The present disclosure relates generally to a surgical access assembly having an anchor mechanism to securely engage tissue to prevent withdrawal of the surgical access assembly from the tissue, e.g., the abdominal wall, and, in particular, relates to an access assembly further including a retention mechanism for preventing over-insertion of the surgical access assembly into the body cavity.
Minimally invasive surgical procedures including both endoscopic and laparoscopic procedures permit surgery to be performed on organs, tissues and vessels far removed from an opening within the tissue. In laparoscopic procedures, the abdominal cavity is insufflated with an insufflation gas, e.g., CO2, to create a pneumoperitoneum thereby providing access to the underlying organs. A laparoscopic instrument is introduced through a cannula accessing the abdominal cavity to perform one or more surgical tasks. The cannula may incorporate a seal to establish a substantially fluid tight seal about the instrument to preserve the integrity of the pneumoperitoneum.
While minimally invasive surgical procedures have proven to be quite effective in surgery, limitations remain. For example, the cannula which is subjected to the pressurized environment, i.e., the pneumoperitoneum, may have a tendency to back out of the incision in the abdominal wall particularly during multiple manipulations of the instrument within the cannula. Conversely, during insertion and/or manipulation of instruments through the cannula, the cannula may become over-inserted, risking damage to the internal organs.
A retention mechanism for a surgical access assembly is provided. The retention mechanism includes a planar base having first and second extensions each with a free end, a first locking member disposed on the free end of the first extension, and a second locking member disposed on the free end of the second extension. The first locking member includes a U-shaped body having a first set of opposed, inwardly facing teeth. The second locking member includes a U-shaped body having a first set of opposed, outwardly facing teeth configured engage the first set of opposed, inwardly facing teeth when the retention mechanism is in a locked condition. The first set of opposed, inwardly facing teeth and the first set of opposed, outwardly facing teeth are configured to be spaced apart from each other when the retention mechanism is in an unlocked condition.
In certain aspects of the disclosure, the first locking member includes a snap member disposed adjacent the first set of opposed, inwardly facing teeth and the second locking member includes a locking portion defining a recess for receiving the snap member of the first locking member. Receipt of the snap member through the recess of the locking portion may secure the first and second locking members relative to each other. The first locking member may include a second set of opposed, inwardly facing teeth and the second locking member may include a second set of opposed, outwardly facing teeth releasably engageable with the second set of opposed, inwardly facing teeth of the first locking member.
In some aspects of the disclosure, the first locking member includes a snap member disposed between each of the first and second sets of opposed, inwardly facing teeth, and the second locking member includes a locking portion defining a recess disposed between each of the first and second sets of opposed, outwardly facing teeth of the second locking member. The snap members may be configured to be received within the recess of the locking portions to secure the first locking member relative to the second locking member. Receipt of the snap members within the recess of the locking portions may secure the first and second locking members relative to each other.
In aspects of the disclosure, the second locking member includes button members for facilitating movement of the first set of opposed, outwardly facing teeth relative to the first set of opposed, inwardly facing teeth. Each of the first and second extensions may include a narrow portion to permit folding of the respective first and second extensions relative to the planar base. The first and second extensions may be configured to receive sutures.
A surgical access assembly including a cannula having a distal portion and a length, an anchor mechanism disposed on the distal portion of the cannula, and a retention mechanism receivable about the length of the cannula. The retention mechanism includes a first locking member including a U-shaped body having a first set of opposed, inwardly facing teeth, and a second locking member including a U-shaped body having a first set of opposed, outwardly facing teeth configured to engage the first set of opposed, inwardly facing teeth when the retention mechanism is in a locked condition and to be spaced apart from the first set of opposed, inwardly facing teeth when the retention mechanism is in an unlocked condition.
In some aspects of the disclosure, the first locking member includes a snap member disposed adjacent the first set of opposed, inwardly facing teeth and the second locking member includes a locking portion defining a recess for receiving the snap member of the first locking member. Receipt of the snap member through the recess of the locking portion may secure the first and second locking members relative to each other. The first locking member may include a second set of opposed, inwardly facing teeth and the second locking member may include a second set of opposed, outwardly facing teeth releasably engageable with the second set of opposed, inwardly facing teeth of the first locking member.
In certain aspects of the disclosure, the first locking member includes a snap member disposed between each of the first and second sets of opposed, inwardly facing teeth, and the second locking member includes a locking portion defining a recess disposed between each of the first and second sets of opposed, outwardly facing teeth of the second locking member. The snap members may be configured to be received within the recess of the locking portions to secure the first locking member relative to the second locking member. Receipt of the snap members within the recess of the locking portions may secure the first and second locking members relative to each other.
In aspects of the disclosure, the second locking member includes button members for facilitating movement of the first set of opposed, outwardly facing teeth relative to the first set of opposed, inwardly facing teeth. The anchor mechanism may include an inflatable balloon. The surgical access assembly may further include a foam block positionable about the cannula between the anchor mechanism and the retention mechanism.
Various aspects and features of the present disclosure are described hereinbelow with references to the drawings, wherein:
Particular access assemblies in accordance with the disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed access assemblies are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals refer to similar or identical elements throughout the description of the figures.
As used herein, the term “distal” refers to that portion of the instrument, or component thereof which is farther from the user while the term “proximal” refers to that portion of the instrument or component thereof which is closer to the user.
Access assemblies with obturators are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The access assemblies typically include an instrument valve housing mounted on a cannula tube, and include an obturator (not shown) inserted through the valve housing and cannula. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end and can be used to incise the abdominal wall so that the access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument valve housing of the access assembly.
Trocar assemblies are employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the anatomical structure or by passing through an existing opening through the anatomical structure. Once the trocar assembly with the obturator has tunneled through the anatomical structure, the obturator is removed, leaving the access assembly in place. The instrument valve housing of the access assembly includes valves that prevent the escape of insufflation gases from the body cavity, while also allowing surgical instruments to be inserted into the cavity.
