Virtual computer systems, in which more than one operating system runs on a computer system, have been known for decades. Variations of virtual computer systems include architectures in which plural operating systems run on a single processor, plural operating systems run on plural processors, and plural operating systems run on plural processors that are connected by an input/output (I/O) bus such as a personal computer interconnect (PCI) bus.
Virtual computer systems include architectures in which one or more of the operating systems runs above a native operating system, and architectures in which plural operating systems run above a virtual machine monitor (VMM) or hypervisor layer. Such a VMM or hypervisor can provide a common platform for those operating systems that run above it, and a VMM or hypervisor layer may emulate hardware to the operating systems running above it.
As with other conventional computer systems, an operating system for a virtual computer system may contain a file system that organizes data stored on a disk or other storage system, and a network protocol stack for communicating, via a network interface device, with other entities over a network. When different operating systems of a virtual computer system wish to communicate with each other, for example to exchange data, they typically do so via networking protocols.
Certain networking protocols, such as Transmission Control Protocol (TCP), provide guaranteed delivery of data and other features that require significant computing resources to run. For example, TCP requires a complex control block, sometimes called a TCP control block or TCB, to be maintained at a network node such as a computer system for each logical connection that is set up to provide TCP services. Such a TCB contains status information that fully describes the logical connection from the standpoint of the node by which it is maintained, and so can also be called a TCP connection. An exemplary TCP control block is discussed and illustrated in chapter 24, pages 795-815 of “TCP/IP Illustrated, Volume 2,” Wright and Stevens (1994), which is incorporated herein by reference. Due to the resources required to run TCP, some network interfaces, whether provided as add-on cards or board-level products such as chipsets, have processors or other hardware that offload processing of TCP from a central processing unit (CPU) of the computer system.
When different operating systems of a virtual computer system exchange data using TCP, the resources required of the virtual computer system to exchange the data are typically doubled in comparison with a computer system that runs only one of the operating systems communicating over a network. For example, to send data by TCP, a first operating system of the virtual computer system establishes a TCP connection with a second operating system of the VC system, after which the first application may request to send data to the second application. The data is then acquired by the network stack of the first operating system and split into TCP/IP segments which are prefixed with TCP/IP headers including checksums of both the data and the headers, each step of which can include copying the data by the CPU of the VC. Each of the packets containing headers and data is then prefixed with a data link layer header and transmitted on the network, only to be received from the network by the same VC system, which essentially reverses the process performed by the first operating system and first protocol stack, in order to receive the data by the second operating system and second protocol stack. That is, the second protocol stack analyzes the headers and checksums of each received data packet, and reassembles the data from the packets, and then provides the data to the second application, each step of which can again include copying the data by the CPU of the VC.
Because the data to be sent from a first application running on a first operating system of a VC to a second application running on a second operating system of the VC may be stored on a memory that can be accessed by both operating systems, proposals have been made to transfer data between guest operating systems by memory mapping procedures instead of using network protocols such as TCP. While such memory remapping could eliminate much of the double copying described above, the logistics are complex and perhaps for this reason are not commonly implemented.
In one embodiment, first and second operating systems of a virtual computer system can communicate using respective first and second network protocol stacks, by employing procedures that are specialized for a situation in which a TCP control block of the first stack and a TCP control block of the second stack correspond to the same logical connection. In this case, various TCP requirements can be bypassed by coupling the TCP control blocks, reducing or eliminating data copies and providing other efficiencies. This brief summary does not purport to define the invention, which is described in detail below and defined by the claims.
The computer system 20 is running a first operating system 33 and a second operating system 44, and may be called a virtual computer system. The first operating system 33 and second operating system 44 both run on processor 22 with their instructions stored in memory 24 in this embodiment, although in other embodiments the operating systems may run on different processors and/or be stored on different memories. The first operating system 33 has a first network stack 35 that includes conventional components such as a first TCP layer and a first IP layer. The second operating system 44 has a second network stack 46 that includes conventional components such as a second TCP layer and a second IP layer.
The first operating system 33 and the second operating system 44 run over a VMM or hypervisor 50 that allows both operating systems to be part of the same computer system 20. Although hypervisor 50 is shown simply as a platform for the operating systems, it may also or instead be a native operating system above which the first operating system 33 and second operating system 44 both run. A device driver 55 allows the hypervisor 50 and operating systems 33 and 44 to interact with the network interface 26. Although the device driver 55 is shown as a layer of instructions below the hypervisor 50, individual device drivers may instead be provided for the first and second operating systems 33, or the device driver 55 may be incorporated in the hypervisor 50. Similarly, although the network interface 26 is shown as a separate entity in
A first application 60 or other process is running above the first operating system 33, and a second application 62 or other process is running above the second operating system 44. In order to communicate between the first application 60 and the second application 62, the first operating system 33 may use the first network stack 35 and the second operating system 44 may use the second network stack 46. For example, a logical connection may be established between the first TCP layer, which is part of the first network stack 35, and the second TCP layer, which is part of the second network stack 46. To maintain that connection, the first TCP layer creates a first TCP control block or first TCB 64. Because first TCB 64 fully characterizes the state of the logical connection from the standpoint of the first operating system 33 and first network stack 35, it may also be called a TCP connection. Similarly, the second TCP layer creates a second TCP control block or second TCB 66, which fully characterizes the state of the logical connection from the standpoint of the second operating system 44 and second network stack 46, and may also be called a TCP connection.
The TCBs 64 and 66, like all TCP control blocks, can be identified by their source and destination IP addresses and by their source and destination TCP ports. Unlike most or all other TCP control blocks that may be contained in memory 24, however, TCBs 64 and 66 can be identified by each other. That is, because first TCB 64 and second TCB 66 represent two sides of the same logical connection, TCB 64 and TCB 66 are in many aspects mirror images of each other. For example, Table 1 and Table 2 below show that the identifying source and destination IP addresses and TCP ports (sometimes called a four-tuple) of first TCB 64 and second TCB 66 are mirror images of each other.
While the mirror image four-tuples of TCB 64 and TCB 66 allow the pair of TCBs to be identified as belonging to the same logical connection, other aspects of the reciprocal relationship between the first and second TCP connections can be exploited to violate some of the rules of TCP without sacrificing any TCP attributes, providing greatly accelerated data transfer with greatly reduced work by processor 22. That is, because the TCP state is located and referenced by the same set of instructions, conventional TCP processing can modified to reference and update both TCP control blocks essentially simultaneously. In doing so, traditional TCP processing changes radically. The transmit payload can be transferred directly to a receive buffer in the peer without first segmenting it into MSS-sized packets. Furthermore, the need for ACKs and window updates is eliminated—instead, fields like SndUna and SndWnd can be updated directly in the sender's TCB based on the state of the receiver. These types of modifications for “tightly coupled” TCP connections may also be employed for other network protocols used by guest operating systems of a virtual computer system.
