Methods Revisited:
Our main algorithm disclosed herein is inspired by the B-ADMM algorithm of Wang and Banerjee (H. Wang and Banerjee 2014) for solving OT fast. They developed the two-block version of ADMM (Boyd et al. 2011) along with Bregman divergence to solve the OT problem when the number of support points is extremely large. Its algorithmic relation to IBP (Benamou et al. 2015) is discussed herein. The OT problem at a moderate scale can in fact be efficiently handled by state-of-the-art LP solvers (Tang et al. 2013). As demonstrated by the line of work on solving the barycenter, optimizing the Wasserstein barycenter is rather different from computing the distance. Naively adapting the B-ADMM to Wasserstein barycenter does not result in a proper algorithm.
This invention resides in computationally efficient algorithms for clustering discrete distributions under the Wasserstein distance. We adopt the well-accepted criterion of minimizing the total within-cluster variation under the Wasserstein distance, similarly as K-means for vectors under the Euclidean distance. This clustering problem was originally explored by Li and Wang, who coined the phrase D2-clustering in 2006, referring to both the optimization problem and their particular algorithm. Motivations for using the Wasserstein distance in practice are strongly argued by researchers and its theoretical significance by the optimal transport literature (see the seminal books of Villani).
We have developed and compared three first-order methods for optimizing the Wasserstein centroids in D2-clustering: subgradient descent method with re-parametrization, alternating direction method of multipliers (ADMM), and a modified version of Bregman ADMM. We refer to the modified Bregman ADMM as the main algorithm. The effects of the hyper-parameters on robustness, convergence, and speed of optimization are thoroughly examined.
The new methods, collectively called AD2-clustering (Accelerated D2-clustering), improve scalability significantly. We have also developed a parallel algorithm for the modified Bregman ADMM method in a multi-core environment with adequate scaling efficiency subject to hundreds of CPUs. Finally, we tested our new algorithm on several large-scale real-world datasets, revealing the high competitiveness of AD2-clustering.
Table I compares D2-clustering with several basic clustering algorithms in machine learning. D2-clustering runs on discrete distributions which K-means cannot handle. It is also more preferable over agglomerative clustering (Johnson, 1967) and spectral clustering (Ng et al., 2002) when cluster prototypes are needed. The main disadvantage of D2-clustering is the high time complexity. The parallel D2-clustering algorithm listed on the last column of the table keeps most of D2-clustering's properties with minor approximation, and improves the time complexity to a much lower order.
This disclosure inherits the notations used above. Discrete distributions are in bold font. vi's with index i denote the discrete distributions to be clustered, and zj's with index j are the labeling assignment function, where C(i)=j means data point xi belongs to the cluster with centroid zj.
To reduce the computational complexity of D2-clustering, we apply the divide-and-conquer strategy in our new parallel algorithm. Divide-and-conquer is a general strategy for algorithm acceleration in many applications. And Parallelization is one of the most well adopted technique to implement the divide-and-conquer structure. There are several recent parallel algorithms (Chang et al., 2009; Wang et al., 2009; Tamada et al., 2011; Park et al., 2012) that attempt to reduce the overall processing time for large-scale data by distributing parallel processes to different computation units. Particularly for K-means, within each iteration both the labeling and centroid update stages can be naturally parallelized (Dhillon and Modha, 2000; Kantabutra and Couch, 2000). The parallelization of D2-clustering, however, is not straightforward because the centroid update optimization is not losslessly separable, though the cluster label of each point can still be optimized separately.
The centroid update for both K-means and D2-clustering is to find an optimized centroid for each cluster with the objective that the sum of squared distances from the centroid to each data point in the cluster is minimal. For K-means, the optimized centroid for each cluster is simply the arithmetic mean of the data points in it, which can be obtained by averaging the separately computed local means of different data chunks. For D2-clustering, a linear program described by (3) has to be solved to get the optimized centroid. Unlike K-means' centroid update, which is essentially a step of computing an average, the computation of a centroid in D2-clustering is far more complicated than any linear combination of the data points. Instead, all the data points in the corresponding cluster play a role in the linear programming problem in Eq. (3). To the best of our knowledge, there is no mathematical equivalence of a parallel algorithm for the problem.
With some approximation, we devise a novel approach to parallelize the centroid update in D2-clustering by a similar strategy to K-means' parallelization: dividing the data into segments based on their adjacency, computing some local centroids for each segment in parallel, and combining the local centroids to a global centroid.
Heuristically we can get a close estimation of the optimal centroid in this way, considering that the notion of centroid is exactly for a compact representation of a group of data. Hence, a centroid computed from the local centroids should represent well the entire cluster, although some loss of accuracy is expected.
Both the dividing of data and combining of local centroids involve linear programmings and are hence not simple. We adopt a reduced version of D2-clustering to perform the data segmentation efficiently, and propose a hierarchical structure to keep the combination operation from becoming a large-scale linear programming.
Particularly for implementation, parallel computing techniques, such as Message Passing Interface (MPI) (Thakur et al., 2005) and MapReduce (Dean and Ghemawat, 2008) can be applied. In the current work, MPI is used to implement the parallel algorithm. The algorithm can also be implemented by other frameworks (e.g., MapReduce and Hadoop) if desired.
In this section, we present the parallel D2-clustering algorithm. Hereafter, we refer to the original D2-clustering as the sequential algorithm. We will describe the hierarchical structure for speeding up D2-clustering and a weighted version of D2-clustering which is needed in the parallel algorithm but not in the sequential algorithm. We will also describe in detail the coordination among the individual computation nodes (commonly called the slave processors) and the node that is responsible for integrating the results (called the master processor). Finally, we analyze the convergence property and the computational complexity of the parallel algorithm. The D2-Clustering software packages for both single core and parallel processing, developed with the C programming language, are provided for readers to download and use in their own applications.
To avoid the large linear programming problem in Eq. (3) when performing D2-clustering, we divide the large dataset into segments and perform local D2-clustering on each of them in parallel. These local clusters are then combined to achieve a global clustering result. Because the local cluster centroids are also discrete distributions, combining these local centroids also involves a linear programming. To achieve a low overall run-time, we want to keep both the local clustering tasks and the combination of local results at a small scale, which cannot be achieved simultaneously when the size of the overall data is large. As a result, we propose a hierarchical structure to conduct parallel computing recursively through multiple levels. This way, we can control the scale of linear programming in every segment and at every level.
The hierarchy terminates when the amount of data at a certain level is sufficiently small and no further clustering is needed. In
In short, at each level, except the bottom level, we perform D2-clustering on the centroids acquired from the previous level. Borrowing the terminology of a tree graph, we can call a centroid a parent point and the data points assigned to its corresponding cluster child points. The cluster labels of the centroids at a higher level are inherited by their child points, and propagate further to all the descendent points. To help visualize the tree, in
In such a hierarchical structure, the number of centroids becomes smaller and smaller as the level increases. Therefore, it is guaranteed that the hierarchy can terminate. In addition, because D2-clustering is conducted within small segments, the overall clustering can be completed quickly.
We now describe the initial data segmentation method. In this step, we want to partition the dataset into groups all smaller than a certain size. The partitioning process is in a similar spirit as the initialization step of the LBG algorithm proposed by Linde et al. (1980), an early instance of K-means in signal processing. The whole dataset is iteratively split into partitions until a stopping criterion is satisfied. And within each iteration, the splitting is an approximation of, and computationally less expensive than, an optimal clustering.
