1. Field of the Invention
The present invention is related to acceleration sensors, and more particularly, to real-time calibration of acceleration sensors while the sensor is in use.
2. Background Art
Magnetofluidic accelerometers are described in, e.g., U.S. patent application Ser. No. 10/836,624, filed May 3, 2004, U.S. patent application Ser. No. 10/836,186, filed May 3, 2004, U.S. patent application Ser. No. 10/422,170, filed May 21, 2003, U.S. patent application Ser. No. 10/209,197, filed Aug. 1, 2002 (now U.S. Pat. No. 6,731,268), U.S. patent application Ser. No. 09/511,831, filed Feb. 24, 2000 (now U.S. Pat. No. 6,466,200), and Russian patent application No. 99122838, filed Nov. 3, 1999. These accelerometers utilize magnetofluidic principles and an inertial body suspended in a magnetic fluid, to measure acceleration. Such an accelerometer often includes a sensor casing (sensor housing, or “vessel”), which is filled with magnetic fluid. An inertial body (“inertial object”) is suspended in the magnetic fluid. The accelerometer usually includes a number of drive coils (power coils) generating a magnetic field in the magnetic fluid, and a number of measuring coils to detect changes in the magnetic field due to relative motion of the inertial body.
When the power coils are energized and generate a magnetic field, the magnetic fluid attempts to position itself as close to the power coils as possible. This, in effect, results in suspending the inertial body in the approximate geometric center of the housing. When a force is applied to the accelerometer (or to whatever device the accelerometer is mounted on), so as to cause angular or linear acceleration, the inertial body attempts to remain in place. The inertial body therefore “presses” against the magnetic fluid, disturbing it and changing the distribution of the magnetic fields inside the magnetic fluid. This change in the magnetic field distribution is sensed by the measuring coils, and is then converted electronically to values of linear and angular acceleration. Knowing linear and angular acceleration, it is then possible, through straightforward mathematical operations, to calculate linear and angular velocity, and, if necessary, linear and angular position. Phrased another way, the accelerometer provides information about six degrees of freedom—three linear degrees of freedom (x, y, z), and three angular (or rotational) degrees of freedom (αx, αy, αz).
Stability of sensor characteristics is an important factor in a system design. Sensor characteristics can change over time, either due to temporary environmental effects, or due to permanent changes in characteristics of various sensor components. For example, such environmental factors as temperature and humidity can affect sensor performance, by introducing an error into the output of the sensor. Such an error may disappear once the particular environmental parameter (temperature or humidity) reverts to some narrower operating range.
Other parameters may involve permanent changes to sensor properties. For example, the properties of the magnetic fluid can change over time. The properties of various mechanical components, such as the housing or the magnets, can also change. Dimensional tolerances can worsen, due to repeated shock and vibration. Some of the magnetic fluid might leak out, even if in minute quantities, creating an air bubble inside the volume that is supposed to be entirely filled with the magnetic fluid. All of these factors degrade sensor performance.
Conventional calibration approaches typically calibrate the sensor after manufacture, or after the sensor has been installed in a system, but do not provide for real-time calibration of the sensor. Accordingly, there is a need in the art for a sensor that can be calibrated repeatedly, including calibrated during operation.
The present invention relates to an accelerometer with real-time calibration that substantially obviates one or more of the disadvantages of the related art.
More particularly, in an exemplary embodiment of the present invention, a method of calibrating an acceleration sensor includes suspending an inertial body using a magnetic fluid; generating a magnetic field within the magnetic fluid; modulating the magnetic field to cause a displacement of the inertial body; measuring a response of the inertial body to the modulation; and calibrating the acceleration sensor based on the measurement. Current can be driven through a plurality of magnets for generating the magnetic field so as to create the modulation. Sensing coils, inductive coils, Hall sensors, or other means can be used for detecting the response of the inertial body. The modulation can be periodic, an impulse or some other aperiodic function. The modulation can also be ultrasonic.
In another aspect, a method for calibrating an accelerometer includes suspending an inertial body in a fluid; applying a predetermined force to the inertial body; measuring behavior of the inertial body in response to the applied force; and calibrating the accelerometer in real time as a function of the measured behavior.