As described in more detail below, tightly coupled TCP communication may be implemented using a hypervisor or other common entity in a virtualized system, as shown by arrow 77, as well as with an offload device such as a transport offload engine (TOE) network interface card (NIC) or other device, an example of which is shown in
The identification of reciprocal TCBs may be performed in various ways and at different times. For example, the hypervisor 50 or device driver 55 can monitor connection establishment packets (SYNs) or other TCB related packets and provide a notification up to the network stacks 35 and 46 that they should offload the connections associated with the IP addresses and ports contained in the packets. Alternatively, at a time when one of the network stacks 35 or 46 offloads a connection to hypervisor 50, the hypervisor can check to determine whether it also controls the other end of that connection. It is also possible for the hypervisor 50 to check for reciprocal TCBs when a request for data transfer is sent by one of the applications or other processes to the other application or process. In either of the latter categories, the identification of TCB reciprocity can entail searching a list of offloaded connections to find two TCBs with matching IP addresses and TCP ports, so that the IP addresses and TCP ports are mirror images of each other. Such a search may be implemented as a linear search of all offloaded TCBs, or it may involve a hashing mechanism on some or all of the four-tuple to reduce the overhead of the search.
For a dynamic offload NIC, illustrated and discussed more fully below with respect to
Once a pair of TCBs has been identified as reciprocal, those TCBs may be flagged as tightly coupled and linked together via a pointer, for example. To link the TCBs together by a pointer, for example, first TCB 64 can point to the location in memory of second TCB 66, and visa versa. Should these connections be flagged as tightly coupled and/or linked together in this fashion, corresponding code is run by the hypervisor 50 or other entity that accesses both TCBs to remove this flag and/or break the link when one or both of these connections is “uploaded” from the hypervisor or offload device. In this sense, uploading the TCBs means that their control is returned to the respective TCP layers that established them. Such an uploaded TCB may be flagged as having been previously tightly coupled, with an indication to look for the reciprocal TCB to facilitate tight coupling in the future, should it be offloaded again. In some cases it may be desirable to send a request from the hypervisor 50 to a network stack to offload a TCB that is reciprocal to one already controlled by the hypervisor, especially if the TCB controlled by the hypervisor is flagged as having been previously tightly coupled.
Synergistic advantages of tightly coupled TCP can be realized when one or the other sides of a tightly coupled logical connection performs an I/O operation such as data transfer from one side to the other. This is shown symbolically in
The receiving side of tightly coupled TCP may involve different modes of operation. For instance, a receiving application may have “posted” one or more buffers to the operating system in which it would like received data to be placed. That buffer can then propagated to the underlying hypervisor or offload device that will manage the tightly coupled connection. We call this the “posted buffer” mode. Conversely, if no receive buffer has been posted, received data might be “indicated” from the underlying hypervisor or offload device, up to the guest operating system, and in turn to the application. We call this the “indication” mode.
In the “posted buffer” mode, the hypervisor or offload device may have access to the memory containing the data to be sent and the buffer in which to place it. Data transfer then involves a copy or DMA from the first location to the second with a length being the minimum of those two buffers. A DMA engine may be part of a chipset for processor 22, so that DMA transfer can occur without data crossing the I/O channel 28. Upon completion of that copy or DMA the state within both TCBs is updated to reflect this data transfer. For instance, on the sender, TCB fields such as SndNxt, SndMax and SndUna are all advanced by the length of data transferred. Note that by advancing SndUna we consider the data to be instantly acknowledged, although no acknowledgement packets are sent or received. Similarly, the TCB of the receiver is modified to advance RcvNxt by the same value. In this “posted buffer” mode, the state of each TCB is adjusted to reflect the fact that the window does not close as a result of this data transfer. This is due to the fact that the posted receive buffer is from the receiving application, and as such, the data is considered to be consumed by the application.
In the “indication” mode, the data is placed into network buffers controlled by the receiver. These buffers are typically allocated by a network device driver and then propagated up to the protocol stack or application, at which point the data contained in them is either “consumed” by copying the data (with the CPU) to another buffer, or “refused” (not consumed). In the event that data is not consumed, a “posted buffer” may be passed down instead.
There are several things to note about data transfer in “indication” mode. First, like the “posted buffer” mode, the state variables, including SndUna and RcvNxt are advanced by the amount of data transferred, and reflect the same “instant acknowledgment” as described above. One difference, however, is that in this case the data is not considered to be consumed by the application, and as such, the state variables are adjusted to reflect a closing receive window on the receiver. That window is opened via a subsequent notification to the hypervisor or offload device that data had been copied out of the network buffers into an application buffer. A second thing to note about “indication” mode is that it may be desirable to withhold some of the send data with the expectation that a “posted buffer” may be presented in response to the indicated data. Note further that in indication mode the possibility exists that receiver may be out of network receive buffers at the time that the sender wishes to send data. In this case, the hypervisor or offload engine may simply choose to delay the send until such a time as network buffers become available. The underlying hypervisor or offload engine would then be responsible for keeping track of which send operations are pending such that when network buffers are subsequently provided by the receiver, the pending send operations are then restarted.
The “posted buffer” mode is preferential to the “indication” mode in that data is moved directly to the application buffer and avoids a copy from the intermediate network buffer. As such, if there is a likelihood that a buffer will be posted, it is preferable to wait for that to occur.
It is worth noting that no packets of any kind need be sent or received for either TCP connection once the reciprocal TCBs are tightly coupled, in contrast to the double copying of each packet that may occur for communication between guest operating systems of a virtual computer system. A DMA operation, whether performed by a DMA engine on network interface 26 or computer system 20, can eliminate even the reduced copying between buffers that may otherwise be performed by a CPU such as processor 22. Other aspects of TCP are also altered or eliminated through the use of “tightly-coupled” TCP. Retransmission timers (and retransmits), window probes and keepalives are eliminated. Round trip timers are set to a fixed minimum and held there (no calculations performed). Slow-start, congestion-control, and error recovery mechanisms (new reno, sack) are bypassed entirely.
It should be noted, however, that while we are altering TCP behavior as it applies to communication within these two tightly coupled TCB's, the state of each TCB is maintained such that conventional TCP processing may resume at any time—which would be required should one or both TCB's be uploaded by its respective guest operating system.
Tightly coupled TCP operations may also include a TCP state change. For instance, one side of the connection might elect to close (disconnect) the connection. Like the data transfer discussion, this can involve simultaneously adjusting the state variables to reflect the transfer of a single byte (a FIN takes one sequence number). It also involves a state change on both halves of the connection. The state of the side that sent the FIN is changed to FIN_WAIT—2, while the state of the receiver is immediately changed to CLOSE_WAIT. Note that the state of the sender skips over FIN_WAIT—1 since the FIN is considered to be ACKed immediately.
