Applicant claims priority from Japanese Patent Application Ser. No. 2007-52334, filed Mar. 2, 2007.
The present invention relates generally to carburetors and more particularly to an accelerator device for a carburetor.
Some small internal combustion engines for handheld power tools such as chain saws, grass trimmers, weed trimmers, leaf blowers, and the like have carburetors with an internal accelerator pump which supplies additional fuel to the operating engine as the throttle valve of the carburetor is opened from its essentially closed or idle position toward its wide open throttle position. The accelerator device can temporarily increase the amount of fuel delivered to the engine when the throttle valve is opened fully for improving the acceleration of the engine. This additional fuel is needed to smoothly and rapidly accelerate the engine without stumbling, particularly when the engine is under a load.
According to one implementation, a carburetor includes an intake bore, a throttle valve, a main fuel nozzle opening into the intake bore, an accelerator device and a fuel passage. The throttle valve is movable between an idle and wide open positions to control fluid flow through the intake bore and includes a shaft rotatably supported around an axial line extending across the intake bore. The accelerator device may be operable to increase an amount of fuel that flows through the main fuel nozzle when the throttle valve is moved toward its wide open position, and may include a fuel reservoir constructed and arranged to store fuel. The fuel passage communicates with the main fuel nozzle, and may include a first portion communicating with a fuel metering chamber, and a second portion communicating with the main fuel nozzle. The fuel reservoir is provided between the first fuel passage portion and the second fuel passage portion and forms a part of the fuel passage and fuel flows through the fuel reservoir and to the main fuel nozzle both when the throttle valve is opened and when the throttle valve is closed.
According to at least one implementation, a carburetor includes an intake bore from which fuel and air are discharged from the carburetor, a fuel chamber from which fuel is supplied within the carburetor, a main fuel nozzle communicating with the fuel chamber and the intake bore and through which fuel flows into the intake bore, a fuel passage communicating with the fuel chamber and the main fuel nozzle, and an accelerator device for increasing an amount of fuel provided to the main fuel nozzle during acceleration of an engine with which the carburetor is used, the accelerator device including a fuel reservoir constructed and arranged to store fuel wherein the fuel reservoir defines at least part of the fuel passage so that fuel flows through the fuel reservoir before the main fuel nozzle.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and best mode, appended claims and accompanying drawings in which:
Referring in more detail to the drawings,
When the engine is operating, the fuel pump assembly E supplies fuel to the metering system C of the carburetor 1. The fuel pump assembly E has a flexible diaphragm or membrane 5 received and sealed between an upper face of the carburetor body 26 and a lower face of an upper cover 28 and defining in part a fuel pump chamber 6 and a pulsating pressure chamber or pulse chamber 55 to which pressure and vacuum pulses in the crankcase of an operating engine are introduced through a passage 30 to displace or actuate the diaphragm 5. The fuel pump chamber 6 communicates with an external fuel tank (not shown) via an inlet passage 32 formed in the carburetor main body and a one-way check valve 7 and a reciprocating movement of the diaphragm 5 caused by the pulsating pressure draws fuel from the fuel tank and feeds it into the pump chamber 6. The movement of the diaphragm 5 draws the fuel through inlet passage 32 and one-way check valve 7 into the pump chamber 6 and supplies the fuel under pressure through an outlet passage 34, one-way check valve 8, and a screen 36, to the fuel metering system C through a flow control valve 9. A fuel-intake movement of the pump diaphragm 5 causes the check valve 8 to close and the check valve 7 to open and to thereby allow fuel to be drawn from the fuel tank. A fuel expelling movement of the pump diaphragm 5 causes the check valve 8 to open and the check valve 7 to close and to thereby force the fuel from the fuel tank into a fuel chamber or fuel metering chamber 11 of the fuel metering system C through which fuel is supplied within the carburetor.