Many access assemblies include an anchor mechanism for preventing withdrawal of the access assembly. These anchor mechanisms may be in the form of an inflatable balloon. Alternatively, the access assemblies may be maintained in position with an expandable flange or other structure capable of being collapsed to facilitate insertion of the access assembly through the tissue and selectively expanded to prevent withdrawal of the access assembly from the tissue.
The access assembly 100 includes an anchor mechanism 120 supported on a distal portion 102b of the cannula 102. As shown, the anchor mechanism 120 includes a balloon anchor 122. The balloon anchor 122 includes an uninflated or collapsed condition (
The access assembly 100 also includes a retention mechanism 200. The retention mechanism 200 operates in combination with the anchor mechanism 120 to support the access assembly 100 within tissue “T” (
The retention mechanism 200 includes a planar base 202 having first and second extensions 204, 206. The planar base 202 defines a circular opening 203 and includes an annular flange 208 formed about the circular opening 203. The circular opening 203 is sized to receive the cannula 102 of the access assembly 100. A first locking member 210 is disposed on a free end 204a of the first extension 204 and a second locking member 230 is disposed on a free end 206a of the second extension 206. Each of the first and second extensions 204, 206 includes a narrow portion 204b, 206b, respectively, for facilitating folding of the respective first and second extensions 204, 206 to permit engagement of the first locking member 210 with the second locking member 230.
The first locking member 210 of the retention mechanism 200 includes a substantially U-shaped base 212. Free ends of the U-shaped base 212 include first and second sets of opposed, inwardly facing teeth 214 (
The second locking member 230 of the retention mechanism 200 includes a substantially U-shaped base 232. Free ends of the U-shaped base 232 include first and second sets of opposed, outwardly facing teeth 234 (
The assembly and operation of the retention mechanism 200 will now be described with reference to
When the retention mechanism 200 is secured to the access assembly 100 in the locked condition, the retention mechanism 200 is longitudinally fixed relative to the cannula 102. To permit longitudinal movement of the retention mechanism 200 relative to the cannula 102 of the access assembly 100 to secure the access assembly 100 to the tissue “T”, the second locking member 230 is moved relative to the first locking member 210 to move the first and second set of opposed, outwardly facing teeth 234, 236 of the second locking member 230 out of engagement with the first and second sets of opposed, inwardly facing teeth 214, 216 of the first locking member 210, as indicated by arrows “E” and “F” in
As described above, the retention mechanism 200 is moved to the locked condition by approximating the first locking member 210 and the second locking members 230 relative to each other, as indicated by arrows “K” and “L”, to frictionally engaged the retention mechanism 200 with the cannula 102 of the access assembly 100. The engagement members 222, 242 of the respective first and second locking members 210, 230 facilitate approximation of the first and second locking members 210, 230.
When the retention mechanism 200 is in the folded condition, the first and second extensions 204, 206 of the planar base 202 may be used as suture stays to receive sutures (not shown) to further secure the access assembly 100 during a surgical procedure.
Following a surgical procedure, the balloon anchor 122 of the anchor mechanism 120 may be deflated to permit withdrawal of the cannula 102 of the access assembly 100 from the tissue “T”, with the retention mechanism 200 remaining secured to the cannula 102 of the access assembly 100. Prior to deflating the balloon anchor 122 of the anchor mechanism 120, the retention mechanism 200 may be moved to the partially locked condition (
Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary devices. It is envisioned that the elements and features illustrated or described in connection with the exemplary devices may be combined with the elements and features of another without departing from the scope of the disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described devices. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3402710 | Paleschuck | Sep 1968 | A |
3495586 | Regenbogen | Feb 1970 | A |
3760811 | Andrew | Sep 1973 | A |
4016884 | Kwan-Gett | Apr 1977 | A |
4112932 | Chiulli | Sep 1978 | A |