This operation also requires an indication of the FIN, or an analogous disconnection notification, on the receiving side up to the protocol stack of the guest operating system. This indication may ultimately result in a close request in response, or possibly an upload of the connection. In the case of the close request, this would result in a similar state change operation, except that this time the sender of the FIN would move immediately from CLOSE_WAIT to CLOSED, skipping the LAST_ACK state due to the “immediate acknowledgement”, while the receiver of the FIN would move from FIN_WAIT—2 to TIME_WAIT.
The second computer 104 has a second processor 122 and a second memory 124. The second computer 104 is running a second operating system 144 with a second network stack 146 that includes conventional components such as a second TCP layer and a second IP layer. A second device driver 155 is running below the second network stack 146 and a second application or other process 162 is running above the second operating system 144.
The NIC 126 includes a NIC processor 114 and a NIC memory 116, as well as a DMA engine 180 that can access computer memories 114 and 124. The NIC 126 includes a network protocol stack 114 or hardware that can perform network protocol functions, including at least a subset of TCP functions. The NIC 126 may be a dynamic offload NIC such as that pioneered by Alacritech, Inc., which can manage a TCP connection that has been established by first network stack 135 or second network stack 146, as described for example in U.S. Pat. No. 6,434,620, which is incorporated by reference. The NIC 126 may alternatively be a full offload NIC that establishes and maintains TCP connections but is not designed to transfer TCP connections from or to a computer or other device.
The NIC memory 116 contains a first TCB 164 that was established by the first network stack 135 and then acquired by the NIC 126. The NIC memory 116 may also contain many other TCBs, including a second TCB 166 that was established by the second network stack 144 and then acquired by the NIC 126. The first and second TCBs 164 and 166 both correspond to a logical connection between the first application 160 on the first computer 102 and the second application 162 on the second computer 104. TCB 164 and TCB 166 have been identified by the NIC 126 as being reciprocal, either by checking the four-tuples of packets, or TCBs, during connection establishment, TCB offload, or during data transfer, optionally using a hashing mechanism and/or NIC hardware to accelerate the search for reciprocal TCBs.
Once TCB 164 and TCB 166 have been identified by the NIC 126 as being reciprocal, they are coupled together as shown by arrow 177. The coupling 177 may include flagging the TCBs 164 and 166 as tightly coupled and/or linking them together via a pointer, for example. That is, first TCB 164 can point to the location in memory 116 of second TCB 166, and visa versa. Should these TCP connections be flagged as tightly coupled and/or linked together in this fashion, corresponding code is run by the NIC 126 to remove this flag and/or break the link when one or both of these connections is “uploaded” from the NIC 126 to respective computers 102 and/or 104. Such an uploaded TCB may be flagged as having been previously tightly coupled, with an indication to look for the reciprocal TCB to facilitate tight coupling in the future, should it be offloaded again.
The tightly coupled TCBs 164 and 166 can both be referenced within a single function call, providing substantially simultaneous updating of the TCBs. As mentioned above with regard to the hypervisor embodiment, many advantages of tightly coupled TCP can be realized when one of the sides of a tightly coupled logical connection performs an I/O operation such as data transfer from one side to the other. This is shown symbolically in
The NIC 126 in turn recognizes that the corresponding TCB 164 or 166 has been flagged as part of a tightly coupled pair of TCBs, and that data transfer can therefore be accelerated. Instead of transferring the data by way of conventional TCP/IP packets, the data may be transferred by tightly coupled TCP using the posted buffer or indication modes described above. In either of these examples, the DMA engine may transfer multi-kilobyte (e.g., 64 KB) blocks of data between memory 114 and memory 124 without processor 112 or processor 122 performing any data copying. The DMA engine 180 performs such data transfers under control of processor 114, which executes specialized instructions for data transfer using tightly coupled TCP. In concert with the specialized instructions for data transfer, the processor executes instructions specialized for tightly coupled TCP to update TCBs 164 and 166. The specialized instructions for updating TCBs 164 and 166 may violate many rules of the TCB protocol, yet provide reliable, error free, ordered delivery of data without congestion, overflow or underflow. Portions of the TCP protocol that are modified or eliminated for data transfer with tightly coupled TCP include segmentation and reassembly, reordering of packets, window control, congestion control, creating and analyzing checksums, and acknowledgement processing. In short, tightly coupled TCP may accelerate data delivery by orders of magnitude while reducing total processing overhead by similar amounts, all without sacrificing any of the other attributes of TCP, such as guaranteed data delivery. Moreover, as noted above, conventional TCP processing can be resumed at any time.
NIC 226 includes a NIC processor 222 and NIC memory 224, as well as a DMA engine 280 that can access computer memory 204, for example to transfer a TCB to or from NIC memory 224. The NIC 226 includes a network protocol stack 214 or hardware that can perform network protocol functions, including at least a subset of the TCP protocol, such as handling bulk data transfer for a TCP connection.
The first application 260 and second application 262 wish to communicate with each other and, because they are running above different operating systems of virtual computer system 200, utilize their respective network stacks to facilitate the communication. First network stack 235 establishes a first TCB 264 to define and manage that communication for the first application 260, and second network stack 246 establishes a second TCB 266 to define and manage that communication for the second application 262. Although the TCP protocol and TCP control blocks are discussed in this embodiment, other networking protocols that utilize control blocks to define and manage communications for applications may alternatively be employed. After establishment by the respective network stacks, TCB 264 and TCB 266 are offloaded to hypervisor 250, device driver 255 or another common platform or process for first and second operating systems 233 and 244. TCB 264 and TCB 266 may be identified by hypervisor 250, device driver 255 or another process or entity as being reciprocal, either by checking the four-tuples of packets or TCBs, during connection establishment, TCB offload, or during data transfer, optionally using a hashing mechanism and/or NIC 226 or other hardware to accelerate the search for reciprocal TCBs.
Once the reciprocal relationship of TCBs 264 and 266 has been identified, they can be tightly coupled, as illustrated by arrow 277, by hypervisor 250 or another entity having instructions that can reference TCB 264 and TCB 266 as a related pair of TCBs rather than with conventional instructions for individual TCBs that incorporate no knowledge of the reciprocal relationship between the TCBs. As described above, reciprocal TCBs 264 and 266 may be flagged as tightly coupled and linked together via a pointer, so that first TCB 264 can point to the location in memory of second TCB 266, and visa versa.
With TCBs 264 and 266 flagged as tightly coupled and/or linked together in this fashion, code may be run by the hypervisor 250 or other entity that accesses both TCBs to remove this flag and/or break the link when one or both of these connections is uploaded from the hypervisor or other entity, so that their control is returned to the respective TCP layers that established them. In this sense, uploading the TCBs means that their control is returned to the respective TCP layers that established them. Such an uploaded TCB may be flagged as having been previously tightly coupled, with an indication to look for the reciprocal TCB to facilitate tight coupling in the future, should it be offloaded again. In some cases it may be desirable to send a request from the hypervisor 250 or other entity that can perform tight coupling to a network stack to offload a TCB that is reciprocal to one already controlled by the hypervisor, especially if the TCB controlled by the hypervisor is flagged as having been previously tightly coupled.
