This disclosure relates to barcode scanning. More particularly, this disclosure relates to acceleration-corrected barcode verification.
Barcodes are essential to modern commerce. Virtually all commercially available items receive barcode identification. Consumers, manufacturers, and retailers all benefit from their use because it is the least expensive yet most reliable way of providing machine-readable information. Given how pervasive barcoding has become for modern commerce, various “barcode verification” schemes have been developed to characterize the quality of a barcode label. For example, with regard to one-dimensional barcodes, the Uniform Code Council (UCC) has promulgated nine separate categories of barcode quality. To ascertain the quality in these categories, a barcode verifier scans a light beam across a barcode.
In a conventional barcode verifier, the light beam is focused into a generally circular illumination spot on the barcode. This illumination spot scans across a “slice” of the barcode during the verification in a direction generally normal to the longitudinal axis of the bars in the barcode. Although a single illumination spot can be used to detect the contrast between the printed bars and the imprinted media between the bars, barcode verification also is related to the widths of the bars as well as the width of the imprinted media strips between the bars. To provide such measurements, barcode verifiers typically use two light beams that are separated by a known distance. In this fashion, the corresponding illumination spots are also separated by this known distance. In general, the barcode verifier will be aligned with the barcode such that the linear separation between the illumination spots is normally directed to the longitudinal axis of the bars in the barcode. Consider the interaction of such a barcode verifier as it begins to scan a barcode, starting from a first bar to a last bar as seen in
The barcode verifier has a detector for each light beam that detects the reflected light from the corresponding illumination spot.
In general, barcode verifiers are machine scanned such that the scan velocity does not change as the barcode is verified. However, a handheld barcode verifier will invariably involve some velocity change as the barcode is verified. U.S. Pat. No. 4,705,939 discloses an averaging technique in which time differences of the initial edge detections and the trailing edge detections are used to account for velocity changes. However, even with this averaging, inaccuracies may remain with regard to barcode width determinations.
Accordingly, there is a need in the art for an improved barcode verifier adapted for handheld use.
In accordance with an aspect of the invention, a method of estimating barcode widths and spaces using a first light source separated by a known distance from a second light source is provided. The method comprises: scanning the first and second laser sources over a barcode while detecting a corresponding first reflected light beam and a second reflected light beam from the scanned barcode; processing the first reflected light beam to determine first barcode edge detections; processing the second reflected light beam to determine second barcode edge detections; estimating a first acceleration for the scanning; estimating a second acceleration for the scanning, wherein the second acceleration is substantially orthogonal to the first acceleration; deriving an overall velocity for the scanning by integrating the first and second accelerations; and comparing the first edge detections to the second edge detections using the overall velocity to derive the barcode widths and spaces.
In accordance with another aspect of the invention, a barcode verifier apparatus is provided that includes; a first photodetector; a second photodetector separated from the first photodetector by a known distance along a first axis; a first accelerometer arranged to detect an acceleration along the first axis; and a second accelerometer arranged to detect, an acceleration along a second axis substantially orthogonal to the first axis.
In accordance, with another aspect of the invention, a barcode verifier is provided that includes; means for determining accelerations during a barcode scan; and means for using the determined accelerations and detected barcode edges from the barcode scan for determining barcode widths and barcode space widths.
Reference will now be made in detail to one or more embodiments of the invention. While the invention will be described with respect to these embodiments, it should be understood that the invention is not limited to any particular embodiment. On the contrary, the invention includes alternatives, modifications, and equivalents as may come within the spirit and scope of the appended claims. Furthermore, in the following description, numerous specific details are set forth to provide a thorough understanding of the invention. The invention may be practiced without some or all of these specific details. In other instances, well-known structures and principles of operation have not been described in detail to avoid obscuring the invention.
To account for the velocity changes (which could also occur in even machine-directed scans), at least two accelerometers are integrated with the housing for the two light sources. It will be appreciated, however, that additional light sources and/or accelerometers may be integrated with the disclosed acceleration-corrected barcode verifier. Turning now to
Note the advantages of such an arrangement of accelerometers. The resulting accelerations from accelerometers 410 and 415 may be integrated to obtain the y-direction velocity as well as the x-direction velocity. Based upon these velocities, the detected barcode widths may be adjusted. For example, consider a hypothetical case in which the barcode widths are presumed to be the same, for example, 9 units of width each (the unit being arbitrary such as centimeters, inches, etc.). If the scan direction is arched such as shown in
Regardless of how many barcode edge detections are used in a conventional barcode verification scheme, the assumption is that the velocity is purely x-directed (i.e., normal to the longitudinal axis of the barcodes). This assumption is particularly subject to error for a handheld barcode scan as discussed with regard to
The above-described embodiments of the present invention are merely meant to be illustrative and not limiting. It will thus be obvious to those skilled in the art that various changes and modifications may be made without departing from this invention in its broader aspects. Therefore, the appended claims encompass all such changes and modifications as fall within the true spirit and scope of this invention.