4183357 | Bentley et al. | Jan 1980 | A |
4356826 | Kubota | Nov 1982 | A |
4402683 | Kopman | Sep 1983 | A |
4619643 | Bai | Oct 1986 | A |
4653476 | Bonnet | Mar 1987 | A |
4737148 | Blake | Apr 1988 | A |
4863430 | Klyce et al. | Sep 1989 | A |
4863438 | Gauderer et al. | Sep 1989 | A |
4984564 | Yuen | Jan 1991 | A |
5002557 | Hasson | Mar 1991 | A |
5073169 | Raiken | Dec 1991 | A |
5082005 | Kaldany | Jan 1992 | A |
5122122 | Allgood | Jun 1992 | A |
5159921 | Hoover | Nov 1992 | A |
5176697 | Hasson et al. | Jan 1993 | A |
5183471 | Wilk | Feb 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5209741 | Spaeth | May 1993 | A |
5209754 | Ahluwalia | May 1993 | A |
5217466 | Hasson | Jun 1993 | A |
5242409 | Buelna | Sep 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5257973 | Villasuso | Nov 1993 | A |
5257975 | Foshee | Nov 1993 | A |
5269772 | Wilk | Dec 1993 | A |
5271380 | Riek et al. | Dec 1993 | A |
5290245 | Dennis | Mar 1994 | A |
5290249 | Foster et al. | Mar 1994 | A |
5308336 | Hart et al. | May 1994 | A |
5312391 | Wilk | May 1994 | A |
5312417 | Wilk | May 1994 | A |
5314417 | Stephens et al. | May 1994 | A |
5318516 | Cosmescu | Jun 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5334143 | Carroll | Aug 1994 | A |
5334150 | Kaali | Aug 1994 | A |
5336169 | Divilio et al. | Aug 1994 | A |
5336203 | Goldhardt et al. | Aug 1994 | A |
5337937 | Remiszewski et al. | Aug 1994 | A |
5345927 | Bonutti | Sep 1994 | A |
5346459 | Allen | Sep 1994 | A |
5360417 | Gravener et al. | Nov 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5378588 | Tsuchiya | Jan 1995 | A |
5380291 | Kaali | Jan 1995 | A |
5385552 | Haber et al. | Jan 1995 | A |
5385553 | Hart et al. | Jan 1995 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5394863 | Sanford et al. | Mar 1995 | A |
5395367 | Wilk | Mar 1995 | A |
5407433 | Loomas | Apr 1995 | A |
5431151 | Riek et al. | Jul 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5451222 | De Maagd et al. | Sep 1995 | A |
5460170 | Hammerslag | Oct 1995 | A |
5464409 | Mohajer | Nov 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5490843 | Hildwein et al. | Feb 1996 | A |
5507758 | Thomason et al. | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514133 | Golub et al. | May 1996 | A |
5514153 | Bonutti | May 1996 | A |
5520610 | Giglio et al. | May 1996 | A |
5520698 | Koh | May 1996 | A |
5522791 | Leyva | Jun 1996 | A |
5524501 | Patterson et al. | Jun 1996 | A |
5524644 | Crook | Jun 1996 | A |
5538509 | Dunlap et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5545150 | Danks et al. | Aug 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5549565 | Ryan et al. | Aug 1996 | A |
5551947 | Kaali | Sep 1996 | A |
5556385 | Andersen | Sep 1996 | A |
5569159 | Anderson et al. | Oct 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5569291 | Privitera et al. | Oct 1996 | A |
5569292 | Scwemberger et al. | Oct 1996 | A |
5577993 | Zhu et al. | Nov 1996 | A |
5591192 | Privitera et al. | Jan 1997 | A |
5601581 | Fogarty et al. | Feb 1997 | A |
5609562 | Kaali | Mar 1997 | A |
5624399 | Ackerman | Apr 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5643285 | Rowden et al. | Jul 1997 | A |
5649550 | Crook | Jul 1997 | A |
5651771 | Tangherlini et al. | Jul 1997 | A |
5653705 | de la Torre et al. | Aug 1997 | A |
5656013 | Yoon | Aug 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5683378 | Christy | Nov 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5685857 | Negus et al. | Nov 1997 | A |
5685862 | Mahurkar | Nov 1997 | A |
5697946 | Hopper et al. | Dec 1997 | A |
5709671 | Stephens et al. | Jan 1998 | A |
5709675 | Williams | Jan 1998 | A |
5713858 | Heruth et al. | Feb 1998 | A |
5713869 | Morejon | Feb 1998 | A |
5720730 | Blake, III | Feb 1998 | A |
5720761 | Kaali | Feb 1998 | A |
5722962 | Garcia | Mar 1998 | A |
5728103 | Picha et al. | Mar 1998 | A |
5730748 | Fogarty et al. | Mar 1998 | A |
5735791 | Alexander, Jr. et al. | Apr 1998 | A |
5741298 | MacLeod | Apr 1998 | A |
5752970 | Yoon | May 1998 | A |
5776112 | Stephens et al. | Jul 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5792113 | Kramer et al. | Aug 1998 | A |
5795290 | Bridges | Aug 1998 | A |
5800451 | Buess et al. | Sep 1998 | A |
5803921 | Bonadio | Sep 1998 | A |
5810712 | Dunn | Sep 1998 | A |
5813409 | Leahy et al. | Sep 1998 | A |
5830191 | Hildwein et al. | Nov 1998 | A |
5836871 | Wallace et al. | Nov 1998 | A |
5836913 | Orth et al. | Nov 1998 | A |
5840077 | Rowden et al. | Nov 1998 | A |
5842971 | Yoon | Dec 1998 | A |
5848992 | Hart et al. | Dec 1998 | A |
5853417 | Fogarty et al. | Dec 1998 | A |
5857461 | Levitsky et al. | Jan 1999 | A |