Similar code can be provided should one or both of these TCBs be offloaded again, for example from hypervisor 250 to dynamic offload NIC 226. In this case, it may be desirable to offload the TCBs 264 and 266 together from the hypervisor to the NIC, so that the TCBs remain tightly coupled even during the offloading. Reasons for offloading a tightly coupled pair of connections from hypervisor 250 to NIC 226 include utilizing the hardware of NIC 226 rather than processor 202 to transfer data. A set of instructions that accomplishes this tightly coupled offloading may be provided to the hypervisor and the NIC, and a similar but converse set of instructions can be provided to those entities to accomplish a tightly coupled uploading. Because both ends of the logical connection are controlled by one entity, the possibility of in-transit packets that may cause a race condition in offloading a single TCB can be avoided, and a multistep offload need not occur.
Although we have focused on detailed descriptions of particular embodiments, other embodiments and modifications are within the spirit of this invention as defined by the appended claims. For example, although TCP is discussed as an exemplary transport level protocol, other control blocks that define logical connections, which may be found in other protocols or in modifications to the TCP protocol, may instead be employed. Moreover, although a virtual computer system is discussed, other systems in which a single entity can access both ends of a logical connection may also be tightly-coupled.
This application claims the benefit under 35 U.S.C. 120 of (is a continuation of) U.S. patent application Ser. No. 12/410,366, filed Mar. 24, 2009, now U.S. Pat. No. 8,539,513 which in turn claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application 61/072,773, filed April, 2008, both of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4366538 | Johnson et al. | Dec 1982 | A |
4485455 | Boone et al. | Nov 1984 | A |
4485460 | Stambaugh | Nov 1984 | A |
4589063 | Shah et al. | May 1986 | A |
4700185 | Balph et al. | Oct 1987 | A |
4991133 | Davis et al. | Feb 1991 | A |
5056058 | Hirata et al. | Oct 1991 | A |
5058110 | Beach et al. | Oct 1991 | A |
5097442 | Ward et al. | Mar 1992 | A |
5129093 | Muramatsu et al. | Jul 1992 | A |
5163131 | Rowet et al. | Nov 1992 | A |
5212778 | Dally et al. | May 1993 | A |
5274768 | Traw et al. | Dec 1993 | A |
5280477 | Trapp | Jan 1994 | A |
5281963 | Ishikawa et al. | Jan 1994 | A |
5289580 | Latif et al. | Feb 1994 | A |
5303344 | Yokoyama et al. | Apr 1994 | A |
5412782 | Hausman et al. | May 1995 | A |
5418912 | Christenson | May 1995 | A |
5448566 | Richter et al. | Sep 1995 | A |
5485455 | Dobbins et al. | Jan 1996 | A |
5485460 | Schrier et al. | Jan 1996 | A |
5485579 | Hitz et al. | Jan 1996 | A |
5506966 | Ban | Apr 1996 | A |
5511169 | Suda | Apr 1996 | A |
5517668 | Szwerinski et al. | May 1996 | A |
5524250 | Chesson et al. | Jun 1996 | A |
5535375 | Eshel et al. | Jul 1996 | A |
5548730 | Young et al. | Aug 1996 | A |
5553241 | Shirakhar | Sep 1996 | A |
5566170 | Bakke et al. | Oct 1996 | A |
5574919 | Netravali et al. | Nov 1996 | A |
5588121 | Reddin et al. | Dec 1996 | A |
5590328 | Seno et al. | Dec 1996 | A |
5592622 | Isfeld et al. | Jan 1997 | A |
5596574 | Perlman et al. | Jan 1997 | A |
5598410 | Stone | Jan 1997 | A |
5619650 | Bach et al. | Apr 1997 | A |
5629933 | Delp et al. | May 1997 | A |
5633780 | Cronin | May 1997 | A |
5634099 | Andrews et al. | May 1997 | A |
5634127 | Cloud et al. | May 1997 | A |
5642482 | Pardillos | Jun 1997 | A |
5664114 | Krech, Jr. et al. | Sep 1997 | A |
5671355 | Collins | Sep 1997 | A |
5678060 | Yokoyama et al. | Oct 1997 | A |
5682534 | Kapoor et al. | Oct 1997 | A |
5684954 | Kaiserswerth et al. | Nov 1997 | A |
5692130 | Shobu et al. | Nov 1997 | A |
5699317 | Sartore et al. | Dec 1997 | A |
5699350 | Kraslavsky | Dec 1997 | A |
5701434 | Nakagawa | Dec 1997 | A |
5701516 | Cheng et al. | Dec 1997 | A |
5727142 | Chen | Mar 1998 | A |
5742765 | Wong et al. | Apr 1998 | A |
5749095 | Hagersten | May 1998 | A |
5751715 | Chan et al. | May 1998 | A |
5751723 | Vanden Heuvel et al. | May 1998 | A |
5752078 | Delp et al. | May 1998 | A |
5758084 | Silverstein et al. | May 1998 | A |
5758089 | Gentry et al. | May 1998 | A |
5758186 | Hamilton et al. | May 1998 | A |
5758194 | Kuzman | May 1998 | A |
5768618 | Erickson et al. | Jun 1998 | A |
5771349 | Picazo, Jr. et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5778013 | Jedwab | Jul 1998 | A |
5778419 | Hansen et al. | Jul 1998 | A |
5790804 | Osborne | Aug 1998 | A |
5794061 | Hansen et al. | Aug 1998 | A |
5802258 | Chen | Sep 1998 | A |
5802580 | McAlpine | Sep 1998 | A |
5809328 | Nogales et al. | Sep 1998 | A |
5809527 | Cooper et al. | Sep 1998 | A |
5812775 | Van Seters et al. | Sep 1998 | A |
5815646 | Purcell et al. | Sep 1998 | A |
5819111 | Davies et al. | Oct 1998 | A |
5828835 | Isfeld et al. | Oct 1998 | A |
5848293 | Gentry | Dec 1998 | A |
5870394 | Oprea | Feb 1999 | A |
5872919 | Wakeland | Feb 1999 | A |
5878225 | Bilansky et al. | Mar 1999 | A |
5878227 | Wade et al. | Mar 1999 | A |
5892903 | Klaus | Apr 1999 | A |
5898713 | Melzer et al. | Apr 1999 | A |