As shown in
The constrained D2-clustering is a reduced version of D2-clustering. We denote each data point to be clustered as vi={(vi(1),pv
The difference between D2-clustering and constrained D2-clustering is the way to update centroids in Step 2 of Algorithm 2. As discussed previously, we need to solve a large-scale linear programming problem in Algorithm 1 to update each zj in D2-clustering. The linear programming involves the optimization of pz
In the constrained D2-clustering algorithm, we replace Step 2 by Step 2* in the D2-clustering algorithm. We simplify the optimization of D2-clustering by assuming uniform pz
Data segments generated by the initialization step are distributed to different processors in the parallel algorithm. Within each processor, a D2-clustering is performed to cluster the segment of data. Such a process is done at different levels as illustrated in
Clustering at a certain level usually produces unbalanced clusters containing possibly quite different numbers of data points. If we intend to keep equal contribution from each original data point, the cluster centroids passed to a higher level in the hierarchy should be weighted and the clustering method should take those weights into account. We thus extended D2-clustering to a weighted version. As will be shown next, the extension is straightforward and results in little extra computation.
It is apparent that with weighted data, the step of nearest neighbor assignment of centroids to data points is unaffected, while the update of the centroids under a given partition of data is. Let us inspect the optimization in Eq. (3) for updating the centroid zj of one cluster. When data vi have weights ωi, a natural extension of the objective function is
minz
where D(zj,vi) is defined in Eq. (3).
In Step 1 of Algorithm 1, we fix zj(α), α=1, . . . , sj, and solve a linear programming problem with objective function (3) under the same constraints specified in Eq. (1) to get the vector weights pz
Because the optimal solution of centroid is not affected when the weights are scaled by a common factor, we simply use the number of original data points assigned to each centroid as its weight. The weights can be computed recursively when the algorithm goes through levels in the hierarchy. At the bottom level, each original data point is assigned with weight 1. The weight of a data point in a parent level is the sum of weights of its child data points.
With details in several major aspects already explained earlier, we now present the overall flow of the parallel D2-clustering algorithm. The parallel program runs on a computation cluster with multiple processors. In general, there is a “master” processor that controls the flow of the program and some other “slave” processors in charge of computation for the sub-problems. In the implementation of parallel D2-clustering, the master processor performs the initial data segmentation at each level in the hierarchical structure specified in
The current work adopts MPI for implementing the parallel program. In order to keep a correct work flow for both master and slave processors, we use synchronized communication methods in MPI to perform message passing and data transmission. A processor can broadcast its local data to all others, and send data to (or receive data from) a specific processor. Being synchronized, all these operations do not return until the data transmission is completed. Further, we can block the processors until all have reached a certain blocking point. In this way, different processors are enforced to be synchronized.
The algorithms running on the master and slave processors are formulated in Algorithms 3 and 4, respectively.
In
The convergence of the parallel D2-clustering algorithm depends on the convergence of the processes running on both the master and slave sides as described in Algorithms 3 and 4. The master process distributes data to different slave nodes and constructs the hierarchical structure level by level. Within each level, the parallel clusterings are done by the slave processes, during which time the master process is blocked and waiting for the completion of all the parallel slave tasks. Therefore, the convergence properties on both sides need to be proved in order to confirm the overall convergence.
Lemma 1:
The iteration on the master side (Algorithm 3) always terminates.
Proof:
In each iteration of Algorithm 3, n data points are divided to m groups. Each group μ with nμ data entries (Σμ=1mnμ=n) are clustered separately into kμ clusters. The total number of clusters for all slave clustering tasks is k′=Σμ=1mkμ. For each sub-task μ, kμ<nμ. Therefore, k<n, which means the data points in the next iteration is always less than the data in the current level. In other words, the condition to terminate the hierarchy (k′≦k) is satisfied within finite number of iterations.
The slave processes terminate once they receive the termination signal from the master, which is guaranteed by LEMMA 1 if the clustering within each level terminates. The convergence of both the master and slave processes is accordingly determined by the convergence of (weighted) D2-clustering performed in step 2-2 of Algorithm 4. The D2-clustering algorithm, as well as the weighted version which is mathematically equivalent, are formulated in Algorithm 2, whose convergence is proved below.
Lemma 2:
The centroid update operation described in Algorithm 1 converges in finite time.
Proof:
Algorithm 1 operates in two steps within each iteration: first, update pz(α)'s and ωα,β(i)'s by solving a linear programming problem; second, update z(α)'s by computing a weighted sum. For the first step, the linear programming minimizes the objective function (3) with z(α)'s fixed, which completes in polynomial time. With all the costs and constraints in the linear program being positive, it is proved that the solution is unique (Mangasarian, 1979). In addition, Murty (1983) show that the solution for a linear program lies in one of the extreme points of the simplex spanned by the constraints. Assume at loop l1 and loop l2 of the iteration (l1=l2), the solutions for the linear program at step 1 are Sl
Lemma 3:
D2-clustering and constrained D2-clustering described in Algorithm 2 converge in finite time.
Proof:
It is proved in (Selim and Ismail, 1984) that a K-means-type algorithm always converges to a partial optimal solution in a finite number of iterations. Together with Lemma 2, Algorithm 2 converges in finite time.
Using Lemma 1, 2 and 3, we can conclude the convergence of the parallel D2-clustering algorithm.
Theorem 4: The parallel D2-clustering algorithm described by Algorithms 3 (master process) and 4 (slave processes) can terminate within finite time.
In this section, we analyze the time complexity of the parallel D2-clustering algorithm because it is confirmed to converge.
As described earlier, for D2-clustering, the computational complexity of updating the centroid for one cluster in one iteration is polynomial in the size of the cluster. The total amount of computation depends on computation within one iteration as well as the number of iterations. Again, even for K-means clustering, the relationship between the number of iterations needed for convergence and the data size is complex. In practice, we often terminate the iteration after a pre-specified number of rounds (e.g., 500) if the algorithm has not converged before that. As a result, in the analysis of computational complexity, we focus on the time needed to complete one iteration and assume the time for the whole algorithm is a multiple of that, where the multiplication factor is a large constant.
Lemma 5:
When there are N discrete distributions in total and we want to cluster them into k clusters, the run-time for D2-clustering increases polynomially with N, and decreases polynomially with k.
Proof:
The linear programming to update a centroid is polynomial to the number of data points involved. Denote the order of polynomial as γ. Because the K-means-type clustering algorithms tend to form clusters with similar size, each cluster contains roughly N/k data entries. As a result, the centroid update of k cluster costs O(k(N/k)γ) time in total. Assume the number of iterations is linear to N, the clustering has polynomial run-time of O(k1−γNγ+1).
When the number of discrete distributions grows and the number of clusters remains the same, the run-time grows in a polynomial order, which eventually makes D2-clustering slow and impractical in large-scale problems. In the proposed parallel algorithm, we divide data into segments at each level of the hierarchy. Each segment is no larger than τ in size, and clustered separately. Assume λ clusters are to be formed, the run-time of the D2-clustering within a single segment is O(λ1−γτγ+1). Here r is set to be a fixed number within which scale the sequential D2-clustering can efficiently work. The λ centroids are treated as data points at the next level and further clustered.
Define
which is the average number of data points within each cluster. It is also a factor that the data size shrinks at a certain level. The factor (referred as the shrinking factor thereafter) is important for the total run-time of the parallel D2-clustering algorithm.
Theorem 6:
The run-time for parallel D2-clustering is linearithmic to the total number of data points N.
Proof:
Based on Lemma 5, each local sequential D2-clustering within a certain neighboring segment of data costs O(γ1−γτγ+1=O(Rγ−1τ2) time.
In the ideal case, where there are always enough CPU cores to compute local clusterings in parallel, the total time for clustering is purely determined by the number of levels in the hierarchy of the parallel algorithm L=logRN/k where R is the shrinking factor, N is the total number of data at the bottom level, and k is the desired number of clusters. And the clustering time is
T
1
=O(Rγ−1τ2L). (7)
In practice, the hardware resources may be limited. At certain levels, especially lower levels of the hierarchy where the number of segments are large, not every segment can be assigned to an unique CPU core. Some segments have to share one CPU core and be clustered one by one in sequential. In such case, when there are M slave CPU cores and 1≦M≦N/τ, the top logR M+1 levels are fully parallel due to small number of segments.
