The present invention relates to an access control gate with mechanical guidance to form one or more access lanes for patrons. First electronic means identify the access right of patrons and comprise a contact less RFID-reader which is connected to a software controlled verification system. Second means indicate the approaching patron the access right verification.
Access control gates have been known in different applications such as ski lift entrance, metro stations, public places and buildings. Most of the time a ticket media like as a magnetic stripe card, a barcode ticket or a RFID-transponder is used to identify the access right, also biometric recognition systems have been used like fingerprint or face recognition. These access control gates comprise electronic means to verify the access right. A barrier closes the access lane and is automatically opened after the access right is verified.
WO 97/18379 describes a typical access control gate used for ski lifts. This gate uses a turnstile as a barrier to close the lane. The means to verify the access right comprise a magnetic stripe reader and/or a reader for contactless RFID cards. After the access right has been verified, the turnstile is released to allow the passage of the skier. To reduce the troubles for the skier it is proposed, that only one arm instead of 3 arms in conventional turnstiles should be used, which arm turns to the bottom to free the lane.
U.S. Pat. No. 3,742,647 describes a gate equipment to be used in railway stations. An access lane is formed by two sidewalls, in each of the sidewalls a flap is hinged and can be turned from a closed position—constricting the lane—to an open position parallel and inside the sidewalls. The flaps are retracted activated after a fare ticket has been verified.
Another example is the GB 2 295 297 which describes a non contacting IC card system and gate facility. To enhance the comfort of a passage two antennas per lane are installed, the first antenna on one side is a transmitter to provide power to the IC card and the second antenna on the other side is a receiver to read the IC card. After an access right have been verified, flaps which are hinged to the sidewalls of the lane open and allow the passage of the patron.
Access control gates as described before have only been used in environments with perpetual use like public transport. This is because inexperienced patrons have problems to understand the procedure to pass the gate and therefore delay the passenger flow rate or cannot pass without assistance. Additionally turnstile barriers often hook into patrons baggage or cloths and create hassles.
It is an object of the invention to provide an access control gate with a high throughput, without creating any hassle to operator and patrons.
The access control gate comprises two motor driven flaps which protrude from left and right of the lateral lane boundaries into the access lane thereby forming a closed gate threshold, with a contactless access reader arranged to capture the access right of the approaching patron short before he approaches the gate threshold, that verification system activates the flaps when an access right has been approved to swing out of the lane in the approach direction to indicate to the approaching patron the granted access right, and with means to detect the passage of a patron through the gate threshold comprising two or more photoelectric barriers having first and second spaced detecting beams that are directed to the lane zone behind the gate threshold, thereby initiating the flaps to close the lane immediately with high speed behind the patron when he has regularly passed the gate.
The invention supports a flawless passage and patron behaviour. The closed flaps slow down the approaching patron short before arriving at the gate threshold, allowing the contactless access reader to capture the access right. The software controlled verification system activates the flaps to swing out of the lane indicating the patron the granted access right and even inexperienced patrons pass the threshold without stopping. Due to the fact that the flaps free the lane the patron will pass without any restriction and hassle. The photoelectric barriers detect the patrons passage through the threshold and close the flaps immediately behind to prevent any unauthorized passage of a successive patron but mask any unintentional detection of one of the sensors. This access control gate is especially suited to control the entrance at ski lifts.
In a preferred embodiment the access control gate includes upright supports situated at the gate threshold left and right of each lane, which supports are attached to an overhead gantry style beam. The gantry style beam is pivotally mounted on one side to a vertical post to turn away the whole gate assembly from the access lanes. This allows to groom the lane area and to adjust the height of the equipment.
Preferably bearings are mounted on the upright support to pivot each flap on a upright axis, and with a gearbox to turn the flaps from the closed to the open position and vice versa, with a position sensor to detect the open and the closed position of the flaps, and with two or more photoelectric barriers to detect the passage of the patron but to blank out the unintentional screening of only one of the photoelectric barriers before the patron really could pass the threshold.