5913028 | Wang et al. | Jun 1999 | A |
5917828 | Thompson | Jun 1999 | A |
5920566 | Hendel et al. | Jul 1999 | A |
5930830 | Mendelson et al. | Jul 1999 | A |
5931918 | Row et al. | Aug 1999 | A |
5935205 | Murayama et al. | Aug 1999 | A |
5935249 | Stern et al. | Aug 1999 | A |
5937169 | Connery et al. | Aug 1999 | A |
5941969 | Ram et al. | Aug 1999 | A |
5941972 | Hoese et al. | Aug 1999 | A |
5950203 | Stakuis et al. | Sep 1999 | A |
5963876 | Manssen et al. | Oct 1999 | A |
5978844 | Tsuchiya et al. | Nov 1999 | A |
5987022 | Geiger et al. | Nov 1999 | A |
5991299 | Radogna et al. | Nov 1999 | A |
5996013 | Delp et al. | Nov 1999 | A |
5996024 | Blumenau | Nov 1999 | A |
6005849 | Roach et al. | Dec 1999 | A |
6009478 | Panner et al. | Dec 1999 | A |
6014380 | Hendel et al. | Jan 2000 | A |
6014557 | Morton et al. | Jan 2000 | A |
6016513 | Lowe | Jan 2000 | A |
6021446 | Gentry, Jr. | Feb 2000 | A |
6021507 | Chen | Feb 2000 | A |
6026452 | Pitts | Feb 2000 | A |
6034963 | Minami et al. | Mar 2000 | A |
6038562 | Anjur et al. | Mar 2000 | A |
6041058 | Flanders et al. | Mar 2000 | A |
6041381 | Haese | Mar 2000 | A |
6044438 | Olnowich | Mar 2000 | A |
6047323 | Krause | Apr 2000 | A |
6047356 | Anderson et al. | Apr 2000 | A |
6049528 | Hendel et al. | Apr 2000 | A |
6057863 | Olarig | May 2000 | A |
6061368 | Hitzelberger | May 2000 | A |
6065096 | Day et al. | May 2000 | A |
6067569 | Khaki et al. | May 2000 | A |
6070200 | Gates et al. | May 2000 | A |
6078564 | Lakshman et al. | Jun 2000 | A |
6078733 | Osborne | Jun 2000 | A |
6097734 | Gotesman et al. | Aug 2000 | A |
6101555 | Goshey et al. | Aug 2000 | A |
6111673 | Chang et al. | Aug 2000 | A |
6115615 | Ota et al. | Sep 2000 | A |
6122670 | Bennett et al. | Sep 2000 | A |
6141701 | Whitney | Oct 2000 | A |
6141705 | Anand et al. | Oct 2000 | A |
6145017 | Ghaffari | Nov 2000 | A |
6157944 | Pederson | Dec 2000 | A |
6157955 | Narad et al. | Dec 2000 | A |
6172980 | Flanders et al. | Jan 2001 | B1 |
6173333 | Jolitz et al. | Jan 2001 | B1 |
6181705 | Branstad et al. | Jan 2001 | B1 |
6202105 | Gates et al. | Mar 2001 | B1 |
6219693 | Napolitano et al. | Apr 2001 | B1 |
6223242 | Sheafor et al. | Apr 2001 | B1 |
6226680 | Boucher et al. | May 2001 | B1 |
6233242 | Mayer et al. | May 2001 | B1 |
6243667 | Kerr et al. | Jun 2001 | B1 |
6246683 | Connery et al. | Jun 2001 | B1 |
6247060 | Boucher et al. | Jun 2001 | B1 |
6279051 | Gates et al. | Aug 2001 | B1 |
6289023 | Dowling et al. | Sep 2001 | B1 |
6298403 | Suri et al. | Oct 2001 | B1 |
6324649 | Eyres et al. | Nov 2001 | B1 |
6334153 | Boucher et al. | Dec 2001 | B2 |
6343345 | Hilla et al. | Jan 2002 | B1 |
6343360 | Feinleib | Jan 2002 | B1 |
6345301 | Burns et al. | Feb 2002 | B1 |
6345302 | Bennett et al. | Feb 2002 | B1 |
6356951 | Gentry, Jr. | Mar 2002 | B1 |
6370599 | Anand et al. | Apr 2002 | B1 |
6385647 | Willis et al. | May 2002 | B1 |
6389468 | Muller et al. | May 2002 | B1 |
6389479 | Boucher | May 2002 | B1 |
6393487 | Boucher et al. | May 2002 | B2 |
6418169 | Datari | Jul 2002 | B1 |
6421742 | Tillier | Jul 2002 | B1 |
6421753 | Haese et al. | Jul 2002 | B1 |
6427169 | Elzur | Jul 2002 | B1 |
6427171 | Craft et al. | Jul 2002 | B1 |
6427173 | Boucher et al. | Jul 2002 | B1 |
6434620 | Boucher et al. | Aug 2002 | B1 |
6434651 | Gentry, Jr. | Aug 2002 | B1 |
6449656 | Elzur et al. | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6453360 | Muller et al. | Sep 2002 | B1 |
6453406 | Sarnikowski et al. | Sep 2002 | B1 |
6470415 | Starr et al. | Oct 2002 | B1 |
6473425 | Bellaton et al. | Oct 2002 | B1 |
6480489 | Muller et al. | Nov 2002 | B1 |
6483804 | Muller et al. | Nov 2002 | B1 |
6487202 | Klausmeier et al. | Nov 2002 | B1 |
6487654 | Dowling | Nov 2002 | B2 |
6490631 | Teich et al. | Dec 2002 | B1 |
6502144 | Accarie | Dec 2002 | B1 |
6523119 | Pavlin et al. | Feb 2003 | B2 |
6526446 | Yang et al. | Feb 2003 | B1 |
6542504 | Mahler et al. | Apr 2003 | B1 |
6570884 | Connery et al. | May 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6591310 | Johnson | Jul 2003 | B1 |
6594261 | Boura et al. | Jul 2003 | B1 |
6631484 | Born | Oct 2003 | B1 |
6648611 | Morse et al. | Nov 2003 | B2 |
6650640 | Muller et al. | Nov 2003 | B1 |
6657757 | Chang et al. | Dec 2003 | B1 |
6658480 | Boucher et al. | Dec 2003 | B2 |
6678283 | Teplitsky | Jan 2004 | B1 |
6681364 | Calvignac et al. | Jan 2004 | B1 |
6683851 | Willkie et al. | Jan 2004 | B1 |
6687758 | Craft et al. | Feb 2004 | B2 |
6697366 | Kim | Feb 2004 | B1 |
6697868 | Craft et al. | Feb 2004 | B2 |
6751665 | Philbrick et al. | Jun 2004 | B2 |
6757731 | Barnes et al. | Jun 2004 | B1 |
6757746 | Boucher et al. | Jun 2004 | B2 |
6765901 | Johnson et al. | Jul 2004 | B1 |
6807581 | Starr et al. | Oct 2004 | B1 |
6842896 | Redding et al. | Jan 2005 | B1 |
6862264 | Moura et al. | Mar 2005 | B1 |
6912522 | Edgar | Jun 2005 | B2 |
6938092 | Burns | Aug 2005 | B2 |
6941386 | Craft et al. | Sep 2005 | B2 |
6965941 | Boucher et al. | Nov 2005 | B2 |
6976148 | Arimilli et al. | Dec 2005 | B2 |
6996070 | Starr et al. | Feb 2006 | B2 |
7016361 | Swank et al. | Mar 2006 | B2 |
7024460 | Koopmas et al. | Apr 2006 | B2 |
7042898 | Blightman et al. | May 2006 | B2 |