For lower levels, each CPU core needs to deal with multiple local clustering tasks. As a result, the total clustering time is
We can set τ=kR so that the clustering at the top level only consists of one segment. With Eq. (7) and Eq. (8), we can write the run-time for all the sequential clustering tasks as Eq. (9).
In addition to the clustering, the data segmentation at each level also takes time. A binary splitting process is adopted to generate the segments. At a certain level with N data points, about N′/τ segments are generated. The constrained D2-clustering algorithm for each splitting runs in a similar order of K-means because it avoids large linear programming in the centroid update stage. For the simplicity of analysis, we assume the splitting tree is balanced and constrained D2-clustering has a linear time complexity. The total time to complete the splitting at a certain level is 0 (N′ log N′/τ). And the total time for data segmentation among all levels is
In summary, the run-time for the parallel D2-clustering algorithm is T=Tclt+Tseg.
To simplify the analysis below, we assume there are always sufficient CPU cores to ensure parallel computing, i.e., M≧N/kR Combining Tclt and Tseg by constant coefficients C1 and C2, we get
Evidently the leading order of the above run-time is 0 (N log N).
In fact, even if the number of CPU cores M=1, the algorithm's run-time is still faster than the original sequential D2-clustering because large linear programming problems in Eq. (3) are avoided. In Eq. (9) if M=1,
which is linear to N.
From Eq. (11), we can also imply the value of the shrinking parameter R in the
algorithm's hierarchy. Define
and C6=N−k. We rewrite Eq. (11) as
Then we take the derivative of T over R.
There is no analytical solution of the equation
In order to plot the curve of
we use N=1000 and k=10 which are typical values in our experiment to get C4, C5, and C6. Because the data segmentation involves a constrained D2-clustering within each binary split, the constant multiplier C2 is higher C1. Without loss of generality, we set γ=3, C1=1 and C2=100.
with different values of R. In general the run-time T of the parallel D2-clustering is an increasing function of R. So a small R is favorable in terms of run-time. On the other hand, however, small R tends to create lots of parallel segments at each level of the hierarchy, and make the hierarchy with too many levels, which eventually increases the approximation error. In our implementation we set R=5, which is a moderate value that guarantees both the fast convergence of the algorithm and compactness of the hierarchical structure.
To validate the advantage and usefulness of this algorithm, we conduct experiments on four different types of dataset: images, videos, protein sequences, and synthetic data. Though our work was originally motivated by image concept learning, we apply the parallel D2-clustering algorithm to different scenarios. Readers in these or other areas may find applications that are suitable to embed the algorithm into.
Images:
First, we test the algorithm on images crawled from Flickr in several experiments. When crawling images from Flickr, we use the Flickr API to perform keyword query for certain concepts, and download top N images with highest values of interestingness. The number of images N is different in different experiments. Typically it is at a scale of thousands, much larger than the scale the sequential D2-clustering has been applied. If such clustering is performed for multiple concepts, the training dataset for image tagging can easily reach several millions, which is quite large for image annotation.
For such image datasets, each image is first segmented into two sets of regions based on the color (LUV components) and texture features (Daubechies-4 wavelet (Daubechies, 1992) coefficients), respectively. We then use two bags of weighted vectors U and V, one for color and the other for texture, to describe an image as I=(u, v). The distance between two images, Ii=(ui,vi) and Ij=(ui,vj), is defined as
where D(•,•) is the Mallows distance. It is straightforward to extend the D2-clustering algorithm to the case of multiple discrete distributions using the combined distance defined in Eq. (12). Details are provided in (Li and Wang, 2008). The order of time complexity increases simply by a multiplicative factor equal to the number of distribution types, the so-called super-dimension.
To demonstrate the applicability of D2-clustering in real-world applications, we also apply the algorithm to a large-scale Flickr dataset for image concept learning, and evaluate the effectiveness of the clustering by the performance of the concept learning system.
Videos:
Second, we adopt videos queried and downloaded from Youtube. We represent each video by a bag of weighted vectors, and conduct parallel D2-clustering on these videos. Then we check the accordance between the clustering result and the videos' genre.
For the video clustering, we adopt the features used in (Yanagawa et al., 2007). Edge Direction Histogram (EDH), Gabor (GBR), and Grid Color Moment (GCM) features are extracted from each frame. A video is segmented into several sub-clips based on the continuity of these three features among nearby frames (Lienhart, 1999). Using the time percentage of each sub-clip as the weight of its average feature vector, we represent the video by a bag of weighted vectors by combining all sub-clips.
Protein Sequences:
Third, we download the SwissProt protein data (Boeckmann et al., 2003) provides the class labels of these protein sequences. Using the Prosite data, we can select protein sequences from several certain classes as the experiment dataset, which contains data gathering around some patterns. Each protein sequence is composed of 20 types of amino acids. We count the frequency of each amino acid in a sequence, and use the frequency as the signature of the sequence.
Synthetic data: The parallel program is deployed on a computation cluster at The Pennsylvania State University named “CyberStar” consisting of 512 quad-core CPUs and hence a total of 2048 computation units. These Intel Nehalem processors run at 2.66 GHz. Because M=2048, theoretically it can be guaranteed that at each level every data segment can be processed in parallel by a unique CPU core when the data size is several thousands. In practice the system puts a limit to the maximal number of processors each user can occupy at a time because it is a publicly shared server.
In this section, we first evaluate objectively the D2-clustering algorithm on image datasets with different topics and scales. Then we show the D2-clustering results for the image, video, protein, and synthetic datasets, respectively.
Comparison with Sequential Clustering
In order to compare the clustering results of the parallel and sequential D2-clustering, we have to run the experiment on relatively small datasets so that the sequential D2-clustering can finish in a reasonable time. In this experiment, 80 concepts of images, each including 100 images downloaded from Flickr, are clustered individually using both approaches. We compare the clustering results obtained for every concept.
It is in general challenging to compare a pair of clustering results, as shown by some sincere efforts devoted to this problem (Zhou et al., 2005). The difficulty comes from the need to match clusters in one result with those in another. There is usually no obvious way of matching. The matter is further complicated when the numbers of clusters are different. The parallel and sequential clustering algorithms have different initializations and work flows. Clearly we cannot match clusters based on a common starting point given by initialization. Moreover, the image signatures do not fall into highly distinct groups, causing large variation in clustering results.
We compare the clustering results by three measures.
Within-Cluster Dispersion:
First, we assess the quality of clustering by the generally accepted criterion of achieving small within-cluster dispersion, specifically, the mean squared distance between a data entry and its corresponding centroid.
Centroid-Based Difference:
Second, we define a distance between two sets of centroids. Let the first set of centroids be Z={z1, . . . , zk} and the second set be Z′={z′1, . . . , z′k′}. A centroid zi (or z′i) is associated with a percentage pi(or pi′) computed as the proportion of data entries assigned to the cluster of zi (or z′i). We define a Mallows-type distance {tilde over (D)}(Z,Z′) based on the element-wise distances D(zi,zj′), where D(zi, zj′) is the Mallows distance between two centroids, which are both discrete distributions. We call D(Z,Z′) Mallows-type because it is also the square root of a weighted sum of squared distances between the elements in Z and Z′. The weights satisfy the same set of constraints as those in the optimization problem for computing the Mallows distance.
{tilde over (D)}
2(Z,Z′)=Σi=1kΣj=1k′ωi,jD2(zi,zj′), (13)
subject to: Σj=1k′ωi,j=pi, Σi=1kωi,j=p′j, ωi,j≧0,i=1, . . . , k,j=1, . . . , k′.
