The acceleration sensor in a control unit according to the present invention has the advantage that the validity check of the sensor values is integrated in an acceleration sensor in the control unit. This application is advantageous in particular if no external sensors are used. Accordingly, the present invention is suitable for simple restraint systems having few trigger circuits that are in particular activated by a centrally located acceleration sensor. The acceleration sensor has a logic component for transmitting the sensor values to the processor which calculates the triggering algorithm in the control unit. In addition, this logic component is directly connected to the output stages. This is necessary in order to be able to enable or block the output stages as a function of this validity check. Despite the simpler design, a control unit including the acceleration sensor of the present invention has high reliability.
It is in particular advantageous that the logic component checks the acceleration signal for validity using a fixed threshold value. Because one or two accelerations are involved when measurements are taken in different directions, two fixed threshold values or even only one fixed threshold value may be used when sensing is performed solely in the direction of travel.
Furthermore, it is advantageous that the logic component is connected to the output stages in such a way that one line leads to the positive output stage and another line, independent of it, leads to the negative output stage. This makes it possible to enable the output stages differently and also to test them separately from one another.
It is a further advantage that the logic component enables the output stages for a predetermined time as a function of the check. This means that the logic component has timing elements such as a monoflop in order to carry out the enabling or blocking for predetermined periods of time. This prevents the output stages from being enabled for a long time in the event of enabling but instead only for a short time that must be adequate to be ready in the event of a triggering case.
Furthermore, it is advantageous that the acceleration sensor enables the output stages or at least one output stage as a function of a self-test. If the sensor detects the occurrence of an error in a self-test, this must result in an immediate block of at least one output stage. This provides the entire system with a high level of reliability.
In order to further simplify the monitoring of the control unit, a function or a plurality of functions is also integrated into the logic component for testing the processor. This means that the acceleration sensor itself tests the processor that evaluates the sensor data. In addition, a watchdog is used here, two watchdogs in particular, in order to test both the real-time level of the operating system of the processor and the background level. A watchdog timer having a short response time is used for the real-time level and one having a considerably longer response time is used for the background level. In this case, a watchdog is understood in such a way that the processor continuously operates the watchdog in order to verify the operability of the processor with respect to the program flow. This means that the processor must send the watchdog a signal at predetermined time intervals; should it fail to receive such a signal, the watchdog indicates a processor error. Also as a function of this test, the output stages are blocked or enabled via the two lines leading from the acceleration sensor to the positive and negative output stage.
Finally, it is also advantageous that the logic component is situated in a housing of the acceleration sensor, so that a structural unit is present. This makes the acceleration center including the logic component easy to handle and also easy to install in a control unit.
The provision of a separate hardware path that only enables output stages in control systems of restraint systems when valid sensor signals are present and the function of the processor has been verified by watchdogs has already been described. For minimal systems having only, for example, front airbags and belt tighteners, these functions may be integrated in the acceleration sensor itself, specifically in the logic component of the acceleration sensor. This implements a cost-effective restraint system, which is simultaneously very reliable. The validity of the sensor data is achieved through a simple threshold value comparison using, for example, a comparator. The watchdog function is achieved through watchdog timers that must be operated regularly by the processor.
In the present invention as described here, a central sensor in the control unit has a logic component that sets the behavior of lines for enabling the output stages. This makes it possible to omit a separate evaluation of the sensor signals on a particular component and accordingly save considerable expense.
Customarily, a micromechanical sensor element, a finger structure for example, is deflected by an acceleration. This deflection is measured by a capacitive method and is then digitized in an analog/digital converter. In addition, the sensor contains a logic component that interprets the instructions of a processor, preferably a microcontroller, and controls the internal sequences in the acceleration sensor. For example, sending the ReadData instruction via the acceleration sensor makes the acceleration data available. The data packets are customarily 16 bits wide and contain the following information:
The logic component is now expanded to include a threshold value comparator and two watchdog timers in order to integrate the functions for checking the validity of the sensor signals and the function of the processor in the acceleration sensor.