7047320 | Arimilli et al. | May 2006 | B2 |
7073196 | Dowd et al. | Jul 2006 | B1 |
7076568 | Philbrick et al. | Jul 2006 | B2 |
7089326 | Boucher et al. | Aug 2006 | B2 |
7093099 | Bodas et al. | Aug 2006 | B2 |
7124205 | Craft et al. | Oct 2006 | B2 |
7133940 | Blightman et al. | Nov 2006 | B2 |
7167926 | Boucher et al. | Jan 2007 | B1 |
7167927 | Philbrick et al. | Jan 2007 | B2 |
7174393 | Boucher et al. | Feb 2007 | B2 |
7181531 | Pinkerton et al. | Feb 2007 | B2 |
7185266 | Blightman et al. | Feb 2007 | B2 |
7187679 | Dally et al. | Mar 2007 | B2 |
7191241 | Boucher et al. | Mar 2007 | B2 |
7191318 | Tripathy et al. | Mar 2007 | B2 |
7237036 | Boucher et al. | Jun 2007 | B2 |
7254696 | Mittal et al. | Aug 2007 | B2 |
7260518 | Kerr et al. | Aug 2007 | B2 |
7284070 | Boucher et al. | Oct 2007 | B2 |
7287092 | Sharp | Oct 2007 | B2 |
7337241 | Boucher et al. | Feb 2008 | B2 |
7461160 | Boucher et al. | Dec 2008 | B2 |
7472156 | Philbrick et al. | Dec 2008 | B2 |
7496689 | Sharp et al. | Feb 2009 | B2 |
7502869 | Boucher et al. | Mar 2009 | B2 |
7519699 | Jain et al. | Apr 2009 | B2 |
7543087 | Philbrick et al. | Jun 2009 | B2 |
7584260 | Craft et al. | Sep 2009 | B2 |
7620726 | Craft et al. | Nov 2009 | B2 |
7627001 | Craft et al. | Dec 2009 | B2 |
7627684 | Boucher et al. | Dec 2009 | B2 |
7640364 | Craft et al. | Dec 2009 | B2 |
7664868 | Boucher et al. | Feb 2010 | B2 |
7664883 | Craft et al. | Feb 2010 | B2 |
7673072 | Boucher et al. | Mar 2010 | B2 |
7694024 | Philbrick et al. | Apr 2010 | B2 |
7738500 | Jones et al. | Jun 2010 | B1 |
8028071 | Mahalingam et al. | Sep 2011 | B1 |
20010004354 | Jolitz | Jun 2001 | A1 |
20010013059 | Dawson et al. | Aug 2001 | A1 |
20010014892 | Gaither et al. | Aug 2001 | A1 |
20010014954 | Purcell et al. | Aug 2001 | A1 |
20010025315 | Jolitz | Sep 2001 | A1 |
20010037406 | Philbrick et al. | Nov 2001 | A1 |
20010048681 | Bilic et al. | Dec 2001 | A1 |
20010053148 | Bilic et al. | Dec 2001 | A1 |
20020073223 | Darnell et al. | Jun 2002 | A1 |
20020112175 | Makofka et al. | Aug 2002 | A1 |
20020156927 | Boucher et al. | Oct 2002 | A1 |
20030014544 | Pettey | Jan 2003 | A1 |
20030046330 | Hayes | Mar 2003 | A1 |
20030066011 | Oren | Apr 2003 | A1 |
20030067903 | Jorgensen | Apr 2003 | A1 |
20030110271 | Jayam et al. | Jun 2003 | A1 |
20030110344 | Szczepanek et al. | Jun 2003 | A1 |
20030165160 | Minami et al. | Sep 2003 | A1 |
20040010712 | Hui et al. | Jan 2004 | A1 |
20040042458 | Elzu | Mar 2004 | A1 |
20040042464 | Elzur et al. | Mar 2004 | A1 |
20040049580 | Boyd et al. | Mar 2004 | A1 |
20040049601 | Boyd et al. | Mar 2004 | A1 |
20040054814 | McDaniel | Mar 2004 | A1 |
20040059926 | Angelo et al. | Mar 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040088262 | Boucher et al. | May 2004 | A1 |
20040153578 | Elzur | Aug 2004 | A1 |
20040210795 | Anderson | Oct 2004 | A1 |
20040213290 | Johnson et al. | Oct 2004 | A1 |
20040246974 | Gyugyi et al. | Dec 2004 | A1 |
20040249957 | Ekis et al. | Dec 2004 | A1 |
20040267866 | Carollo et al. | Dec 2004 | A1 |
20050060538 | Beverly | Mar 2005 | A1 |
20050144300 | Craft et al. | Jun 2005 | A1 |
20060133386 | McCormack et al. | Jun 2006 | A1 |
20060248208 | Walbeck et al. | Nov 2006 | A1 |
20060274762 | Pong | Dec 2006 | A1 |
20070083682 | Bartley et al. | Apr 2007 | A1 |
20070140240 | Dally et al. | Jun 2007 | A1 |
20080043732 | Desai et al. | Feb 2008 | A1 |
20080170501 | Patel et al. | Jul 2008 | A1 |
20080184273 | Sekar | Jul 2008 | A1 |
20080209084 | Wang et al. | Aug 2008 | A1 |
20080240111 | Gadelrab | Oct 2008 | A1 |
20090063696 | Wang et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 9819412 | May 1998 | WO |
WO 9850852 | Nov 1998 | WO |
WO 9904343 | Jan 1999 | WO |
WO 9965219 | Dec 1999 | WO |
WO 0013091 | Mar 2000 | WO |
WO 0104770 | Jan 2001 | WO |
WO 0105107 | Jan 2001 | WO |
WO 0105116 | Jan 2001 | WO |
WO 0105123 | Jan 2001 | WO |
WO 0140960 | Jun 2001 | WO |
WO 0159966 | Aug 2001 | WO |
WO 0186430 | Nov 2001 | WO |
WO 2007130476 | Nov 2007 | WO |
Entry |
---|
“Hardware Assisted Protocol Processing”, (which Eugene Feinber is working on). Downloaded from the internet and printed on Nov. 25, 1998. 1 page. |
“Z85C30 CMOS SCC Serial Communication Controller”, Zilog Inc. Zilog product Brief. 1997. 3 pages. |
“ISmart LAN Work Requests.” Internet pages of Xpoint Technologies, Inc. printed Dec. 19, 1997. 5 pages. |
“Asante and 100BASE-T Fast Ethernet.” Internet pages printed May 27, 1997. 7 pages. |
“A Guide to the Paragon XP/S-A7 Supercomputer at Indiana University.” Internet pages printed Dec. 21, 1998. 13 pages. |
Stevens, Richard. TCPIIP Illustrated, vol. 1, The Protocols. 1994. pp. 325-326. |
“Northridge/Southbridge vs. Intel Hub Architecture .” Internet pages printed Feb. 19, 2001. 4 pages. |
“Gigabit Ethernet Technical Brief, Achieving End-to-End Performance” Alteon Networks, Inc., First Edition. Sep. 1996. 15 pages. |
“Technical Brief on Alteon Ethernet Gigabit NIC Technology” Internet pages downloaded from www.alteon.com. Printed Mar. 15, 1997. 14 pages. |
“VT8501 Apollo MVP4.” VIA Technologies, Inc. Revision 1.3. Feb. 1, 2000. Pages i-iv, 1-11, cover and copyright page. |