We refer to {tilde over (D)}(Z, Z′) as the MM distance (Mallows-type weighted sum of the squared Mallows distances).
Categorical Clustering Distance:
Third, we use a measure for two ways of partitioning a dataset, which is proposed by Zhou et al. (2005). This measure only depends on the grouping of data entries and is irrelevant with centroids. We refer to it as the categorical clustering distance. Let the first set of clusters be P={P1, P2, . . . , Pk} and the second be P′={P′1, P′2, . . . , P′k′}. Then the element-wise distance Dp(Pi,Pj′) is the number of data entries that belong to either Pi or Pj′, but not the other. The distance between the partitions {tilde over (D)}p(P,P′)=Σi=1kΣj=1k′ωi,jDp(Pi,Pj′) is again a Mallows-type weighted sum of Dp(Pi,Pj′), i=1, . . . , k, j=1, . . . , k′. Details can be found in (Zhou et al., 2005).
For each concept category, the number of clusters is set to 10. The mean squared distance from an image signature to its closest centroid is computed based on the clustering result obtained by the parallel or sequential D2-clustering algorithm. These mean squared distances are plotted in
where c=80 is the number of concepts. We use di2 as a baseline for comparison and plot it by the dashed line in the figure. For all the concepts, di is substantially larger than {tilde over (D)}(Zi,Zi′), which indicates that the set of centroids Zi derived from the parallel clustering is relatively close to Z′i from the sequential clustering. Another baseline for comparison is formed using random partitions. For each concept i, we create 10 sets of random clusters, and compute the average over the squared MM distances between Zi and every randomly generated clustering. Denote the average by {tilde over (d)}i2, shown by the dashed dot line in the figure. Again comparing with {tilde over (d)}i2, the MM distances between Zi and Z′i are relatively small for all concepts i.
The parallel D2-clustering runs in approximately linearithmic time, while the sequential algorithm scales up poorly due to its polynomial time complexity. In order to demonstrate this, we perform clustering on sets of images with different sizes using both the parallel and sequential D2-clustering with different conditions, and examine the time consumed.
For the last parallel case, we include VQ in the segmentation in order to further accelerate the algorithm. Based on the analysis above, we know that data segmentation takes a lot of time at each level of the algorithm. In the VQ approach, we quantify the bag of weighted vectors to histograms and treat them as vectors. These histograms are then segmented by K-means algorithm in the segmentation step. The clustering within each segment is still D2-clustering on the original data. However the time spent for segmentation is much shorter than the original approach. In
Theoretically VQ can reduce the order of the clustering from linearithmic to linear (because Tseg in Eq. (10) is reduced to a linear order). However because the quantization step loses some information, the clustering result might be less accurate. This can be reflected by the MM distance (defined in Eq. (13)) between the parallel D2-clustering with VQ segmentation and the sequential D2-clustering results on a dataset containing 200 images, which is 19.57 on average for five runs. Compared to 18.41 as the average MM distance between the original parallel D2-clustering and sequential D2-clustering results, the VQ approach makes the parallel clustering result less similar to the sequential clustering result which is regarded as the standard.
No matter whether VQ is adopted, the experiment shows the acceleration of parallel D2-clustering over the sequential algorithm, which verifies the run-time analysis. Applying the algorithm, we can greatly increase the scale of discrete distribution clustering problems.
Simulating the real image annotation application, the parallel D2-clustering algorithm is applied to a set of 1,488 images downloaded from Flickr (z=50, e=5). These images are retrieved by query keyword “mountain”. For such a set, we do not have ground truth for the clustering result, and the sequential D2-clustering cannot be compared because of its unrealistic running time. We thus visualize directly the clustering result and attempt for subjective assessment.
The 1,488 images are clustered into 13 groups by the parallel D2-clustering algorithm using 873 seconds (with 30 slave CPUs). At the end, there are 7 clusters with sizes larger than 100, for each of which 20 images closest to the corresponding cluster centroid are displayed in groups in
The D2-clustering result can be used for image concept modeling as introduced in ALIPR (Li and Wang, 2008). For images within each concept, we perform a D2-clustering. We then use the clustering result to build a Gaussian Mixture Model (GMM) for the concept by fitting each cluster to a Gaussian component in the GMM.
Because both the image descriptors and the cluster centroids are discrete distributions rather than vectors, we are not able to directly fit a Gaussian component by estimating a covariance matrix which is the second order statistics between every two dimensions in the Euclidean space. Instead, we use the Hypothetical Local Mapping (HLM) to map these discrete distributions to a probability space where they follow a Gaussian distribution. If the squared distances from data points in a cluster to the centroid follow a Gamma distribution Gamma(d/2,2σ2) with pdf
the data points on the hypothetical space follow a multivariate Gaussian distribution N(z,σ2Id) with pdf
where u={tilde over (D)}2(x,z) is the squared distance from a data point x to the corresponding centroid z. The percentage size of a cluster is used as the weight for the component. As a result, we estimate the image concept model for concept ψ as fψ(x)=Σi=1kξifψi(x), where ξi is the percentage size for the i-th cluster with Gaussian distribution fψi(x) estimated by HLM.
With the parallel algorithm, we can run the clustering on much larger datasets than ALIPR did, and hence build concept models covering broader aspects of each concept. When a query image comes, we apply the Bayesian's law to estimate the posterior probability it belongs to each concept, and eventually generate annotations.
We crawled images from Flickr for this experiment. For each of the 144 most popular tags on Flickr, top 1,000 images ranked by interestingness are downloaded as the training data for concept learning. After performing parallel D2-clustering on each concept set, we used HLM to build a GMM for the concept. As a comparison, we also use the original sequential D2-clustering algorithm to build the concept models. Due to the incapability of the sequential algorithm running on large dataset, the sequential clustering is only applied on the top 100 most interesting images for each concept.
The testing images are also crawled by keyword query, but ranked by uploading date in descending order. They are crawled several months after the downloading of the training set. Therefore, the testing set is guaranteed to be different to the training set. Because the user-generated tags on Flickr are noisy, there are many irrelevant images in each concept set. In addition, for certain abstract concepts, such as “day” and “travel”, in which no apparent objects and visual patterns exists, it is difficult even for human to judge whether an image is relevant to the concept without any non-visual context. Therefore we handpicked the testing images and only kept images with visual features confidently related to the corresponding query, which is regarded as the ground-truth labels. At last we build an testing set containing 3,325 images from 75 concepts.
We compute and rank the posterior probability of a testing image belonging to every concept model trained by the clustering result. If the ground-truth label of the image gets a high posterior probability, the result is meaningful for annotation. We regard the result relevant if the top five predicted concepts contain the ground-truth label. Using the concept models obtained by the parallel D2-clustering results, 1111 testing images (33.4%) get relevant concept predictions. Whereas by the models from the sequential clustering, only 875 testing images (26.3%) are correctly tagged.
The advantage of the non-parametric concept modeling approach is that it can well depict the probabilistic distribution of every concept on the feature space, at the same time be robust to noise. The number of training data is crucial to the estimation of the model. More training data covering more variants of a concept can help us better build the model. Therefore the models obtained by the parallel D2-clustering algorithm which runs on a larger dataset outperform the models built from the small dataset by sequential clustering. Additionally, we can observe that in the large training dataset, the images are noisy data directly crawled from Flickr, but the concept models can still get satisfactory performance for image annotation, which demonstrates the robustness of the approach. In practice it is still preferable to get clean data for training, where the tag refinement technique (Sawant et al., 2013) can be adopted to remove some (though not all) of the noise and hence further enhance the system performance. In conclusion, the parallel D2-clustering algorithm is practical in real-world image annotation applications, where training images within every single concept are variant in visual appearances, large in size, and noisy in user-generated tags.