5865817 | Moenning et al. | Feb 1999 | A |
5871471 | Ryan et al. | Feb 1999 | A |
5871474 | Hermann et al. | Feb 1999 | A |
5876413 | Fogarty et al. | Mar 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5895377 | Smith et al. | Apr 1999 | A |
5899208 | Bonadio | May 1999 | A |
5899913 | Fogarty et al. | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5914415 | Tago | Jun 1999 | A |
5916198 | Dillow | Jun 1999 | A |
5941898 | Moenning et al. | Aug 1999 | A |
5951588 | Moenning | Sep 1999 | A |
5957913 | de la Torre et al. | Sep 1999 | A |
5964781 | Mollenauer et al. | Oct 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5997515 | de la Torre et al. | Dec 1999 | A |
6007481 | Riek et al. | Dec 1999 | A |
6017355 | Hessel et al. | Jan 2000 | A |
6018094 | Fox | Jan 2000 | A |
6024736 | de la Torre et al. | Feb 2000 | A |
6030402 | Thompson et al. | Feb 2000 | A |
6033426 | Kaji | Mar 2000 | A |
6033428 | Sardella | Mar 2000 | A |
6042573 | Lucey | Mar 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6059816 | Moenning | May 2000 | A |
6068639 | Fogarty et al. | May 2000 | A |
6077288 | Shimomura et al. | Jun 2000 | A |
6086603 | Termin et al. | Jul 2000 | A |
6093176 | Dennis | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6099506 | Macoviak et al. | Aug 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6142936 | Beane et al. | Nov 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6162196 | Hart et al. | Dec 2000 | A |
6171282 | Ragsdale | Jan 2001 | B1 |
6197002 | Peterson | Mar 2001 | B1 |
6213957 | Milliman et al. | Apr 2001 | B1 |
6217555 | Hart et al. | Apr 2001 | B1 |
6228063 | Aboul-Hosn | May 2001 | B1 |
6234958 | Snoke et al. | May 2001 | B1 |
6238373 | de la Torre et al. | May 2001 | B1 |
6241768 | Agarwal et al. | Jun 2001 | B1 |
6251119 | Addis | Jun 2001 | B1 |
6254534 | Butler et al. | Jul 2001 | B1 |
6264604 | Kieturakis et al. | Jul 2001 | B1 |
6276661 | Laird | Aug 2001 | B1 |
6293952 | Brosens et al. | Sep 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6319246 | de la Torre et al. | Nov 2001 | B1 |
6328720 | McNally et al. | Dec 2001 | B1 |
6329637 | Hembree et al. | Dec 2001 | B1 |
6355028 | Castaneda et al. | Mar 2002 | B2 |
6371968 | Kogasaka et al. | Apr 2002 | B1 |
6382211 | Crook | May 2002 | B1 |
6423036 | Van Huizen | Jul 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6440063 | Beane et al. | Aug 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6447489 | Peterson | Sep 2002 | B1 |
6450983 | Rambo | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6464686 | O'Hara et al. | Oct 2002 | B1 |
6468292 | Mollenauer et al. | Oct 2002 | B1 |
6478806 | McFarlane | Nov 2002 | B2 |
6485410 | Loy | Nov 2002 | B1 |
6485467 | Crook et al. | Nov 2002 | B1 |
6487806 | Murello et al. | Dec 2002 | B2 |
6488620 | Segermark et al. | Dec 2002 | B1 |
6488692 | Spence et al. | Dec 2002 | B1 |
6524283 | Hopper et al. | Feb 2003 | B1 |
6527787 | Fogarty et al. | Mar 2003 | B1 |
6544210 | Trudel et al. | Apr 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6551282 | Exline et al. | Apr 2003 | B1 |
6558371 | Dorn | May 2003 | B2 |
6562022 | Hoste et al. | May 2003 | B2 |
6569120 | Green et al. | May 2003 | B1 |
6572631 | McCartney | Jun 2003 | B1 |
6578577 | Bonadio et al. | Jun 2003 | B2 |
6582364 | Butler et al. | Jun 2003 | B2 |
6589167 | Shimomura et al. | Jul 2003 | B1 |
6589316 | Schultz et al. | Jul 2003 | B1 |
6592543 | Wortrich et al. | Jul 2003 | B1 |
6613038 | Bonutti et al. | Sep 2003 | B2 |
6613952 | Rambo | Sep 2003 | B2 |
6623426 | Bonadio et al. | Sep 2003 | B2 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
6676639 | Ternstrom | Jan 2004 | B1 |
6684405 | Lezdey | Feb 2004 | B2 |
6702787 | Racenet et al. | Mar 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6716201 | Blanco | Apr 2004 | B2 |
6723044 | Pulford et al. | Apr 2004 | B2 |
6723088 | Gaskill, III et al. | Apr 2004 | B2 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6740064 | Sorrentino et al. | May 2004 | B1 |
6800084 | Davison et al. | Oct 2004 | B2 |
6811546 | Callas et al. | Nov 2004 | B1 |
6814078 | Crook | Nov 2004 | B2 |
6830578 | O'Heeron et al. | Dec 2004 | B2 |
6835201 | O'Heeron et al. | Dec 2004 | B2 |
6837893 | Miller | Jan 2005 | B2 |
6840946 | Fogarty et al. | Jan 2005 | B2 |
6840951 | de la Torre et al. | Jan 2005 | B2 |
6846287 | Bonadio et al. | Jan 2005 | B2 |
6855128 | Swenson | Feb 2005 | B2 |
6863674 | Kasahara et al. | Mar 2005 | B2 |
6878110 | Yang et al. | Apr 2005 | B2 |
6884253 | McFarlane | Apr 2005 | B1 |
6890295 | Michels et al. | May 2005 | B2 |
6913609 | Yencho et al. | Jul 2005 | B2 |
