The present disclosure is drawn to surgical access devices, and specifically to an access device capable of being used to facilitate the introduction of medical devices into a patient and to facilitate the circulation of blood through an extracorporeal device.
Extracorporeal Membrane Oxygenation (ECMO) involves the use of a mechanical circulatory device for patients experiencing cardiogenic shock, or other forms of hemodynamic deterioration. Ventricular assist devices (VADs) and catheter-based devices (such as intravascular blood pumps) may be used to unload the heart (e.g., the left ventricle).
Access devices are commonly used in surgical procedures to facilitate the introduction of a medical instruments into the body's natural biological blood vessels, cavities, etc. These access devices include, for example, devices that facilitate the introduction of guide wires, balloon catheters, or other catheter-based medical devices into the vasculature of the human body. These access devices also can be used to facilitate the extracorporeal circulation of blood, such as when utilizing an extracorporeal membrane oxygenation (ECMO) device (including, e.g., veno-arterial ECMO (VA-ECMO) or veno-venous ECMO (VV-ECMO) devices).
According to a first aspect of the present disclosure, an access device can be provided to allow two or more medical devices to be inserted through the device into a patient. The access device may include a hub that is configured to be coupled to a proximal end of a cannula having a proximal end and a distal end and a joint lumen therethrough. The access device may also include, where the hub may have a first arm and a second arm, the second arm coupled to the first arm. The first arm may have a first lumen operably connected to the joint lumen, and a first hemostatic valve configured for passage of a medical device. The second arm may be operably connected to the joint lumen and may be configured to be operably coupled to an extracorporeal membrane oxygenation (ECMO) device. In some embodiments, the cannula may be coupled to the hub via a threaded connection or a barbed connection. In some embodiments, the medical device may be a guide wire, a guide catheter, a balloon catheter, or a catheter-based heart pump.
In some embodiments, the cannula may be a joint cannula which may comprise a plurality of sections. In some embodiments, the joint cannula may comprise a first joint cannula section having a proximal end coupled to the hub and a second joint cannula section having a proximal end coupled to a distal end of the first joint cannula section. In some embodiments, the first joint cannula section, the second joint cannula section, or both, may be semi-rigid bodies.
In some embodiments, the second arm may be configured to be operably coupled to the ECMO device via an additional cannula. In some embodiments, the additional cannula may be a flexible cannula.
In some embodiments, a first angle formed between a central axis of the first arm and a central axis of the second arm may be less than 90 degrees. In some embodiments, a second angle formed between a central axis of the first lumen and a central axis of the second lumen may be less than 90 degrees. In some embodiments, the first angle, the second angle, or both may be between 30 degrees and 60 degrees.
In some embodiment, the first lumen and second lumen connect to form a junction.
In some embodiments, the access device may also comprise a clamp configured to allow a user to clamp off the second arm.
In some embodiments, the access device may also comprise a fixation feature, such as a butterfly pad or a suture ring. In some embodiments, the fixation feature may be configured to be axially stationary with respect to the cannula. In some embodiments, the fixation feature may be movably positioned along the cannula.
In some embodiments, the joint lumen may have an inner diameter ID, where 3 mm≤ID≤36 mm. In some embodiments, the joint lumen may have an inner diameter ID≤6.5 mm. In some embodiments, the joint lumen may have an inner diameter ID, where 5 mm≤ID≤6.5 mm.
In some embodiments, the cannula may have a wall thickness of between 0.2 mm and 0.4 mm. In some embodiments, some or all of the cannula may be reinforced with coiled wire, braided wire, or a precision-cut hypotube. In some embodiments, the cannula may comprise a low-friction polymer coating (such as Polytetrafluoroethylene (PTFE)) on an inner surface of the joint lumen. In some embodiments, the cannula may comprise a thermoplastic polyurethane, a nylon, or a polyamide block polymer. In some embodiments, the cannula may comprise a radiopaque material.
In some embodiments, the cannula may include a straight cannula. As will be appreciated, in other embodiments, at least a portion of the cannula may be bent and/or curved. In some embodiments, the bend and/or curve may be disposed a prescribed distance along the catheter length.
In some embodiments, the cannula may have one or more lumens in a distal portion of the cannula, where each of the one or more lumens may extend from an outer surface of the cannula to the joint lumen through a sidewall of the cannula.
In some embodiments, the cannula may be configured to receive a dilator assembly. In some embodiments, the dilator assembly can be passed through the first or second arms (e.g., through the arm offering ECMO support or for passage of a medical device. In some embodiments, the hub may comprise a third lumen operably connected to the first lumen, the second lumen, or both. In some embodiments, this third lumen may be configured to allow a fluid to enter or exit the cannula through the hub. In some embodiments, this third lumen may be configured to connect to an external accessory, such as a distal leg perfusion cannula, a pressure bag, or an infusion pump. In some embodiments, this third lumen may be connected to a valve. The valve may be between the hub and an external accessory.