The fuel metering system C has a flexible diaphragm or membrane 12 received and sealed between a lower face of the carburetor body 26 and a lower cover 40. The diaphragm 12 defines on one side the fuel metering chamber 11 and on the other side an atmospheric air chamber 13. The atmospheric air chamber 13 communicates with the atmosphere exteriorly of the carburetor through a port 42 in the lower cover 40. The flow valve 9 is opened and closed to control the admission of fuel to chamber 11 by movement of the diaphragm 12 which is operably connected to the valve 9 by a lever 15. At one end, the lever 15 is connected to the flow valve 9, and at the other end the lever 15 bears on a projection 46 attached to the center of the diaphragm 12. The lever 15 is rotatably supported by a pivot shaft 14 and yieldably biased by a spring 48 bearing on the lever 15 to bias the valve 9 to its closed position. In one embodiment, the lever 15 is resiliently urged in the direction to abut an end of the lever 15 against projection 46.
When the pressure of the atmospheric chamber 13 is higher than the pressure of the fuel metering chamber 11 to such an extent that the diaphragm 12 is displaced in a direction reducing the volume of the fuel metering chamber 11, the projection 46 pushes on and moves the lever 15 about its pivot 14, and the resulting counter clockwise rotation of the lever 15 opens the fuel feed control valve 9. Fuel then flows into the fuel metering chamber 11.
The carburetor 1 has an intake bore or air and fuel mixing passage 2 with an air inlet 52, downstream of the inlet a restricted venturi section 54, and downstream of the venturi 54 an outlet 56 which communicates with an intake passage of the engine. A throttle valve head 3 is received in the intake bore 2 downstream of the venturi 54 and is mounted on a throttle valve shaft 4 extending transversely through the bore and journalled for rotation in the carburetor body 26.
In operation of the carburetor 1, fuel is supplied from the metering chamber 11 to a main fuel nozzle 21 opening into the intake bore 2 via a check valve 17, a first fuel passage 16a, a fuel reservoir chamber 18a, a second fuel passage 16b, a fuel metering needle valve 19, and a check valve 22. Fuel is also supplied from the metering chamber 11 to a series of low speed fuel nozzles or ports 38 which may open into the intake bore 2 both upstream and downstream of the throttle valve 3 in its idle or closed position, via a passage 58, an adjustable low speed fuel regulating needle valve 60, and a passage 62.
In operation, air flowing through the intake bore 2 creates a pressure differential causing fuel to flow through the low speed nozzle 38 downstream of the throttle valve 3 (in its idle position) into the intake bore 2 and in the engine under idle and near idle operating conditions, and to flow through the main fuel nozzle 21 into the intake bore 2 and the engine when the engine is in the range from near idle to wide open throttle operating conditions. This pressure differential acts on the diaphragm 12 to open and close the valve 9 to maintain a predetermined quantity of fuel in the metering chamber 11 and at a substantially constant pressure when the engine is operating to supply fuel to the low speed nozzle 38 and the main fuel nozzle 21.
As shown in
The piston 23 may be located laterally adjacent to the intake bore 2. The intake bore 2 includes a block member to communicate an upstream part of an intake passage with a downstream part thereof. The valve 3 is provided in the downstream part of the intake bore 2 to selectively close and open the intake bore 2. The valve 3 may be integrally secured, for example by using screws, to a valve shaft 4. The valve shaft 4 may be rotatably supported around an axial line extending perpendicularly to the intake bore 2 or across the intake bore 2. An end of the valve shaft 4 that extends out of the carburetor main body is fixedly fitted with a throttle lever (not shown) so that the intake bore 2 can be opened and closed by actuating the throttle lever.
The first fuel passage 16a communicates with the fuel metering chamber 11 and the chamber 18a. The check valve 17 may comprise a disk-shaped valve member which is configured to selectively close the first fuel passage 16a facing the fuel metering chamber 11 under gravitational force and to be lifted by the force of the flow of fuel, and comprises a retainer that limits the opening movement of the valve member and has a cutout or holes to permit the flow of fuel through the retainer even when the valve member is engaged with the retainer.