6916310 | Sommerich | Jul 2005 | B2 |
6916331 | Mollenauer et al. | Jul 2005 | B2 |
6929637 | Gonzalez et al. | Aug 2005 | B2 |
6939296 | Ewers et al. | Sep 2005 | B2 |
6942633 | Odland | Sep 2005 | B2 |
6942671 | Smith | Sep 2005 | B1 |
6945932 | Caldwell et al. | Sep 2005 | B1 |
6958037 | Ewers et al. | Oct 2005 | B2 |
6960164 | O'Heeron | Nov 2005 | B2 |
6972026 | Caldwell et al. | Dec 2005 | B1 |
6986752 | McGuckin, Jr. et al. | Jan 2006 | B2 |
6991602 | Nakazawa et al. | Jan 2006 | B2 |
6997909 | Goldberg | Feb 2006 | B2 |
7001397 | Davison et al. | Feb 2006 | B2 |
7008377 | Beane et al. | Mar 2006 | B2 |
7011645 | McGuckin, Jr. et al. | Mar 2006 | B2 |
7014628 | Bousquet | Mar 2006 | B2 |
7033319 | Pulford et al. | Apr 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7056321 | Pagliuca et al. | Jun 2006 | B2 |
7077852 | Fogarty et al. | Jul 2006 | B2 |
7081089 | Bonadio et al. | Jul 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101353 | Lui et al. | Sep 2006 | B2 |
7104981 | Elkins et al. | Sep 2006 | B2 |
7153261 | Wenchell | Dec 2006 | B2 |
7160309 | Voss | Jan 2007 | B2 |
7163510 | Kahle et al. | Jan 2007 | B2 |
7192436 | Sing et al. | Mar 2007 | B2 |
7195590 | Butler et al. | Mar 2007 | B2 |
7201725 | Cragg et al. | Apr 2007 | B1 |
7214185 | Rosney et al. | May 2007 | B1 |
7217277 | Parihar et al. | May 2007 | B2 |
7223257 | Shubayev et al. | May 2007 | B2 |
7223278 | Davison et al. | May 2007 | B2 |
7235064 | Hopper et al. | Jun 2007 | B2 |
7235084 | Skakoon et al. | Jun 2007 | B2 |
7238154 | Ewers et al. | Jul 2007 | B2 |
7258712 | Schultz et al. | Aug 2007 | B2 |
7276075 | Callas et al. | Oct 2007 | B1 |
7294103 | Bertolero et al. | Nov 2007 | B2 |
7300399 | Bonadio et al. | Nov 2007 | B2 |
7300448 | Criscuolo et al. | Nov 2007 | B2 |
7316699 | McFarlane | Jan 2008 | B2 |
7320694 | O'Heeron | Jan 2008 | B2 |
7331940 | Sommerich | Feb 2008 | B2 |
7344547 | Piskun | Mar 2008 | B2 |
7370694 | Shimizu et al. | May 2008 | B2 |
7377898 | Ewers et al. | May 2008 | B2 |
7390322 | McGuckin, Jr. et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7412977 | Fields et al. | Aug 2008 | B2 |
7440661 | Kobayashi | Oct 2008 | B2 |
7445597 | Butler et al. | Nov 2008 | B2 |
7452363 | Ortiz | Nov 2008 | B2 |
7473221 | Ewers et al. | Jan 2009 | B2 |
7481765 | Ewers et al. | Jan 2009 | B2 |
7493703 | Kim et al. | Feb 2009 | B2 |
7494481 | Moberg et al. | Feb 2009 | B2 |
7513361 | Mills, Jr. | Apr 2009 | B1 |
7513461 | Reutenauer et al. | Apr 2009 | B2 |
7520876 | Ressemann et al. | Apr 2009 | B2 |
7537564 | Bonadio et al. | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7559893 | Bonadio et al. | Jul 2009 | B2 |
7608082 | Cuevas et al. | Oct 2009 | B2 |
7625361 | Suzuki et al. | Dec 2009 | B2 |
7645232 | Shluzas | Jan 2010 | B2 |
7650887 | Nguyen et al. | Jan 2010 | B2 |
7678046 | White et al. | Mar 2010 | B2 |
7686823 | Pingleton et al. | Mar 2010 | B2 |
7704207 | Albrecht et al. | Apr 2010 | B2 |
7708713 | Albrecht et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7717847 | Smith | May 2010 | B2 |
7721742 | Kalloo et al. | May 2010 | B2 |
7727146 | Albrecht et al. | Jun 2010 | B2 |
7730629 | Kim | Jun 2010 | B2 |
7736306 | Brustad et al. | Jun 2010 | B2 |
7744569 | Smith | Jun 2010 | B2 |
7753901 | Piskun et al. | Jul 2010 | B2 |
7758500 | Boyd et al. | Jul 2010 | B2 |
7758603 | Taylor et al. | Jul 2010 | B2 |
7762995 | Eversull et al. | Jul 2010 | B2 |
7766824 | Jensen et al. | Aug 2010 | B2 |
7787963 | Geistert et al. | Aug 2010 | B2 |
7794644 | Taylor et al. | Sep 2010 | B2 |
7798998 | Thompson et al. | Sep 2010 | B2 |
7811251 | Wenchell et al. | Oct 2010 | B2 |
7815567 | Albrecht et al. | Oct 2010 | B2 |
7837612 | Gill et al. | Nov 2010 | B2 |
7846123 | Vassiliades et al. | Dec 2010 | B2 |
7850600 | Piskun | Dec 2010 | B1 |
7850655 | Pasqualucci | Dec 2010 | B2 |
7850667 | Gresham | Dec 2010 | B2 |
7867164 | Butler et al. | Jan 2011 | B2 |
7896889 | Mazzocchi et al. | Mar 2011 | B2 |
7905829 | Nishimura et al. | Mar 2011 | B2 |
7909760 | Albrecht et al. | Mar 2011 | B2 |
7913697 | Nguyen et al. | Mar 2011 | B2 |
7918827 | Smith | Apr 2011 | B2 |
7947058 | Kahle et al. | May 2011 | B2 |
7951076 | Hart et al. | May 2011 | B2 |
7955257 | Frasier et al. | Jun 2011 | B2 |
7955313 | Boismier | Jun 2011 | B2 |
7985232 | Potter et al. | Jul 2011 | B2 |
3002750 | Smith | Aug 2011 | A1 |
3002786 | Beckman et al. | Aug 2011 | A1 |
7998068 | Bonadio et al. | Aug 2011 | B2 |
3012128 | Franer et al. | Sep 2011 | A1 |
3021296 | Bonadio et al. | Sep 2011 | A1 |
8025670 | Sharp et al. | Sep 2011 | B2 |
8029475 | Franer et al. | Oct 2011 | B2 |
8038652 | Morrison et al. | Oct 2011 | B2 |