According to a second aspect of the present disclosure, a method for using the above-described access devices is provided. The method may comprise providing any embodiment of an access device according to the first aspect of the present disclosure, inserting a medical device into the first arm of the access device and into a patient, and then oxygenating blood with an extracorporeal membrane oxygenation (ECMO) device coupled to the second arm of the access device, where the blood flows through the joint lumen and the second lumen of the access device. In some embodiment, the insertion step may include inserting the medical device through the first hemostatic valve, the first lumen, and the joint lumen. In some embodiments, the medical device may be an intravascular blood pump.
According to a third aspect of the present disclosure, a kit may be provided. The kit may comprise or consist of any embodiment of an access device according to the first aspect of the present disclosure, an extracorporeal membrane oxygenation (ECMO) device configured to be coupled to the second arm of the single access device, and at least one medical device configured to be inserted through the first hemostatic valve, the first lumen, and the joint lumen of the access device. In some embodiments, the medical device may be an intravascular pump. In some embodiments, the kit also may include a needle to enable the physician to gain access to the artery or vein. In some embodiments, the kit also may include a guidewire to enable placement of the cannula into the vasculature. The kit also may include one or more dilators at subsequent sizes to sequentially expand the vascular prior to insertion of the described device.
Cardiogenic shock is the leading cause of death for patients with acute myocardial infarction (AMI) who reach the hospital alive. Cardiogenic shock is caused by a heart malfunction or problem, which leads to an inability of the heart to eject enough blood for the body. In some instances, ventricular assist devices (VADS) and catheter-based VADS (such as intravascular blood pumps) may be used to mechanically unload the heart (e.g., the left ventricle).
Extracorporeal Membrane Oxygenation (ECMO) allows for gas exchange of the blood when the lungs do not work properly and may involve the use of a mechanical circulatory device for patients experiencing oxygenation issues. In some instances, ECMO may be used for patients experiencing oxygenation issues due to cardiogenic shock, or from other forms of hemodynamic deterioration. In some instances, use of such devices may result in an increase in left ventricular afterload.
As described herein, in some instances, patients may need both ECMO support and a VAD. In some instances, such support may take place at the same time, although in some instances, a patient may require ECMO support prior to VAD support. Traditionally, this requires multiple insertion points, which may add additional time, complexity, and/or risks to a surgical procedure. As such, the inventors have recognized the benefit of an access device capable of being used to facilitate the introduction of medical devices and/or to facilitate the circulation of blood through an extracorporeal device is useful and desirable.
Referring to
In some embodiments, the access device may be connected to a shared cannula 100 having a proximal end 101 and a distal end 102. As will be appreciated, the cannula may be permanently attached to the access device in some embodiments or may be attachable to the access device in other embodiment (e.g., by a clinician). In embodiments in which the cannula is attachable to the access device, the cannula may be configured to be fixedly attached to the access device.
In some embodiments, the shared cannula may include a joint lumen 105 (sometimes referred to as a shared lumen) therethrough. For purposes herein, the joint lumen may include a single lumen extending along the length of the shared cannula that may be used to both pass one or more medical devices and to pass blood therethrough (e.g., from an ECMO circuit). In other embodiments, the joint lumen may include more than one lumen extending along the length of the shared cannula. For example, in some embodiments, the cannula may include two parallel lumens extending along the length of the shared cannula (see, e.g., the cross-section of an embodiment of a shared cannula in
Although shown and described as being attached to a shared cannula, it will be appreciated that the access device may be attached to the patient via other suitable manners. For example, in some embodiments, the access device may be connected to a graft, which is thereafter attached to the patient.
As also shown in
The first arm 210 may have a first lumen 215 operably connected to the cannula (e.g., to the joint lumen 105). A proximal end of the first arm may include a first hemostatic valve 216 configured for passage of a medical device. In some embodiments the hemostatic valve may be configured to minimize and/or prevent blood leakage via the first arm. In some embodiments, the medical device to be inserted may be a guide wire, a balloon catheter, or a catheter-based heart pump. In some embodiments, the medical device to be inserted may be an intravascular heart pump. As will be appreciated, other catheter-based medical devices also may be insertable via the first arm. As will be further appreciated, in embodiments in which the cannula includes more than one lumen extending therethrough, the first lumen 215 may be connected to a corresponding first lumen of the cannula (see, e.g., first lumen 125 of
In some embodiments, a portion of each of a plurality of medical devices may be present within the first lumen and joint lumen of the access device at the same time. In some embodiments, the access device (e.g., first arm) may include one or more features for holding the position of the medical device relative to the access device when the medical device is in the patient. For example, the access device may include one or more locking features to lock the placement of the medical device when the medical device is in the patient. As will be appreciated, the locking feature may be configured to be disengaged to allow removal of the medical device.