The first fuel passage 16a and the second fuel passage 16b open into the fuel reservoir 18a. The fuel reservoir 18a may be provided in an intermediate part of the overall fuel passage 16c comprising the first and second fuel passages 16a and 16b, and forms a part of the fuel passage 16c. The fuel passage 16c communicates with and may extend from the fuel metering chamber 11 to the main fuel nozzle 21 and passes through and/or includes the fuel reservoir 18a. The first fuel passage 16a communicates with the second fuel passage 16b via the fuel reservoir 18a. The second fuel passage 16b communicates with a main fuel nozzle 21 via the fuel metering needle valve 19. The main fuel nozzle 21 may have the shape of a cylindrical cup, and may include a head formed with a fuel ejection orifice and projecting into the venturi 54 formed in the intake bore 2. The fuel ejection orifice may be selectively closed by the check valve 22. In one embodiment, the check valve 22 may have an identical structure as the check valve 17.
The valve shaft 4 extends across a part of the cylinder chamber 18 that is located on the opposite side of the fuel reservoir 18a with respect to the piston 23. A ball 24 is disposed in the cylinder chamber 18 and between the valve shaft 4 and the piston 23. In this implementation, the piston 23 is actuated by a cam 4a that is connected to, carried by or actuated by the valve shaft 4 and engages the spherical ball 24 disposed between them and received in a recess 66 in an end of the piston 23. As shown in
In one embodiment, a seal may be provided between the piston 23 and the bore 18 by an O-ring (not shown) and the piston 23 is yieldably biased towards its retracted position and into engagement with the ball 24 which in turn is urged into engagement with the cam 4a by a spring 25 received in the reservoir 18a and bearing on the piston 23. In one implementation, the cam 4a consists of a flat cutout surface 4b of the throttle shaft 4. In the fully closed state of the throttle valve 3 illustrated in
Referring to
When the valve shaft 4 is turned from the state illustrated in
As can be appreciated from the foregoing description, the fuel reservoir 18a may be provided in an intermediate part of the fuel passage 16c and forms a part of the fuel passage 16c through which the fuel flows from the metering chamber 11 to the intake passage 2. Even when the accelerator pump D is not operating, fuel flows to the main fuel nozzle 21 through the fuel passage 16c. All the fuel therefore passes through the fuel reservoir 18a before being delivered to and expelled from the main fuel nozzle 21. If bubbles are produced in the first and second fuel passages 16a and 16b due to the transfer of heat from the engine main body and/or the vibrations of the carburetor main body 1, or for any other reason, the bubbles are carried away by the flow of the fuel through the fuel passage 16c and do not remain trapped in the fuel reservoir 18a. As a result, when the amount of fuel to be discharged through the main fuel nozzle 21 is temporarily increased by opening the throttle valve 3, this fuel contains few, if any, bubbles, and a favorable accelerating performance can be achieved at all times. This may not be true in accelerator pump arrangements wherein a reservoir is disposed downstream of the main fuel nozzle and communicates therewith by a branch passage. When the accelerator pump is not operating, fuel does not flow through the reservoir but rather passes directly to a fuel nozzle and hence, vapor bubbles may collect or increasingly form in the reservoir and thereby reduce the volume available for liquid fuel. When this happens, less fuel is displaced by the accelerator pump and engine performance can be adversely affected.
In the embodiments shown in the figures, the pump arrangement includes a piston slidably received in a cylinder or chamber to move fuel into and out of the chamber. In other embodiments, the pump arrangement is not limited by such a cylinder/piston pump, but may consist of any pump as long as it is capable of achieving a pump action in synchronism with the rotation of the valve shaft 4. Likewise, the throttle valve is shown as a butterfly type-throttle valve but other construction and arrangements may be used. Still other modifications and alternatives are possible and contemplated to be within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
200752334 | Mar 2007 | JP | national |