The contactless access reader is preferably built with first electronic means comprising a RFID antenna on the left side and on the right side of the lane, forming overlapping reading zones to cover the whole lane width, which antennas are attached to the upright supports and which supports are attached to an overhead gantry style beam. Each RFID antenna is formed by an inductive loop with a width of 5 to 15 inch in direction of the lane, arranged parallel at the lane boundaries adjacent to the flap hinges.
To secure safety and security for the patrons it is of special advantage that a gear box includes a electrical motor driving a worm gear pitched near to a self-locking condition, thereby allowing the motor to drive the flaps with low torque but retard the flaps against manual opening with high torque.
A threshold 4 is formed by flaps 7 and 7′, hinged on a vertical axis on the supports 2 and 2′ and protruding into the lane A and B. Each flap 7 is mounted on a gear box 8 and 8′, which can pivot the flap 7 from the closed position protruding into the lane in an open position parallel outside the lane.
The supports 2 and 2′ carry RFID-antennas 6 and 6′, which comprise inductive loops parallel to the lane with a dimension of about 2 to 4 inches height and 1 to 2 inches width. These inductive loops are connected to RFID-modules shown in
The gate configuration is described more in detail in
Furthermore the lane B of
The lane A shows a different location to mount the photoelectric barriers. The photoelectric barriers 10 and 10′ are mounted with different distance to the flap axis on one of the flaps 7. With open flaps 7 shown in this lane A the detection beams have a spacing of about 3 inch in direction of the lane. To close the flaps 7 both detection beams have to be masked by the patron, the unintentional masking of one of the beams with a ski stock do not initiate the closing.
A special gear box not shown in detail for the flaps 7, 7′ uses a DC-motor driving a worm gear. The worm gear may be near to self locking adjusted but it should not reach a self locking status. This gear box allows to drive the flaps 7, 7′ with low torque for a safe passage of patrons. The worm gear secures a high torque if a patron without access verification to move opens the flaps. Additionally a magnetic brake may be added to the flap drive to enhance the holding torque.
Both antennas 6, 6′ situated left and right of the lane A are connected to RFID-modules and serve as transmitter/receiver for radio waves. This contactless access reader operates in the 13.56 MHz band and creates a reading zone for RFID transponders near to the gate threshold not shown in this figure covering the whole lane width. The invention may also use other contactless access reader systems.
The RFID modules are connected to a verification system 13 which receives signals from the antennas 6 and verifies the access right. If an access right has been granted to a certain RFID ticket or chip card 21, the verification system 13 sends an open signal to the gate control unit 14. A gate control unit is provided for each of the flaps 7 and 7′. The gate control unit 14 provides power to the motor 12, 12′, which is mechanically connected to the respective flap 7, 7′. This forces the flap 7, 7′ to turn out of the lane A until the position sensor 11, 11′ indicates reaching the final position of the flap 7, 7′ parallel to the lane A. The patron holding the RFID ticket or chip card 21 passes the gate threshold 4 and masks now the first photoelectric barrier 10 and short after the second photoelectric barrier 10′. The logic of the verification system 13 assures that both detection beams of the barriers 10 and 10′ must be masked to prevent an unintentional closing e.g. with a preceding bag or ski stock. The photoelectric barriers 10 are situated in a way that a closing signal is derived immediately when the patron leaves the threshold 4. The gate control units 14 then close the flaps 7, 7′ for the next patron. It may be of advantage to integrate a function called fast following which keeps the flaps open if the next patron already has been verified.
On the second radial end of the lever 18 a crank drive 19 is connected, which is driven by a motor 12. The crank drive 19 is positioned near to the lower dead point in the flap closed position. This drive allows an optimum in flap speed (slow acceleration and deceleration at the end of movement) and a high brake moment in the end positions.
If an irregular procedure occurs, for example at an interruption of one of the detecting beams 22, 23 by object 24 for over three seconds, gate control unit 14 starts a first irregular operation program, which delays closing of the gate. The open flaps 7, 7′ will be closed with low speed to avoid damage or violation of the reason or cause of the interruption (object 24) not until a preset time-out period has elapsed. This time-out period may last five seconds, e.g.
While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention. The embodiments were chosen and described in order to best explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.