Although the first arm is shown as having only a single hemostatic valve, in other embodiments, the first arm may include more than one hemostatic valve. For example, as shown in
In some embodiments, the hemostatic valves may both be oriented in the same direction, although the valves may be oriented in different directions. In embodiments having only a single hemostatic valve, the valve may be oriented as that shown in
The second arm 220 may be operably connected to the joint lumen 105 and may be configured to be operably coupled (e.g., through one or more additional connectors 310, cannulas 311, etc.) to an external device 400 (such as an extracorporeal membrane oxygenation (ECMO) device). As with the above, in embodiments in which the cannula includes more than one lumen extending therethrough the lumen 205 of the second arm may be connected to the second lumen (see, e.g., second lumen 126 in
In some embodiments, the access device 1 may also include a clamp 320 configured to allow a user to clamp off the second arm. In some embodiments, the clamp 320 may be integral to the second arm. In some embodiments, the clamp 320 may be removably attached to the second arm. In some embodiments, the clamp may include a Roberts clamp, although other suitable clamps may be used in other embodiments. It will be appreciated that the second arm may include other arrangements for controlling blood flow through the second arm. For example, in some embodiments, the access device may include built-in valving (e.g., a stop cock) or clamping to control flow.
In some embodiments, the access device may also comprise a fixation feature 330, such as a butterfly pad, a suture pad, or a suture ring. In some embodiments, the fixation feature may be configured to be axially stationary with respect to the cannula. In some embodiments, the fixation feature may be rotatable about the cannula. In some embodiments, the fixation feature may be movably positioned along the shared cannula 100.
In some embodiments, the shared cannula 100 may have one or more side openings 106 in a distal portion of the cannula (e.g., closer to the distal end 102 of the cannula than the proximal end 101), where each of the one or more side openings 106 may extend from an outer surface 107 of the cannula to the joint lumen 105 through a sidewall 108 of the cannula. In some embodiments, such side openings may provide an alternative path for blood flow through the cannula, such if the joint lumen were to become restricted (e.g., the cannula were pressed up against a vascular wall). In some embodiments, the side holes may be between 2 and 4 mm, such as 3 mm in size. In some embodiments, there may be 2, 4, 6, 8, 10, 12, or more side openings along the length of the tip. For example, in an illustrative embodiment, there may be 6 openings along the distal portion of the cannula.
In some embodiments, the distal portion of the cannula may be reinforced. In some embodiments, this may provide stability to the distal portion of the tip (e.g., to reduce the possibility of a change in diameter of the cannula and/or to assist with insertion of a medical device).
In some embodiments, the cannula may have a single stiffness, while in other embodiments, a stiffness of the cannula may be varied along a length of the cannula. For example, in some embodiments, the cannula may have a stiffer section near the proximal end and a softer section near the distal end.
Referring to
In some embodiments, the cannula may comprise or consist of a curved cannula 130 (see
In some embodiments, the joint lumen 105, 114, 123, 133 may have an average inner diameter ID, where 3 mm≤ID≤36 mm. In some embodiments, the joint lumen may have an average inner diameter ID≤6.5 mm. In some embodiments, the joint lumen may have an average inner diameter ID, where 5 mm≤ID≤6.5 mm. In some embodiments, cannulas may be formed having different outer diameters (e.g., 16.5 Fr, 17.5 Fr, 19 Fr, and/or 21 Fr).
In some embodiments, the cannula may have a wall thickness 119 of between 0.2 mm and 0.4 mm. In some embodiments, the wall thickness may be substantially constant. In some embodiments, the wall thickness in one portion of the cannula may be thicker than the wall thickness in a different portion of the cannula (excepting any rounded or thinned ends of the cannula).
In some embodiments, the cannula may include one or more layers. In some embodiments, the cannula may comprise an inner layer 116 and an outer layer 115 (sometimes referred to as a “jacket”). In some embodiments, some or all of the cannula may be reinforced with coiled wire, braided wire, or a precision-cut hypotube. In some embodiments, the outer layer 115 may include coiled wire, braided wire, or a precision-cut hypotube. In such embodiments, the cannula may be reinforced (e.g., via nitinol or stainless steel). In some embodiments, the cannula may include a low-friction polymer coating (such as Polytetrafluoroethylene (PTFE) or HDPE) on an inner surface of the joint lumen. In some embodiments, the inner layer 116 may include a low-friction polymer coating (such as Polytetrafluoroethylene (PTFE)). In some embodiments, one or more of the layers forming the cannula may include a thermoplastic polyurethane, a nylon, or a polyamide block polymer. In some embodiments, the outer layer may include a hydrophilic coating.