8052653 | Gratwohl et al. | Nov 2011 | B2 |
8066673 | Hart et al. | Nov 2011 | B2 |
8079986 | Taylor et al. | Dec 2011 | B2 |
8092430 | Richard et al. | Jan 2012 | B2 |
8092431 | Lunn et al. | Jan 2012 | B2 |
8105234 | Ewers et al. | Jan 2012 | B2 |
8109873 | Albrecht et al. | Feb 2012 | B2 |
8118735 | Voegele | Feb 2012 | B2 |
8128590 | Albrecht et al. | Mar 2012 | B2 |
8137318 | Schweitzer et al. | Mar 2012 | B2 |
8147453 | Albrecht et al. | Apr 2012 | B2 |
8152828 | Taylor et al. | Apr 2012 | B2 |
8157786 | Miller et al. | Apr 2012 | B2 |
8157817 | Bonadio et al. | Apr 2012 | B2 |
8187177 | Kahle et al. | May 2012 | B2 |
8187178 | Bonadio et al. | May 2012 | B2 |
8206411 | Thompson et al. | Jun 2012 | B2 |
8241209 | Shelton, IV et al. | Aug 2012 | B2 |
8262568 | Albrecht et al. | Sep 2012 | B2 |
8267952 | Kahle et al. | Sep 2012 | B2 |
8323184 | Spiegal et al. | Dec 2012 | B2 |
8335783 | Milby | Dec 2012 | B2 |
8343047 | Albrecht et al. | Jan 2013 | B2 |
8353824 | Shelton, IV et al. | Jan 2013 | B2 |
8398666 | McFarlane | Mar 2013 | B2 |
8403889 | Richard | Mar 2013 | B2 |
8480683 | Fowler et al. | Jul 2013 | B2 |
8574153 | Richard | Nov 2013 | B2 |
8585632 | Okoniewski | Nov 2013 | B2 |
8597180 | Copeland et al. | Dec 2013 | B2 |
8961406 | Ortiz et al. | Feb 2015 | B2 |
10022149 | Holsten et al. | Jul 2018 | B2 |
20010037053 | Bonadio et al. | Nov 2001 | A1 |
20020055714 | Rothschild | May 2002 | A1 |
20020091410 | Ben-David et al. | Jul 2002 | A1 |
20020173748 | McConnell et al. | Nov 2002 | A1 |
20030014076 | Mollenauer et al. | Jan 2003 | A1 |
20030093104 | Bonner et al. | May 2003 | A1 |
20030109853 | Harding et al. | Jun 2003 | A1 |
20030153926 | Schmieding et al. | Aug 2003 | A1 |
20030187376 | Rambo | Oct 2003 | A1 |
20030187397 | Vitali | Oct 2003 | A1 |
20030233115 | Eversull et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040006356 | Smith | Jan 2004 | A1 |
20040054353 | Taylor | Mar 2004 | A1 |
20040059297 | Racenet et al. | Mar 2004 | A1 |
20040073090 | Butler et al. | Apr 2004 | A1 |
20040092795 | Bonadio et al. | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040111061 | Curran | Jun 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040186434 | Harding et al. | Sep 2004 | A1 |
20040204682 | Smith | Oct 2004 | A1 |
20040204734 | Wagner et al. | Oct 2004 | A1 |
20040215209 | Almond et al. | Oct 2004 | A1 |
20040267096 | Caldwell et al. | Dec 2004 | A1 |
20040267204 | Brustowicz | Dec 2004 | A1 |
20050010238 | Potter et al. | Jan 2005 | A1 |
20050020884 | Hart et al. | Jan 2005 | A1 |
20050033342 | Hart et al. | Feb 2005 | A1 |
20050070850 | Albrecht | Mar 2005 | A1 |
20050070851 | Thompson et al. | Mar 2005 | A1 |
20050070935 | Ortiz | Mar 2005 | A1 |
20050070946 | Franer et al. | Mar 2005 | A1 |
20050070947 | Franer et al. | Mar 2005 | A1 |
20050096695 | Olich | May 2005 | A1 |
20050119525 | Takemoto | Jun 2005 | A1 |
20050137459 | Chin et al. | Jun 2005 | A1 |
20050148823 | Vaugh et al. | Jul 2005 | A1 |
20050192483 | Bonadio et al. | Sep 2005 | A1 |
20050192594 | Skakoon et al. | Sep 2005 | A1 |
20050203346 | Bonadio et al. | Sep 2005 | A1 |
20050209608 | O'Heeron | Sep 2005 | A1 |
20050212221 | Smith et al. | Sep 2005 | A1 |
20050222582 | Wenchell | Oct 2005 | A1 |
20050245876 | Khosravi et al. | Nov 2005 | A1 |
20050251092 | Howell et al. | Nov 2005 | A1 |
20050251190 | McFarlane | Nov 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20060020281 | Smith | Jan 2006 | A1 |
20060071432 | Staudner | Apr 2006 | A1 |
20060129165 | Edoga et al. | Jun 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060149306 | Hart et al. | Jul 2006 | A1 |
20060161049 | Beane et al. | Jul 2006 | A1 |
20060161050 | Butler et al. | Jul 2006 | A1 |
20060211992 | Prosek | Sep 2006 | A1 |
20060212063 | Wilk | Sep 2006 | A1 |
20060217665 | Prosek | Sep 2006 | A1 |
20060224161 | Bhattacharyya | Oct 2006 | A1 |
20060241651 | Wilk | Oct 2006 | A1 |
20060247498 | Bonadio et al. | Nov 2006 | A1 |
20060247499 | Butler et al. | Nov 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060247516 | Hess et al. | Nov 2006 | A1 |
20060247586 | Voegele et al. | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060247678 | Weisenburgh et al. | Nov 2006 | A1 |
20060270911 | Voegele et al. | Nov 2006 | A1 |
20060276751 | Haberland et al. | Dec 2006 | A1 |
20070088277 | McGinley et al. | Apr 2007 | A1 |
20070093695 | Bonadio et al. | Apr 2007 | A1 |
20070118175 | Butler et al. | May 2007 | A1 |
20070151566 | Kahle et al. | Jul 2007 | A1 |
20070185453 | Michael et al. | Aug 2007 | A1 |
20070203398 | Bonadio et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070225650 | Hart et al. | Sep 2007 | A1 |