To demonstrate the application of parallel D2-clustering on video clustering, we download 450 videos from Youtube. They are all 5 to 20 minutes in length, and come from 6 different queries, which are “news”, “soccer”, “lecture”, “movie trailer”, “weather forecast”, and “tablet computer review”. Each category contains 75 videos. We compare the clustering result with the category label to check the correctness of the algorithm.
It should be emphasized that video classification is a complicated problem. Since our algorithm is an unsupervised clustering algorithm rather than a classification method, we cannot expect it to classify the videos with a high accuracy. In addition, though not the major concern in this paper, the visual features for segmenting and describing videos are crucial for the accuracy of the algorithm. Here we only adopt some easy-to-implement simple features for demonstration. Therefore the purpose of this experiment is not to pursue the best video classification, but to demonstrate the reasonable results of the parallel D2-clustering algorithm on videos. The videos' class labels, which serve as the ground truth, are used as a reference to show whether similar videos can be clustered into a same group.
In this experiment, we set τ=30, e=5, and request 15 slave CPUs (M=15) to cluster the data. As mentioned above, we adopt three visual features, EDH, GBR, and GCD, to segment and describe each video. We extract the features and form the video descriptors before the clustering. Typically a video will be segmented into 10 to 30 sub-clips, depending on its content and length. In addition, the feature vector itself is high in dimension (73 for EDH, 48 for GBR, and 225 for GCD). As a result, each video is represented by a large bag of weighted vectors.
By applying the parallel D2-clustering algorithm, we can get a clustering result for this high dimensional problem in 847 seconds. 6 major clusters (C1-C6) are generated and Table II is the confusion table. We then try to use the clustering result for classification by assigning each cluster with the label corresponding to its majority class. For these six clusters, the unsupervised clustering achieves a classification accuracy of 47.5%.
Sequence clustering is a basic problem in bioinformatics. The protein or DNA sequences are normally huge in number and complex in distance measures. It is a trending topic on how to develop fast and efficient biological sequence clustering approaches on different metrics, e.g. (Voevodski et al., 2012; Huang et al., 2010). Composition-based methods for sequence clustering and classification, either DNA (Kelley and Salzberg, 2010; Kislyuk et al., 2009) or protein (Garrow et al., 2005), use the frequencies of different compositions in each sequence as the signature. Nucleotides and amino acids are basic components of DNA and protein sequence respectively and these methods use a nucleotide or amino acid histogram to describe a sequence.
Because different nucleotide or amino acid pairs have different similarities determined by their molecular structures and evolutionary relationships, cross-term relations should be considered when we compute the distance between two such histograms. As a result, the Wasserstein distance would be a proper metric in composition-based approaches. However, due to the lack of effective clustering algorithms under the Wasserstein distance, most existing clustering approaches either ignore the relationships between the components in the histograms and treat them as variables in a vector, or perform clustering on some feature vectors derived from the histograms. In this case, D2-clustering will be especially appealing. Considering the high dimensionality and large scale of biological data, parallel algorithm is necessary.
In this experiment, we perform parallel D2-clustering on 1,500 protein sequences from Swiss-Prot database, which contains 519,348 proteins in total. The 1,500 proteins are selected based on Prosite data, which provides class labeling for part of Swiss-Prot database. We randomly choose three classes from Prosite data, and extract 500 protein sequences from Swiss-Prot database for each class to build our experiment dataset.
Each protein sequence is transformed to a histogram of amino acid frequencies. There is a slight modification in the computation of the Wasserstein distance between two such histograms over the 20 amino acids. In Eq. (1), the squared Euclidean distance between two support vectors is replaced by a pair-wise amino acid distance provided in the PAM250 mutation matrix (Pevsner, 2003). Given any two amino acids A and B, we can get the probabilities of A mutated to B and B mutated to A from the matrix. The distance between A and B is defined as
D
PAM250(A,B)=log(P(A|B)+P(B|A)).
Because the support vectors for each descriptor are the 20 types of amino acids and hence symbolic, we will skip the step to update support vectors in the centroid update of D2-clustering (refer to Step 2 in Algorithm 1) in the implementation of the parallel D2-clustering algorithm in this case. We set τ=30, e=5, and request 7 slave processors to perform the parallel clustering (M=7). We let the program generate 5 clusters and the clustering finishes in about 7 hours. Considering the high dimensionality of the histograms and the scale of the dataset, this is a reasonable time. Three out of the five clusters are major ones, which contain more than 99% of the dataset.
If we do not consider cross-term differences in the distance between two histograms and use Euclidean distance as the metric, the clustering is reduced to K-means. Therefore in this application, we are able to apply K-means on the dataset. Running on the multi-CPU server, the K-means algorithm is also implemented by parallel programs. We parallelize K-means in two different ways. In the first one, we apply the approach suggested by Kantabutra and Couch (2000), which is to perform centroid update and label update in parallel for different segments of data and then combine partial result linearly. In this way the parallelization is equivalent to the original K-means on the whole dataset. In the second way, we adopt the same hierarchical clustering structure, as in
where k is the number of clusters, zj is the centroid of cluster j, d(zj,zl) is the distance from zj to zl, and σj is the average distance from zj to all the elements in cluster j. DBI is the average ratio of intra-cluster dispersion to inter-cluster dispersion. Lower DBI means a better clustering result with tighter clusters.
We compute DBI using both the squared Wasserstein distance and the squared Euclidean distance as d(•) in Eq. (14) for each clustering result. Table III shows the result. Parallel D2-clustering gains the lowest DBI in both cases. This indicates good tightness of the clusters generated by parallel D2-clustering. In contrast, the two implementations of K-means generate looser clusters than parallel D2-clustering. Though both can complete very fast, their clustering results are less representative.
Evaluation with Synthetic Data
Except for all the above experiments on real data, we also apply the algorithm on a synthetic dataset. The synthetic data are bags of weighted vectors. We carefully sample the vectors and their weights so that the data gather around several centroids, and their distances to the corresponding centroids follow the Gamma distribution, which means they follow a Gaussian distribution in a hypothetical space (Li and Wang, 2008). By using this dataset, we have some ideally distributed data with class labels.
We create a synthetic dataset containing 15 clusters, each composed of 100 samples around the centroid. The clusters are well separated. The upper bound for the number of clusters in the algorithm is set 20. It takes about 8 minutes to cluster the data (with 30 slave CPUs). Then 17 clusters are generated. We try to match these 17 clusters to the ground truth clusters: 9 of the 17 clusters are identical to their corresponding true clusters; 5 clusters with sizes close to 100 differ from the true clusters only by a small number of samples; 2 clusters combine precisely into one true cluster; and at last a small cluster of size 8 may have formed from some outliers. It is evident that for this synthetic dataset, the parallel D2-clustering has produced a result close to the ground truth.
Having described D2 and parallel D2-clustering, we now propose three algorithms scalable with large-scale datasets, and compare their performance in terms of speed and memory. They are (a) subgradient descent with N mini-LP, (b) standard ADMM with N mini-QP, and (c) Bregman ADMM with closed forms in each iteration of the inner loop. The bottleneck in the computation of D2-clustering is the inner loop, as detailed in Algorithm 5. The three approaches we develop here all aim at fast solutions for the inner loop, that is, to improve Algorithm 5. These new methods can reduce the computation for centroid update to a comparable (or even lower) level as the label assignment step, usually negligible in the original D2-clustering. As a result, we also take measures to speed up the labeling step, with details provided below.