“iReady Rounding Out Management Team with Two Key Executives.” iReady News Archives article downloaded from http:/fwww.ireadyco.com/archives/keyexec.html. Printed Nov. 28, 1998. 2 pages. |
Internet pages from iReady Products, web sitehttp:/fwww.ireadyco.com/products,html. Printed Nov. 25, 1998. 2 pages. |
iReady News Archives, Toshiba, iReady shipping Internet chip. Printed Nov. 25, 1998.1 page |
“Technology.” Interprophet article downloaded fromhttp:/fwww.interprophet.com/technology.html. Printed Mar. 1, 2000. 17 pages. |
“The 1-1000 Internet Tuner.” iReady Corporation article. Date unknown. 2 pages. |
“About Us Introduction.” iReady article downloaded from the internet http:f/www.iReadyco.com/about.html. Pritned Nov. 25, 1998. 3 pages. |
“Revolutionary Approach to Consumer Electronics Internet Connectivity Funded.” iReady News Archive article. San Jose, California. Nov. 20,1997 (printed Nov. 2, 1998). 2 pages. |
“Seiko Instruments Inc. (SII) Introduces World'S First Internet-Ready Intelligent LCD Modules Based on IReady Technology.” iReady News Archive article. Santa Clara, CA and Chiba, Japan. Oct. 26, 1998 (printed Nov. 2, 1998). 2 pages. |
“iReady internet Tuner to Web Enable Devices.” NEWSwatch article. Tuesday, Nov. 5, 1996 (printed Nov. 2, 1998). 2 pages. |
Lammers, David. “Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner.” EE Times article. Printed Nov. 2, 1998. 2 pages. |
Carbone, J.S. “Comparison of Novell Netware and TCP/IP Protocol Architectures.” Printed Apr. 10, 1998. 19 pages. |
“AEA-7110C-a DuraSAN product.” Adaptec article. Printed Oct. 1, 2001. 11 pages. |
“iSCSI and 2Gigabit fibre Channel Host Bus Adapters from Emulex, Qlogic, Adaptec, JNI.” iSCSI HBA article. Printed Oct. 1, 2001. 8 pages. |
“FCE-3210/6410 32 and 64-bit PCI-to-Fibre Channel HBA.” iSCSI HBA article. Printed Oct. 1, 2001. 6 pages. |
“iSCSI Storage.” ISCSI.com article. Pritned Oct. 1, 2001. 2 pages. |
Kalampoulkas et al. 'Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis. IEEE Transactions on Networking. vol. 6, No. 6. Dec. 1998. 17 pages. |
“Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based on iReady Design.” IReady News article. Santa Clara, CA, and Tokyo, Japan. Oct. 14, 1998 (printed Nov. 2, 1998). 3 pages. |
Jolitz, Lynne. “Frequently Asked Questions.” Internet pages. of InterProphet. Printed Jun. 14, 1999. 4 pages. |
Hitz et al. “File System Design for an NFS File Server Appliance.” Winter of 1992. 13 pages. |
“Adaptec Announces EtherStorage Technology.” Adaptec Press Release article. May 4, 2000 (printed Jun. 15, 2000). 2 pages. |
“EtherStorage Frequently Asked Questions.” Adapted article. Printed Jul. 19, 2000. 5 pages. |
“EtherStorage White Paper.” Adapted article. Printed Jul. 19, 2000. 7 pages. |
Berlino, J. et al. “Computers; Storage.” CIBC World Markets article. Aug. 7, 2000. 9 pages. |
Milunovich, S. Merrill Lynch article entitled “Storage Futures.” Merrill Lynch article. May 10, 2000. 22 pages. |
Taylor, S. “Montreal Start-Up Battles Data Storage Botttleneck.” CBS Market Watch article. Mar. 5, 2000 (printed Mar. 7, 2000). 2 pages. |
Satran, J. et al. “SCSIITCP (SCSI over TCP).” Internet-draft article. Feb. 2000 (printed May 19, 2000). 38 pages. |
'Technical White Paper-Xpoint's Disk to LAN Acceleration Solution for Windows NT Server. Internet pages. Printed Jun. 5, 1997. 15 pages. |
“Network Accelerator Chip Architecture, twelve-slide presentation.” Jato Technologies article. Printed Aug. 19, 1998. 13 pages. |
“Enterprise System Uses Flexible Spec.” EETimes article. Aug. 10, 1998 (printed Nov. 25, 1998). 3 pages. |
“Smart Ethernet Network Interface Cards,” which Berend Ozceri is developing. Internet pages. Printed Nov. 25, 1998. 2 pages. |
“GigaPower Protocol Processor Product Review.” Internet pages of Xaqti corporation. Printed Nov. 25, 1999. 4 pages. |
Oren, Amit (inventor). Assignee: Siliquent Technologies Ltd. “CRC Calculations for Out of Order PUDs.” U.S. Appl. No. 60/283,896, filed Apr. 12, 2003. |
Walsh, Robert J. “Dart: Fast Application Level Networking via Data-Copy Avoidance.” Internet pages. Printed Jun. 3, 1999. 25 pages. |
Tanenbaum, Andrews. Computer Networks, Third Edition, ISBN 0-13-349945-6. Mar. 6, 1996. |
Druschel, Peter et al. “LRP: A New Network Subsystem Architecture for Server Systems.” Article from Rice University. Oct. 1996. 14 pages. |
“TCP Control Block Interdependence.” Internet RFC/STD/FYI/BCP Archives article with heading “RFC2140” web address http://www.faqs.org/rfcs/rfc2140.html. Printed Sep. 2, 2002. 9 pages. |
'Tornado: for Intelligent Network Acceleration. WindRiver article. Copyright Wind River Systems. 2001. 2 pages. |
“Complete TCP/IP Offload for High-Speed Ethernet Networks.” WindRiver White Paper. Copyright Wind River Systems. 2002. 7 pages. |
“Solving Server Bottlenecks with Intel Server Adapters.” Intel article. Copyright Intel Corporation. 1999. 8 pages. |
Schwaderer et al. “XTP in VLSI Protocol Decomposition for ASIC Implementation.” IEEE Computer Society Press publication from 15th Conference on Local Computer Networks. Sep. 30-Oct. 3, 1990. 5 pages. |
Beach, Bob. “UltraNet: An Architecture for Gigabit Networking.” IEEE Computer Society Press publication from 15th Conference on Local Computer Networks. Sep. 30-Oct. 3, 1990. 18 pages. |