20070239108 | Albrecht et al. | Oct 2007 | A1 |
20070255218 | Franer | Nov 2007 | A1 |
20070270654 | Pignato et al. | Nov 2007 | A1 |
20070270882 | Hjelle et al. | Nov 2007 | A1 |
20080009826 | Miller et al. | Jan 2008 | A1 |
20080021360 | Fihe et al. | Jan 2008 | A1 |
20080027476 | Piskun | Jan 2008 | A1 |
20080048011 | Weller | Feb 2008 | A1 |
20080051739 | McFarlane | Feb 2008 | A1 |
20080058723 | Lipchitz et al. | Mar 2008 | A1 |
20080091143 | Taylor et al. | Apr 2008 | A1 |
20080097162 | Bonadio et al. | Apr 2008 | A1 |
20080097332 | Greenhalgh et al. | Apr 2008 | A1 |
20080119868 | Sharp et al. | May 2008 | A1 |
20080146884 | Beckman et al. | Jun 2008 | A1 |
20080161758 | Insignares | Jul 2008 | A1 |
20080161826 | Guiraudon | Jul 2008 | A1 |
20080177265 | Lechot | Jul 2008 | A1 |
20080188868 | Weitzner et al. | Aug 2008 | A1 |
20080194973 | Imam | Aug 2008 | A1 |
20080200767 | Ewers et al. | Aug 2008 | A1 |
20080202529 | Flory | Aug 2008 | A1 |
20080208222 | Beckman et al. | Aug 2008 | A1 |
20080249475 | Albrecht et al. | Oct 2008 | A1 |
20080255519 | Piskun et al. | Oct 2008 | A1 |
20080319261 | Lucini et al. | Dec 2008 | A1 |
20090012477 | Norton et al. | Jan 2009 | A1 |
20090036738 | Cuschieri et al. | Feb 2009 | A1 |
20090036745 | Bonadio et al. | Feb 2009 | A1 |
20090093752 | Richard et al. | Apr 2009 | A1 |
20090093835 | Heinrich et al. | Apr 2009 | A1 |
20090093850 | Richard | Apr 2009 | A1 |
20090105635 | Bettuchi et al. | Apr 2009 | A1 |
20090131751 | Spivey et al. | May 2009 | A1 |
20090137879 | Ewers et al. | May 2009 | A1 |
20090182279 | Wenchell et al. | Jul 2009 | A1 |
20090182282 | Okihisa et al. | Jul 2009 | A1 |
20090182288 | Spenciner | Jul 2009 | A1 |
20090187079 | Albrecht et al. | Jul 2009 | A1 |
20090204067 | Abu-Halawa | Aug 2009 | A1 |
20090221968 | Morrison et al. | Sep 2009 | A1 |
20090227843 | Smith et al. | Sep 2009 | A1 |
20090234293 | Albrecht et al. | Sep 2009 | A1 |
20090275880 | Pasqualucci | Nov 2009 | A1 |
20090326330 | Bonadio et al. | Dec 2009 | A1 |
20090326332 | Carter | Dec 2009 | A1 |
20100010449 | Leibowitz | Jan 2010 | A1 |
20100016800 | Rockrohr | Jan 2010 | A1 |
20100030155 | Gyrn et al. | Feb 2010 | A1 |
20100049138 | Smith et al. | Feb 2010 | A1 |
20100063450 | Smith et al. | Mar 2010 | A1 |
20100063452 | Edelman et al. | Mar 2010 | A1 |
20100100043 | Racenet | Apr 2010 | A1 |
20100113886 | Piskun et al. | May 2010 | A1 |
20100222801 | Pingleton et al. | Sep 2010 | A1 |
20100228090 | Weisenburgh, II | Sep 2010 | A1 |
20100228094 | Ortiz et al. | Sep 2010 | A1 |
20100228096 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100240960 | Richard | Sep 2010 | A1 |
20100249516 | Shelton, IV et al. | Sep 2010 | A1 |
20100249523 | Spiegal et al. | Sep 2010 | A1 |
20100249524 | Ransden et al. | Sep 2010 | A1 |
20100261975 | Huey et al. | Oct 2010 | A1 |
20100262080 | Shelton, IV et al. | Oct 2010 | A1 |
20100280326 | Hess et al. | Nov 2010 | A1 |
20100286484 | Stellon et al. | Nov 2010 | A1 |
20100286506 | Ransden et al. | Nov 2010 | A1 |
20100286706 | Judson | Nov 2010 | A1 |
20100298646 | Stellon et al. | Nov 2010 | A1 |
20100312063 | Hess et al. | Dec 2010 | A1 |
20110009704 | Marczyk et al. | Jan 2011 | A1 |
20110021877 | Fortier et al. | Jan 2011 | A1 |
20110028891 | Okoniewski | Feb 2011 | A1 |
20110034778 | Kleyman | Feb 2011 | A1 |
20110054257 | Stopek | Mar 2011 | A1 |
20110054258 | O'Keefe et al. | Mar 2011 | A1 |
20110054260 | Albrecht et al. | Mar 2011 | A1 |
20110082341 | Kleyman et al. | Apr 2011 | A1 |
20110082343 | Okoniewski | Apr 2011 | A1 |
20110082346 | Stopek | Apr 2011 | A1 |
20110087159 | Parihar et al. | Apr 2011 | A1 |
20110087168 | Parihar et al. | Apr 2011 | A1 |
20110087169 | Parihar et al. | Apr 2011 | A1 |
20110118553 | Stopek | May 2011 | A1 |
20110118833 | Reichenbach et al. | May 2011 | A1 |
20110124968 | Kleyman | May 2011 | A1 |
20110124969 | Stopek | May 2011 | A1 |
20110124970 | Kleyman | May 2011 | A1 |
20110125186 | Fowler et al. | May 2011 | A1 |
20110166423 | Farascioni et al. | Jul 2011 | A1 |
20110190592 | Kahle et al. | Aug 2011 | A1 |
20110201891 | Smith et al. | Aug 2011 | A1 |
20110251463 | Kleyman | Oct 2011 | A1 |
20110251464 | Kleyman | Oct 2011 | A1 |
20110251465 | Kleyman | Oct 2011 | A1 |
20110251466 | Kleyman et al. | Oct 2011 | A1 |
20110251559 | Tal et al. | Oct 2011 | A1 |
20110251560 | Albrecht et al. | Oct 2011 | A1 |
20110251633 | Smith | Oct 2011 | A1 |
20110276002 | Bierman | Nov 2011 | A1 |
20110313250 | Kleyman | Dec 2011 | A1 |
20120010569 | Parihar | Jan 2012 | A1 |
20120041371 | Tal et al. | Feb 2012 | A1 |
20120059640 | Roy et al. | Mar 2012 | A1 |