Eq. (18) can be casted as an input optimization model, or multi-level optimization by treating w as policies/parameters and Π as variables. Express W2(P,P(k)), the squared distance between P and p(k), as a function of w denoted by {tilde over (W)}(w)(k). {tilde over (W)}(w)(k) is the solution to a designed optimization, but has no closed form. Let
where N is the number of instances in the cluster. Note that Eq. (18) minimizes {tilde over (W)}(w) up to a constant multiplier. The minimization of {tilde over (W)} with respect to w is thus a bi-level optimization problem. In the special case when the designed problem is LP and the parameters only appear on the right hand side (RHS) of the constraints or are linear in the objective, the subgradient, specifically ∇{tilde over (W)}(w)(k) in our problem, can be solved via the same (dual) LP.
Again, we consider the routine that alternates the updates of {xi} and {πi,j}(k) iteratively. With fixed {xi}, updating {πi,j}(k) involves solving N LP. With LP solved, we can write ∇{tilde over (W)}(w)(k) in closed form, which is given by the set of dual variables {λi(k)}i=1m corresponding to {Σj=1m
In the standard method of gradient descent, a line search is conducted in each iteration to determine the step-size for a strictly descending update. Line search however is computationally intensive for our problem because Eq. (19) requires solving a LP and we need Eq. (19) sweeping over k=1, . . . , N. In machine learning algorithms, one practice to avoid expensive line search is by using a pre-determined step-size, which is allowed to vary across iterations. We adopt this approach here.
One issue resulting from a pre-determined step-size is that the updated weight vector w may have negative components. We overcome this numerical instability by the technique of re-parametrization. Let
We then compute the partial subgradient with respect to si instead of wi, and update wi by updating si. Furthermore exp(si) are re-scaled in each iteration such that Σi=1msi=0.
The step-size α(w) is chosen by
The two hyper-parameters α and ζ trade off the convergence speed and the guaranteed decrease of the objective. Another hyper-parameter is τ which indicates the ratio between the update frequency of weights {wi} and that of support points {xi}. In our experiments, we alternate one round of update for both {wi} and {xi}. We summarize the subgradient descent approach in Algorithm 3.
If the support points {xi} are fixed, the centroid optimization is a linear programming in terms of {wi}, thus convex. The subgradient descent method converges under mild conditions on the smoothness of the solution and small step-sizes. However, in Algorithm 6, the support points are also updated. Even the convexity of the problem is in question. Hence, the convergence of the method is not ensured. In the experiment section below, we empirically analyze the effect of the hyper-parameters on the convergence performance.
ADMM typically solves problem with two set of variables (in our case, they are 11 and w), which are only coupled in constraints, while the objective function is separable across this splitting of the two sets (in our case, w is not present in the objective function). Because problem has multiple sets of constraints including both equalities and inequalities, it is not a typical scenario to apply ADMM. We propose to relax all equality constraints Σl=1m
Problem can be solved using ADMM iteratively as follows.
Based on Villani, H can be updated by updating Π(k), k=1, . . . , N separately. Comparing with the full batch LP in which solves all Π(k), k=1, . . . , N, together, ADMM solves instead N disjoint constrained quadratic programming (QP). This is the key for achieving computational complexity linear in N as well as the main motivation for employing ADMM. Specifically, we solve by solving below for each k=1, . . . , N:
Since we need to solve small-size problem in multiple rounds, we prefer active set method with warm start. Define {tilde over (w)}i(k),n+1:=Σj=1m(k)πi,j(k),n+1+λi,kn for i=1, . . . , m, k=1, . . . , N. We can rewrite step as
We summarize the computation of the centroid distribution P for distributions P(k), k=1, . . . , N in Algorithm 7. There are two hyper-parameters to choose: ρ and the number of iterations Tadmm. We empirically select ρ proportional to the averaged transportation costs:
Let us compare the computational efficiency of ADMM and the subgradient descent method. In the latter method, it is costly to choose an effective step-size along the descending direction because at each search point, we need to solve N LP. ADMM solves N QP subproblems instead of LP. The amount of computation in each subproblem of ADMM is thus usually higher and grows faster with the number of support points in P(k)'s. It is not clear whether the increased complexity at each iteration of ADMM is paid off by a better convergence rate (that is, a smaller number of iterations). The computational limitation of ADMM caused by QP motivates us to explore Bregman ADMM that avoids QP in each iteration.
Bregman ADMM replaces the quadratic augmented Lagrangians by the Bregman divergence when updating the split variables. Similar ideas trace back at least to early 1990s. We adapt the design for solving the optimal transport problem with a large set of support points. Consider two sets of variables Π(k,1)=(πi,j(k,1)), iε, jεk, and Π(k,2)=(πi,j(k,2)), iε, jεk, for k=1, . . . , N under the following constraints. Let
then Π(k,1)εΔk,1 and Π(k,2)εΔk,2(w). We introduce some extra notations:
1.
2.
3.
4. Λ={Λ(1), . . . , Λ(N)}, where Λ(k)=(Λi,j(k)), iε′, jεk, is a m×m(k) matrix.
Bregman ADMM solves by treating the augmented Lagrangians as a conceptually designed divergence between Π(k,1) and Π(k,2), adapting to the updated variables. It restructures the original problem as
Denote the dual variables Π(k)=(Πi,j(k)), iε′, jεk, for k=1, . . . , N. Use ⊙ to denote the sum of the entry-wise products of two matrices. For instance, for matrices A and B of the same dimension, A⊙B=tr(ABt). Use KL(•,•) to denote the Kullback-Leibler divergence between two distributions. The Bregman ADMM algorithm adds the augmented Lagrangians for the last set of constraints in its updates, which yields the following equations.
We note that if w is fixed, and can be split in terms of index k=1, . . . , N, and have closed form solutions for each k. For any iε′, jεk,
Since we need to update w in each iteration, it is not straightforward to solve. We consider decomposing into two stages. Observe that the minimum value of under a given w is:
The above term (a.k.a. the consensus operator) is minimized by
However, the above equation is a geometric mean, which is numerically unstable when Σj=1m
{tilde over (w)}
i
(k,1),n+1∝Σj=1m(k){tilde over (π)}i,j(k,1),n+1,s.t.Σi=1m{tilde over (w)}i(k,1)n+1=1 (37)
Let the distribution {tilde over (w)}(k),n+1=({tilde over (w)}i(k,1),n+1)i=1, . . . , m. Then Eq. (40) is equivalent to minwεΩ
which again has a closed form solution:
The solution of Eq. (38) overcomes the numerical instability.
We summarize the Bregman ADMM approach in Algorithm 8. The implementation involves one hyper-parameters ρ (by default, τ=10). In our implementation, we choose ρ relatively according to Eq. 28. To the best of our knowledge, the convergence of Bregman ADMM has not been proved for our formulation (even under fixed support points x) although this topic has been pursued in a recent literature. In the general case of solving Eq. (16), the optimization of the cluster centroid is non-convex because the support points are updated after Bregman ADMM is applied to optimize the weights. We empirically test the convergence of the centroid optimization algorithm based on Bregman ADMM. We found that Bregman ADMM usually converges quickly to a moderate accuracy, making it a preferable choice for D2-clustering. In our implementation, we use a fixed number of Bregman ADMM iterations (by default, 100) across multiple assignment-update rounds in D2-clustering.