In another aspect, a method of calibrating an accelerometer includes suspending an object using a fluid; generating a magnetic field within the fluid; delivering a stimulus to the inertial body to cause a displacement of the inertial body; measuring a response of the inertial body to the stimulus; and calibrating an accelerometer based on the measurement.
In another aspect, a method of calibrating an acceleration sensor includes suspending an inertial body using a fluid; generating a magnetic field within the fluid; continuously calculating the acceleration based on changes of the magnetic field; and calibrating the acceleration sensor in real time without interrupting normal functioning of the sensor. The calibrating step causes a predetermined displacement of the inertial body. An ultrasonic stimulus can causes the predetermined displacement. Alternatively, drive magnets can be driven to cause the predetermined displacement.
In another aspect, a sensor includes an inertial body, a plurality of magnets located generally around the inertial body, and a magnetic fluid between the magnets and the inertial body. A first circuit modulates magnetic fields generated by the magnets to calibrate the sensor in real time. A second circuit measures acceleration based on displacement of the inertial body. The acceleration can have components of linear and/or angular acceleration.
In another aspect, a sensor includes an inertial body, a plurality of magnets generating a repulsive force acting on the inertial body, and a controller that modulates magnetic fields generated by the magnets so as displace the inertial body. A controller calculates a response of the sensor to applied acceleration based on the displacement and calibrates the sensor in real time. The controller derives the acceleration as a function of a current required by the magnetic poles to modulate the magnetic fields. The inertial body is non-magnetic or weakly magnetic. The controller includes a bandpass filter centered at approximately a frequency of the modulation. A low pass filter can be used to filter out a frequency of the modulation when calculating acceleration.
Additional features and advantages of the invention will be set forth in the description that follows, and in part will be apparent from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
Further with reference to
In one embodiment, each such drive magnet assembly 106 has two sensing coils, designated by 306 and 304 (in
Note further that in order to measure both linear and angular acceleration, two sensing coils per side of the “cube” are necessary. If only a single sensing coil were to be positioned in a center of each side of the “cube,” measuring angular acceleration would be impossible. As a less preferred alternative, it is possible to use only one sensing coil per side of the cube, but to displace it off center. However, the mathematical analysis becomes considerably more complex in this case.
In this embodiment, the sensing coils 306D and 304D are located either inside the drive coil 302D, and the rear cap 404 holds the drive coil 302D and the sensing coils 306D and 304D in place in the drive coil assembly 106D, or alternatively, the sensing coils 306D and 304D can be either partially or entirely forward of the drive coil 302D.
The drive magnets 302 are used to keep the inertial body 202 suspended in place. The sensing coils 306, 304 measure the changes in the magnetic flux within the housing 104. The magnetic fluid 204 attempts to flow to locations where the magnetic field is strongest. This results in a repulsive force against the inertial body 202, which is usually either non-magnetic, or partly (weakly) magnetic (e.g., substantially less magnetic than the magnetic fluid 204).
The sensor 102 described and illustrated above thus works on the principle of repulsive magnetic forces. The magnetic fluid 203 is highly magnetic, and is attracted to the drive magnets 302. Therefore, by trying to be as close to the drive magnets 302 as possible, the magnetic fluid in effect “pushes out,” or repels, the inertial body 202 away from the drive magnets 302. In the case where all the drive magnets 302 are identical, or where all the drive magnets 302 exert an identical force, and the drive magnets 302 are arranged symmetrically about the inertial body 202, the inertial body 202 will tend to be in the geometric center of the housing 104. This effect may be thought of as a repulsive magnetic effect (even though, in reality, the inertial body 202 is not affected by the drive magnets 302 directly, but indirectly, through the magnetic fluid 204).
Also shown in
in the magnetic flux density Φ within the sensor 102 are detected by the sensing coils 304, 306. The outputs of the sensing coils 302, 306 are fed through a lowpass filter 704 or through a band pass filter 702. The low pass filter 704, which is optional, can be used to filter out any unwanted frequency components, such as high frequency vibration. It can also be used to filter out the effects of the calibration (i.e., to filter out the response of the sensor 102 at ft). The band pass filter 702 is centered around the test frequency ft. It is generally preferable, although not necessary, to select a testing frequency ft that is higher than any expected vibration that the sensor 102 needs to detect, given the particular application. For example, ft may be higher than the low pass filter 704 will permit through it.