Each time the sensor data is read, the result is compared with a threshold value. Only one fixed threshold value is possible because only one fixed sensor is now involved. If this sensor is able to sense in different directions or if a plurality of sensor elements is present, correspondingly more threshold values are then necessary. If the sensor data exceeds a symmetrical threshold, a retriggerable monoflop sets the line to the high side, i.e., the positive output stage for a certain time to enable. The values for the threshold as well as the enable time are predetermined through tests.
The line to the negative output stage is connected directly to a sensor test bit. When a sensor test is carried out, the sensor sends test data that exceeds the enable threshold. At the same time, a test bit (TEST) is set and accordingly the line to the negative output stage as well. In the following, the negative output stage is denoted as DIS_ALP while the line to the positive output stage is denoted as DIS_AHP.
Two watchdog timers use the internal sensor frequency as a time base. Instead of a separate instruction for binding the timers, this may also occur automatically. On the real-time level, for example, the ReadData instruction is used to operate the fast timer and the read ASIC ID instruction is used in the slow background level.
Sensor 10 carries out the watchdog functions described above via SPI line 11, i.e., microcontroller 12 must operate the watchdog timers of sensor 10 via line 11. If this does not occur, sensor 10, for example, resets microcontroller 12 via its watchdog timer and line 19 and simultaneously blocks the output stages via lines 16 and 17, making it impossible for processor 12 to execute an uncontrolled triggering of triggering elements 15. A first watchdog timer must be activated every one hundred milliseconds, which is intended for the background level of the operating system, while a watchdog timer in sensor 10 must be activated every millisecond for the real-time level of the operating system. Furthermore, sensor 10 initiates a self-test at the time it is switched on via switch 18. As a function of this self-test, the output stages in trigger circuit electronics 14 are also enabled via lines 16 and 17.
The design of the acceleration sensor according to the present invention is shown in
An instruction decoder and the sequence control are contained in logic component 26. Communication with processor 12 is via the 16 bit wide SPI interface. The data format is fixed and is broken down as follows:
Frame 27 shows this data, the sensor data being denoted as 28 and the TST bit as 29. In logic component 26, sensor data 27 is supplied to a comparator 200. In comparator 200, it is compared with a predetermined threshold value, a value of 2.8 G in this case, to determine if the sensor data is valid. If the data is valid, it is supplied to module 204. This module 204 contains a monoflop, which sets an enable and thus line DIS_AHP for a specific time if the sensor data exceeds the threshold. This time may be, for example, 32 milliseconds. The enable times can be extended by transmitting an SPI instruction. Sensor test bit 29 is connected to another monoflop 205, which supplies a signal to line DIS_ALP. During the sensor test, line DIS_ALP is set to block while line DIS_AHP is set to enable by the sensor test data. This strategy makes it possible to test the positive and negative output stage independently of one another. The sensor test data is transferred from processor 12 to sensor 10 while the measuring data is transferred to processor 12 via line MISO. Watchdog timers 201 and 202 are also provided in logic component 26. In the normal case, watchdog timer 201 is triggered every 100 milliseconds by processor 12 via the Read ASIC ID instruction while watchdog timer 202 is triggered every millisecond via the ReadData instruction.
If a watchdog error occurs in one of the two timers 201 or 202, a status line is set which sets both line DIS_AHP and line DIS_ALP to block. This is also the status after every power-on reset. If both watchdog timers are operated correctly, the internal status line is reset. For a time period of 1 second, for example, the monoflops have the enable signal on the lines; after that, they return to their normal condition, which is block for line DIS_AHP and enable for line DIS_ALP.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 056 416.7 | Nov 2004 | DE | national |
PCT International Patent Publication No. WO 02/42123 describes a control unit used for activating restraining means. A safety switch evaluates sensor values from internal and external sensors for their validity in order to then enable the output stages via time stages as a function of the validity check.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/54494 | 9/9/2005 | WO | 10/29/2007 |