Chesson, et al. “The Protocol Engine Chipset.” IEEE Symposium Record from Hot Chips III. Aug. 26-27, 1991. 16 pages. |
MacLean et al. “An Outboard Processor for High Performance Implementation of Transport Layer Protocols.” IEEE Global Telecommunications Conference, Globecom '91, presentation. Dec. 2-5, 1991. 7 pages. |
Ross et al. “FX1000: A high performance single chip Gigabit Ethernet NIC.” IEEE article from Compean '97 Proceedings. Feb. 23-26, 1997. 7 pages. |
Strayer et al. “Ch. 9: the Protocol Engine.” From XTP: The Transfer Protocol. Jul. 1992. 12 pages. |
Publication entitled “Protocol Engine Handbook.” Oct. 1990. 44 pages. |
Koufopavlou et al. “Parallel TCP for High Performance Communication Subsystems.” IEEE Global Telecommunications Conference, Globecom '92, presentation. Dec. 6-9, 1992. 7 pages. |
Lilienkamp et al. “Proposed Host-Front End Protocol.” Dec. 1984. 56 pages. |
Thia et al. “High-Speed OSI Protocol Bypass Algorithm with Window Flow Control.” Protocols for High Speed Networks. 1993. pp. 53-68. |
Jolitz, William et al. “TCP/IP Network Accelerator and Method of Use.” Filed Jul. 17, 1997. U.S. Appl. No. 60/053,240. |
Thia et al. “A Reduced Operational Protocol Engine (ROPE) for a multiple-layer bypass architecture.” Protocols for High Speed Networks. 1995. pp. 224-239. |
Form 10-K for Exelan, Inc., for the fiscal year ending Dec. 31, 1987. 10 pages. |
Form 10-K for Exelan, Inc., for the fiscal year ending Dec. 31, 1988. 10 pages. |
Merritt, Rick. “Ethernet Interconnect Outpacing Infiniband at Intel.” EE Times article. Sep. 11, 2002. 9 pages. |
Starr, David D. et al. “Intelligent Network Storage Interface Device.” U.S. Appl. No. 09/675,700, filed Sep. 29, 2000. |
Boucher, Laurence B. et al. “Intelligent Network Interface System and Method for Accelerated Protocol Processing.” U.S. Appl. No. 09/692,561, filed Oct. 18, 2000. |
Craft, Peter K. et al. “Transferring Control of TCP Connections Between Hierarchy of Processing Mechanisms.” U.S. Appl. No. 11/249,006, filed Oct. 11, 2005. |
Starr, Daryl D. et al. “Accelerating Data Transfer in a Virtual Computer System with Tightly Coupled TCP Connections.” U.S. Appl. No. 12/410,366, filed Mar. 24, 2009. |
Craft, Peter K. et al. “TCP Offload Send Optimization.” U.S. Appl. No. 12/504,021, filed Jul. 16, 2009. |
Craft, Peter K. et al. “TCP Offload Device that Batches Session Layer Headers to Reduce Interrupts as Well as CPU Copies.” U.S. Appl. No. 12/581,342, filed Oct. 19, 2009. |
Philbrick, Clive M. et al. “Freeing Transmit Memory on a Network Interface Device Prior to Receiving an Acknowledgment That Transmit Data Has Been Received by a Remote Device.” U.S. Appl. No. 12/470,980, filed May 22, 2009. |
Boucher, Laurence B. et al. “Obtaining a Destination Address so That a Network Interface Device Can Write Network Data Without Headers Directly Into Host Memory.” U.S. Appl. No. 12/325,941, filed Dec. 1, 2008. |
Boucher, Laurence B. et al. “Enabling an Enhanced Function of an Electronic Device.” U.S. Appl. No. 11/985,948, filed Nov. 19, 2007. |
Starr, Daryl D. et al. “Network Interface Device With 10 Gb/s Full-Duplex Transfer Rate.” U.S. Appl. No. 11/799,720, filed May 1, 2007. |
Craft, Peter K. et al. “Peripheral Device That DMAS the Same Data to Different Locations in a Computer.” U.S. Appl. No. 11/788,719, filed Apr. 19, 2007. |
Boucher, Laurence B. et al. “TCP/IP Offload Network Interface Device.” U.S. Appl. No. 11/701,705, filed Feb. 2, 2007. |
Starr, Daryl D. et al. “TCP/IP Offload Device With Reduced Sequential Processing.” U.S. Appl. No. 11/348,810, filed Feb. 6, 2006. |
Boucher, Laurence B. et al. “Network Interface Device That Can Transfer Control of a TCP Connection to a Host CPU.” U.S. Appl. No. 11/029,863, filed Jan. 4, 2005. |
Craft, Peter K. et al. “Protocol Stack That Offloads a TCP Connection From a Host Computer to a Network Interface Device.” U.S. Appl. No. 11/027,842, filed Dec. 30, 2004. |
Craft, Peter K. et al. “Protocol Stack That Offloads a TCP Connection From a Host Computer to a Network Interface Device.” U.S. Appl. No. 11/016,642, filed Dec. 16, 2004. |
Boucher, Laurence B. et al. “Method and Apparatus for Dynamic Packet Batching With a High Performance Network Interface.” U.S. Appl. No. 10/678,336, filed Oct. 3, 2003. |
Philbrick Clive M. et al. “Method and Apparatus for Data Re-Assembly With a High Performance Network Interface.” U.S. Appl. No. 10/634,062, filed Aug. 4, 2003. |
Boucher, Laurence B. et al. “High Network Interface Device and System for Accelerated Communication.” U.S. Appl. No. 10/601,237, filed Jun. 19, 2003. |
Boucher, Laurence B. et al. “Method and Apparatus for Distributing Network Traffic Processing on a Multiprocessor Computer.” U.S. Appl. No. 10/438,719, filed May 14, 2003. |
Boucher, Laurence B. et al. “Parsing a Packet Header.” U.S. Appl. No. 10/277,604, filed Oct. 18, 2002. |
Starr, Daryl D.. et al. “Intelligient Network Storage Interface System.” U.S. Appl. No. 10/261,051, filed Sep. 30, 2002. |
Chandranmenon, Girish P. et al. “Trading Packet Headers for Packet Processing.” IEEE/ACM Transactions on Networking. vol. 4, No. 2. Apr. 1996. pp. 141-152. |
Number | Date | Country | |
---|---|---|---|
61072773 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12410366 | Mar 2009 | US |
Child | 14022101 | US |