In this section, we explain some specifics in the implementation of the algorithms, such as initialization, warm-start in optimization, measures for further speed-up, and the method for parallelization. The number of support vectors in the centroid distribution, denoted by m, is set to the average number of support vectors in the distributions in the corresponding cluster. To initialize a centroid, we select randomly a distribution with at least m support vectors from the cluster. If the number of support vectors in the distribution is larger than m, we will merge recursively a pair of support vectors according to an optimal criterion until the support size reaches m, similar as in linkage clustering. Consider a chosen distribution P={(w1,x1), . . . , (wm,xm)}. We merge xi and xj to
Let the new distribution after one merge be P′. It is sensible to minimize the Wasserstein distance between P and P′ to decide which support vectors to merge. We note that
W
2(P,P′)≦wi∥xi−
This upper bound is obtained by the transport mapping xi and xj exclusively to
The Bregman ADMM method requires an initialization for Π(k,2), where k is the index for every cluster member, before starting the inner loops (see Algorithm 8). We use a warm-start for Π(k,2). Specifically, for the members whose cluster labels are unchanged after the most recent label assignment, Π(k,2) is initialized by its value solved (and cached) in the previous round (with respect to the outer loop). Otherwise, we initialize Π(k,2)=(πi,j(k,2)) i=1, . . . , m, j=1, . . . , m(k) by πi,j(k,2),0:=wiwj(k). This scheme of initialization is also applied in the first round of iteration when class labels are assigned for the first time and there exists no previous solution for this parameter.
At the relabeling step (that is, to assign data points to centroids after centroids are updated), we need to compute
In our implementation, we use a fixed number of iterations εi for all inner loops for simplicity. It is not crucial to obtain highly accurate result for the inner loop because the partition will be changed by the outer loop. For Bregman ADMM, we found that setting εi to tens or a hundred suffices. For subgradient descent and ADMM, an even smaller εi is sufficient, e.g., around or below ten. The number of iterations of the outer loop εo is not fixed, but adaptively determined when a certain termination criterion is met.
With an efficient serial implementation, our algorithms can be deployed to handle moderate scale data on a single PC. We also implemented their parallel versions which are scalable to a large data size and a large number of clusters. We use the commercial solver provided by Mosek, which is among the fastest LP/QP solvers available. In particular, Mosek provides optimized simplex solver for transportation problems that fits our needs well. The three algorithms we have developed here are all readily parallelizable by adopting the Allreduce framework in MPI. In our implementation, we divide data evenly into trunks and process each trunk at one processor. Each trunk of data stay at the same processor during the whole program. We can parallelize the algorithms simply by dividing the data because in the centroid update step, the computation comprises mainly separate per data point optimization problems. The main communication cost is on synchronizing the update for centroids by the inner loop. The synchronization time with equally partitioned data is negligible.
We experimented with discrete distributions over a vector space endowed with the Euclidean distance as well as over a symbolic set. In the second case, a symbol to symbol distance matrix is provided. When applying D2-clustering to such data, the step of updating the support vectors can be skipped since the set of symbols is fixed. In some datasets, the support vectors in the distributions locate only on a pre-given grid. We can save memory in the implementation by storing the indices of the grid points rather than the direct vector values.
Although we assume each instance is a single distribution in all the previous discussion, it is straightforward to generalize to the case when an instance is an array of distributions. For instance, a protein sequence can be characterized by three histograms over respectively amino acids, dipeptides, and tripeptides. This extension causes little extra work in the algorithms. When updating the cluster centroids, the distributions of different modalities can be processed separately, while in the update of cluster labels, the sum of squared Wasserstein distances for all the distributions is used as the combined distance.
Recall some notations:
In a stringent memory allocation scheme, we only need to store the data and centroid distributions throughout, and dynamically allocate space for the optimization variables. The memory requirement for optimization is then negligible comparing with data. The storage of both input and output data is at the order O(d
For computational complexity, first consider the time for assigning cluster labels in the outer loop. Without the acceleration yielded from the triangle inequality, the complexity is O(εo
Both analytical and empirical studies show that the ADMM algorithm is significantly slower than the other two when the data size is large due to the many constrained QP sub-problems required. Although the theoretical properties of convergence are better understood for ADMM, our experiments show that Bregman ADMM performs well consistently in terms of both convergence and the quality of the clustering results. The major drawback of the subgradient descent algorithm is the difficulty in tuning the step-size.
Although the preference for Bregman ADMM is experimentally validated, given the lack of strong theoretical results on its convergence, it is not clear-cut that Bregman ADMM can always replace the alternatives. We were thus motivated to develop the subgradient descent and standard ADMM algorithms to serve at least as yardsticks for comparison. We provide the following guidelines on the usage of the algorithms.
We recommend the modified Bregman ADMM as the default data processing pipeline for its scalability, stability, and fast performance. Large memory is assumed to be available under the default setting.
It is known that ADMM type methods can approach the optimal solution quickly at the beginning when the current solution is far from the optimum while the convergence slows down substantially when the solution is in the proximity of the optimum. Because we always reset the Lagrangian multipliers in Bregman ADMM at every inner loop and a fixed number of iterations are performed, our scheme does not pursue high accuracy for the resulting centroids in each iteration. As remarked in Boyd et al., such high accuracy is often unnecessary in machine learning applications. However, if the need arises for highly accurate centroids, we recommend the subgradient descent method that takes as initialization the centroids first obtained by Bregman ADMM.
As analyzed above, Bregman ADMM requires substantially more memory than the other two methods. Hence, on a low memory streaming platform, the subgradient descent method or the ADMM method can be more suitable. When the support size is small (say less than 10), it is also possible to speed-up the LP/QP solver greatly by doing some pre-computation, an established practice in control theory. This grants the subgradient descent and ADMM methods some extra edge.
Our experiments comprise studies on the convergence and stability of the algorithms, computational/memory efficiency and scalability of the algorithms, and quality of the clustering results on large data from several domains.
Table IV lists the basic information about the datasets used in our experiments. For the synthetic data, the support vectors are generated by sampling from a multivariate normal distribution and then adding a heavy-tailed noise from the student's t distribution. The probabilities on the support vectors are perturbed and normalized samples from Dirichlet distribution with symmetric prior. We omit details for lack of space. The synthetic data are only used to study the scalability of the algorithms. The image color or texture data are created from crawled general-purpose photographs. Local color or texture features around each pixel in an image are clustered (aka, quantized) to yield color or texture distributions. The protein sequence data are histograms over the amino acids (1-gram), dipeptides (2-tuples of amino acids, 2-gram), and tripeptides (3-tuples, 3-gram). For the experiments herein, the protein sequences are characterized each by an array of three histograms on the 1, 2, 3-gram respectively. The USPS digit images are treated as normalized histograms over the pixel locations covered by the digits, where the support vector is the two dimensional coordinate of a pixel and the weight corresponds to pixel intensity. For the 20 newsgroups data, we use the recommended “bydate” matlab version which includes 18,774 documents and 61,188 unique words. The two datasets, “20 newsgroup GV” and “20 newsgroup WV” correspond to different ways of characterizing each document.
We empirically test the convergence and stability of the three approaches: Bregman ADMM, ADMM, and subgradient descent method, based on their sequential versions implemented in C. Four datasets are used in the test: protein sequence 1-gram, 3-gram data, and the image color and texture data. In summary, the experiments show that the Bregman ADMM method has achieved the best numerical stability while keeping a comparable convergence rate as the subgradient descent method in terms of CPU time. Despite of its popularity in large scale machine learning problems, by lifting
We first examine the convergence property of the Bregman ADMM approach for computing the centroid of a single cluster (the inner loop). In this experiment, a subset of image color or texture data with size 2000 is used. For the two protein sequence datasets, the whole sets are used.
It is technically subtle to compare the convergence and stability of the overall AD2-clustering embedded with different algorithms for computing the centroid. Because of the many iterations in the outer loop, the centroid computation algorithm (solving the inner loop) may behave quite differently over the outer-loop rounds. For instance, if an algorithm is highly sensitive to a hyper-parameter in optimization, the hyper-parameter chosen based on earlier rounds may yield slow convergence later or even cause the failure of convergence. Moreover, achieving high accuracy for centroids in earlier rounds, usually demanding more inner-loop iterations, may not necessarily result in faster decrease in the clustering objective function because the cluster assignment step also matters.