20120065590 | Bierman et al. | Mar 2012 | A1 |
20120109064 | Fischvogt et al. | May 2012 | A1 |
20120130177 | Davis | May 2012 | A1 |
20120130181 | Davis | May 2012 | A1 |
20120130182 | Rodrigues, Jr. et al. | May 2012 | A1 |
20120130183 | Barnes | May 2012 | A1 |
20120130184 | Richard | May 2012 | A1 |
20120130185 | Pribanic | May 2012 | A1 |
20120130186 | Stopek et al. | May 2012 | A1 |
20120130187 | Okoniewski | May 2012 | A1 |
20120130188 | Okoniewski | May 2012 | A1 |
20120130190 | Kasvikis | May 2012 | A1 |
20120130191 | Pribanic | May 2012 | A1 |
20120149987 | Richard et al. | Jun 2012 | A1 |
20120157777 | Okoniewski | Jun 2012 | A1 |
20120157779 | Fischvogt | Jun 2012 | A1 |
20120157780 | Okoniewski et al. | Jun 2012 | A1 |
20120157781 | Kleyman | Jun 2012 | A1 |
20120157782 | Alfieri | Jun 2012 | A1 |
20120157783 | Okoniewski et al. | Jun 2012 | A1 |
20120157784 | Kleyman et al. | Jun 2012 | A1 |
20120157785 | Kleyman | Jun 2012 | A1 |
20120157786 | Pribanic | Jun 2012 | A1 |
20120190931 | Stopek | Jul 2012 | A1 |
20120190932 | Okoniewski | Jul 2012 | A1 |
20120190933 | Kleyman | Jul 2012 | A1 |
20120209077 | Racenet | Aug 2012 | A1 |
20120209078 | Pribanic et al. | Aug 2012 | A1 |
20120245427 | Kleyman | Sep 2012 | A1 |
20120245429 | Smith | Sep 2012 | A1 |
20120245430 | Kleyman et al. | Sep 2012 | A1 |
20120283520 | Kleyman | Nov 2012 | A1 |
20120316596 | Taylor et al. | Dec 2012 | A1 |
20130225930 | Smith | Aug 2013 | A1 |
20130225931 | Cruz et al. | Aug 2013 | A1 |
20130245373 | Okoniewski | Sep 2013 | A1 |
20130274559 | Fowler et al. | Oct 2013 | A1 |
20130310651 | Alfieri | Nov 2013 | A1 |
20140018632 | Kleyman | Jan 2014 | A1 |
20140371537 | Marczyk et al. | Dec 2014 | A1 |
20150025477 | Evans | Jan 2015 | A1 |
20150065808 | Van Wyk et al. | Mar 2015 | A1 |
20150223833 | Coffeen et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2702419 | Nov 2010 | CA |
202313634 | Jul 2012 | CN |
202008009527 | Oct 2008 | DE |
0226026 | Jun 1987 | EP |
0538060 | Apr 1993 | EP |
0577400 | Jan 1994 | EP |
0630660 | Dec 1994 | EP |
0807416 | Nov 1997 | EP |
0950376 | Oct 1999 | EP |
1188415 | Mar 2002 | EP |
1312318 | May 2003 | EP |
1774918 | Apr 2007 | EP |
1932485 | Jun 2008 | EP |
1994896 | Nov 2008 | EP |
2044889 | Apr 2009 | EP |
2044897 | Apr 2009 | EP |
2080494 | Jul 2009 | EP |
2095781 | Sep 2009 | EP |
2098182 | Sep 2009 | EP |
2138117 | Dec 2009 | EP |
2138118 | Dec 2009 | EP |
2145593 | Jan 2010 | EP |
2181657 | May 2010 | EP |
2226025 | Sep 2010 | EP |
2229900 | Sep 2010 | EP |
2238924 | Oct 2010 | EP |
2238925 | Oct 2010 | EP |
2238926 | Oct 2010 | EP |
2238933 | Oct 2010 | EP |
2248478 | Nov 2010 | EP |
2248482 | Nov 2010 | EP |
2253283 | Nov 2010 | EP |
2272450 | Jan 2011 | EP |
2277464 | Jan 2011 | EP |
2289438 | Mar 2011 | EP |
2292165 | Mar 2011 | EP |
2343019 | Jul 2011 | EP |
2469083 | Apr 2009 | GB |
2001525693 | Dec 2001 | JP |
2004532660 | Oct 2004 | JP |
2006187603 | Jul 2006 | JP |
2008289889 | Dec 2008 | JP |
2009534124 | Sep 2009 | JP |
2011515128 | May 2011 | JP |
8401512 | Apr 1984 | WO |
9314801 | Aug 1993 | WO |
9404067 | Mar 1994 | WO |
9610963 | Apr 1996 | WO |
9636283 | Nov 1996 | WO |
9733520 | Sep 1997 | WO |
9742889 | Nov 1997 | WO |
9850093 | Nov 1998 | WO |
9916368 | Apr 1999 | WO |
9922804 | May 1999 | WO |
9929250 | Jun 1999 | WO |
0032116 | Jun 2000 | WO |
0032120 | Jun 2000 | WO |
0054675 | Sep 2000 | WO |
0108581 | Feb 2001 | WO |
0149363 | Jul 2001 | WO |
0207611 | Jan 2002 | WO |
03034908 | May 2003 | WO |
03071926 | Sep 2003 | WO |
03077726 | Sep 2003 | WO |
2004043275 | May 2004 | WO |
2004054456 | Jul 2004 | WO |
2004075741 | Sep 2004 | WO |
2004075930 | Sep 2004 | WO |
2005058409 | Jun 2005 | WO |
2006019723 | Feb 2006 | WO |
2006100658 | Sep 2006 | WO |
2006110733 | Oct 2006 | WO |
2006118650 | Nov 2006 | WO |
2007018458 | Feb 2007 | WO |
2007095703 | Aug 2007 | WO |
2007143200 | Dec 2007 | WO |
2008015566 | Feb 2008 | WO |
2008042005 | Apr 2008 | WO |
2008077080 | Jun 2008 | WO |
2008093313 | Aug 2008 | WO |
2008103151 | Aug 2008 | WO |
2008121294 | Oct 2008 | WO |
2008147644 | Dec 2008 | WO |
2009036343 | Mar 2009 | WO |
2010000047 | Jan 2010 | WO |
2010141409 | Dec 2010 | WO |
2010141673 | Dec 2010 | WO |
2014116889 | Jul 2014 | WO |
2016094653 | Jun 2016 | WO |
2016186905 | Nov 2016 | WO |
2018024101 | Feb 2018 | WO |
Entry |
---|
European Search Report dated Sep. 24, 2021, corresponding to counterpart European Application No. 21170137.0; 8 pages. |
European Office Action dated Feb. 8, 2023, issued in corresponding EP Application No. 21 270 137, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20210330352 A1 | Oct 2021 | US |