Position measurement electronics 706 calculates the position of the inertial body 202, based on the output of the sensing coils (or other position sensors), and from the position of the inertial body 202, derives linear and angular acceleration. A calibration controller 708 receives the output of the band pass filter 702, which represents the movement of the inertial body 202 due to the applied calibration stimulus Itst. The calibration controller 708 also outputs control signals to the summers 602, so as to drive the drive magnets 302 in the predictable manner.
By knowing the expected effect of the stimulus Itst×sin (2πftt) on the inertial body 202, and comparing the predicted response of the inertial body 202 with an actual response, the sensor 102 can be calibrated in real time, without taking the sensor 102 (or the device that uses the sensor 102) offline. Note that with the test frequency ft higher than any expected intput frequency, there is no reason why the applied stimulus Itst will affect measurement of acceleration by the sensor 102. Note also that the preferred amplitude of the stimulus is on the order of 5-10% of the dynamic range of the sensor 102.
Although in the description above, drive magnets 302 are used to deliver a known stimulus to the sensor 102, this need not be the case. For example, an ultrasonic stimulus can also be used. A source of ultrasonic vibration can be mounted on the housing 104 (not shown in the figures) (or even inside the housing 104), and controlled to deliver a known stimulus to the inertial body 202. With the response measured and compared to the expected (or previously measured) response, the sensor 102 can be calibrated, in a manner similar to discussed above.
Although a periodic sine-wave type stimulus is discussed above, other signal shapes can be used, such as step functions, impulse functions, aperiodic functions, square waves, and others.
The output of the calibration controller 704 can then be used by the rest of the sensor electronics, to apply a correction factor to the output of the sensor 102. Alternatively, or in addition, the DC currents I0 can be changed or adjusted in response to the calibration. As an alternative, the calibration controller 708 can force the inertial body 202 to be displaced by a given amount, and measure the “effort” (i.e., the required current) needed to do so (and compare that “effort” to the expected effort), thereby deriving the calibration factor.
Having thus described embodiments of the invention, it should be apparent to those skilled in the art that certain advantages of the described method and apparatus have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 10/980,791, entitled MAGNETOFLUIDIC ACCELEROMETER WITH ACTIVE SUSPENSION, filed Nov. 4, 2004. This application claims priority to U.S. Provisional Patent Application No. 60/616,849, entitled MAGNETOFLUIDIC ACCELEROMETER AND USE OF MAGNETOFLUIDICS FOR OPTICAL COMPONENT JITTER COMPENSATION, Inventors: SUPRUN et al., Filed: Oct. 8, 2004; U.S. Provisional Patent Application No. 60/614,415, entitled METHOD OF CALCULATING LINEAR AND ANGULAR ACCELERATION IN A MAGNETOFLUIDIC ACCELEROMETER WITH AN INERTIAL BODY, Inventors: ROMANOV et al., Filed: Sep. 30, 2004; U.S. Provisional Patent Application No. 60/613,723, entitled IMPROVED ACCELEROMETER USING MAGNETOFLUIDIC EFFECT, Inventors: SIMONENKO et al., Filed: Sep. 29, 2004; and U.S. Provisional Patent Application No. 60/612,227, entitled METHOD OF SUPPRESSION OF ZERO BIAS DRIFT IN ACCELERATION SENSOR, Inventor: Yuri I. ROMANOV, Filed: Sep. 23, 2004; which are all incorporated by reference herein in their entirety. This application is related to U.S. patent application Ser. No. 10/836,624, filed May 3, 2004; U.S. patent application Ser. No. 10/836,186, filed May 3, 2004; U.S. patent application Ser. No. 10/422,170, filed May 21, 2003; U.S. patent application Ser. No. 10/209,197, filed Aug. 1, 2002, now U.S. Pat. No. 6,731,268; U.S. patent application Ser. No. 09/511,831, filed Feb. 24, 2000, now U.S. Pat. No. 6,466,200; and Russian patent application No. 99122838, filed Nov. 3, 1999, which are all incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
60616849 | Oct 2004 | US | |
60614415 | Sep 2004 | US | |
60613723 | Sep 2004 | US | |
60612227 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10980791 | Nov 2004 | US |
Child | 10992289 | Nov 2004 | US |