In light of this, we employ a protocol described in Algorithm 9 to decide the number of iterations in the inner loop. The protocol specifies that in each iteration of the outer loop, the inner loop for updating centroids should complete within ηTα/K amount of time, where Tα is the time used by the assignment step and K is the number of clusters. As we have pointed out, the LP/QP solver in the subgradient descent method or standard ADMM suffers from rapidly increasing complexity when the number of support points per distribution increases. In contrast, the effect on Bregman ADMM is much lower. In the experiment below, the datasets contain distributions with relatively small support sizes (a setup favoring the former two methods). A relatively tight time-budget η=2.0 is set. The subgradient descent method finishes at most 2 iterations in the inner loop, while Bregman ADMM on average finishes more than 60 iterations on the color and texture data, and more than 20 iterations on the protein sequence 1-gram and 3-gram data. The results by the ADMM method are omitted because it cannot finish a single iteration under this time budget.
In
We now study the computational/memory efficiency and scalability of AD2-clustering with the Bregman ADMM algorithm embedded for computing cluster centroids. We use the synthetic data that allow easy control over data size and other parameters in order to test their effects on the computational and memory load (i.e., workload) of the algorithm. We first investigate the workload on a single thread. Once we gain a good understanding about the serial workload, we can further study the scalability of our parallel implementation on a cluster computer with distributed memory. Scalability here refers to the ability of a parallel system to utilize an increasing number of processors.
Serial Experiments:
Given the complexity of the algorithm, it is not straightforward to quantify the relationship between workload and the data parameters (see the definitions of
Parallel Experiments:
AD2-clustering can be both cpu-bound and memory-bound. Based on the observations from the above serial experiments, we conducted three sets of experiments to test the scalability of AD2-clustering in a multi-core environment, specifically, strong scaling efficiency, weak scaling efficiency with respect to
Strong scaling efficiency (SSE) is about the speed-up gained from using more and more processors when the problem is fixed in size. Ideally, the running time on parallel CPUs is the time on a single thread divided by the number of CPUs. In practice, such a reduction in time cannot be fully achieved due to communication between CPUs and time for synchronization. We thus measure SSE by the ratio between the ideal and the actual amount of time. We chose a moderate size problem that can fit in the memory of a single machine (50 GB):
Weak scaling efficiency (WSE) measures how stable the memory required on each processor can be when proportionally more processors are used as the size of the problem grows. We compute WSE with respect to both
Handwritten Digits: We conducted two experiments to evaluate the results of AD2-clustering on USPS data, which contain 1100×10 instances (1100 per class). First, we cluster the images at K=30,60,120,240 and report in
Secondly, we tested AD2-clustering for quantization with the existence of noise. In this experiment, we corrupted each sample by “blankout”-randomly deleting a percentage of pixels occupied by the digit (setting to zero the weights of the corresponding bins), as is done in Arthur and Vassilvitskii. Then each class is randomly split into 800/300 training and test samples. Clustering is performed on the 8000 training samples; and a class label is assigned to each cluster by majority vote. In the testing phase, to classify an instance, its nearest centroid is found and the class label of the corresponding cluster is assigned. The test classification error rates with respect to K and the blankout rate are plotted in
Protein Sequences:
Composition-based methods for clustering and classification of protein or DNA sequences have been well perceived in bioinformatics. Specifically, the histogram on different compositions, e.g., nucleotides, in each sequence is used as the sequence signature. Because nucleotide or amino acid pairs or higher-order tuples are related for their molecular structures and evolutionary relationship, histograms on tuples are often incorporated in the signature as well. The “protein sequence 1, 2, 3-gram” dataset contains signatures of protein sequences, each being an array of three histograms on amino acids (1-gram), dipeptides (2-gram), and tripeptides (3-gram) respectively. There are 10,742 instances belonging to 3 classes, the largest 3 categories taken from the overlapping set of the Swiss-Prot and Prosite databases. Details on the creation of this dataset and its sources are referred to Zhang et al. (2015). Because there are 20 types of amino acids, the 1-gram histogram has fixed length 20. The dipeptides or tripeptides have a vocabulary size of 202 or 203. For any particular protein sequence, only its 32 most frequent 2-grams and 3-grams are kept in the histograms. The treatment of multiple distributions in one instance by D2-clustering is explained herein. This dataset is the “symbolic” type, and a symbol-to-symbol distance matrix is provided beforehand for computing the Wasserstein distance. The distance matrix is defined using the PAM250 similarity matrix of amino acid. In Zhang et al. (June 2015), several state-of-the-art clustering methods have been compared with the parallel D2-clustering algorithm (PD2) in terms of efficiency and agreement with ground-truth labels as measured by ARI. Table VII shows that our method can achieve better clustering results than PD2 using considerably less time on the same number of CPUs.
Documents as Bags of Word-Vectors:
The idea of treating each document as a bag of vectors has been explored in previous work where a nearest neighbor classifier is constructed using Wasserstein distance. But clustering based on Wasserstein distance has not been explored. We preprocessed the 20 newsgroups dataset by two steps: remove stop words; remove other words that do not belong to a pre-selected background vocabulary. In particular, two background vocabularies are tested: English Gigaword-5 (denoted by GV) and a Wikipedia dump with minimum word count of 10 (denoted by WV). Omitting details due to lack of space, we validated that under the GV or WV vocabulary information relevant to the class identities of the documents is almost intact. The words in a document are then mapped to a vector space. The document analysis community has found the mapping useful for capturing between word similarity and promoted its use. For GV vocabulary, the Glove mapping to a vector space of dimension 300 is used, while for WV, the Skip-gram model is used to train a mapping space of dimension 400. The frequencies on the words are adjusted by the popular scheme of tf-idf. The number of different words in a document is bounded by m (its value in Table IV). If a document has more than m different words, some words are merged into hyper-words recursively until reaching m, in the same manner as the greedy merging scheme used in centroid initialization are described herein.
We evaluate the clustering performance by two widely used metrics: AMI and ARI. The baseline methods for comparison include K-means on the raw tf-idf word frequencies, K-means on the LDA topic proportional vectors (the number of LDA topics is chosen from {40,60,80,100}), K-means on the average word vectors, and the naive way of treating the 20 LDA topics as clusters. For each baseline method, we tested the number of clusters Kε{10,15,20,25,30,40} and report only the best performance for the baseline methods in Table IV. Under any given setup of a baseline method, multiple runs were conducted with different initialization and the median value of the results was taken. The experimental results show that AD2-clustering achieves the best performance on the two datasets according to both AMI and ARI. Comparing with most baseline methods, the boost in performance by AD2-clustering is substantial. K-means on tf-idf yields AMI close to the results of AD2-clustering, but the clusters generated by the former are quite unbalanced. Unbalanced clusters tend to yield higher values in AMI due to the nature of AMI. By ARI, however, K-means on tf-idf has no advantage over the other baseline methods.
Three first-order methods for clustering discrete distributions under the Wasserstein distance have been developed and empirically compared in terms of speed, stability, and convergence. The experiments identified the modified Bregman ADMM method as most preferable for D2-clustering in an overall sense under common scenarios. The resulting clustering tool is easy to use, requiring no tuning of optimization parameters. We applied the tool to several real-world datasets, including digital images, protein sequences, and documents, and evaluated the quality of the clustering results by comparing with the ground truth class labels. Experiments show that the accelerated D2-clustering often clearly outperforms other widely used methods in the respective domain of the data.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/081,525, filed Nov. 15, 2013, which claims priority from U.S. Provisional Patent Application Ser. No. 61/727,981, filed Nov. 19, 2012, the entire content of both of which is incorporated herein by reference.
This invention was made with government support under Grant Nos. OCI1027854, IIS0347148, CCF0936948, and OCI0821527, awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61727981 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14081525 | Nov 2013 | US |
Child | 15282947 | US |