In some embodiments, the cannula may include a tapered extension. In some embodiments, the extension may be heat molded over a reinforced body. In some embodiments, this may allow for modular connection of the cannula, such as to a barbed connector, as described herein.
In some embodiments, the cannula may comprise a radiopaque material. In some embodiments, the radiopaque material is a metallic element. In some embodiments, the radiopaque material is tungsten, silver, tantalum, or tin. In some embodiments, the radiopaque material is a tungsten powder. In some embodiments, the radiopaque material may be combined with a polymer (such as a polyurethane). In some embodiments, the radiopaque material is arranged in bands offset axially from each other along some or all of the length of the cannula.
In some embodiments, the cannula may be configured to receive a dilator assembly.
As seen in
In some embodiments, the first cannula section is configured to have a stiffness than is greater than the stiffness of the second cannula section.
In some embodiments, the first cannula section is configured to be a straight cannula. In some embodiments, the second cannula section is straight cannula. In some embodiments, the second cannula section is a curved cannula.
Referring to
Referring again to
In some embodiments, the first lumen is straight. In some embodiments, the first lumen bends, such as at the junction of the first lumen and the second lumen. In some embodiments, an angle 295 formed between (a) a central axis 290 of a distal portion of the first lumen and (b) a central axis 291 of a proximal portion of the first lumen is greater than 0 and less than 90 degrees. For example, the angle 295 may be 15 degrees in some embodiments (see
Referring to
As seen in
In some embodiments, each additional cannula 311, 312 may independently be a flexible cannula. In some embodiments, all additional cannulas 311, 312 may be flexible cannulas.
Referring to
Referring again to
In some embodiments, the third lumen 235 may be configured to allow a fluid to enter or exit the shared cannula 100 through the hub 200. In some embodiments, the third lumen 235 may be coupled to tubing 340. In some embodiments, the third lumen 235 may be connected, directly or indirectly, to a valve 350. In some embodiments, a valve 350 may be disposed between the hub 200 and an external accessory. In some embodiments, the valve may be a three-way stopcock.
According to other embodiments, a method for using the above-described access devices is provided. Referring to
The method may then include an insertion step 630, where a medical device (such as an intravascular blood pump, etc.) may be inserted into the first arm of the access device and then into a patient through the cannula. In some embodiment, insertion step 630 may include inserting a medical device through the first hemostatic valve, the first lumen, and the joint lumen.
The method also may include coupling 640 an ECMO device to the second arm of the access device, after which the method includes oxygenating 650 blood with the ECMO device, where the blood flows through the joint lumen and the second lumen of the access device. As will be understood, insertion step 630 and coupling 640 may be completed in any order. In some embodiments, coupling 640 and oxygenating 650 may be completed before the insertion step 630 is completed.
The disclosed method can be seen visually in
A medical device 750 (here, an intravascular blood pump) has been inserted into the first arm 210 of the access device 1 and then into a patient through the shared cannula 100. Specifically, the medical device 750 has been inserted through the first hemostatic valve 216, the first lumen 215, and the joint lumen 105.
In some embodiments, a portion of the cannula may be arranged to be removable, e.g., peeled away, such as after insertion of the medical device. For example, in an illustrative embodiment, after a patient has had ECMO support, an intravascular blood pump may be installed (e.g., via the first arm). After installing, the blood pump, the cannula may be removed from the patient, with just the blood pump remaining in the patient. In such embodiments, the access device may be attachable to a repositioning unit (no shown), which may be attachable to the patient at or near the insertion site.
According to another embodiment present disclosure, a kit may be provided. The kit may comprise or consist of any embodiment of an access device according to the first aspect of the present disclosure, an external medical device, such as an extracorporeal membrane oxygenation (ECMO) device configured to be coupled to the second arm of the single access device, and at least one medical device configured to be inserted through the first hemostatic valve, the first lumen, and the joint lumen of the access device. In some embodiments, the medical device may be an intravascular pump. The kit also may include a cannula attached to the access device. In some embodiments, the kit also may include a needle to enable the physician to gain access to the artery or vein. In some embodiments, the kit also may include a guidewire to enable placement of the cannula into the vasculature. The kit also may include one or more dilators at subsequent sizes to sequentially expand the vascular prior to insertion of the described device.
The basic components of such a kit can be seen in
According to still another embodiment, the access device may be configured as a modular access system. For example, in such embodiments, the clinician may configure the access device according to the type (and order) of support needed by a patient. In a first embodiment, the access device 8 may be configured such that one or both arms are removably attachable to the hub. For example, as shown in
In still other embodiments, the device may include additional leak-protection features. For example, the hub may include an external leak-protection device (e.g., disposed on the outside of the hub) in some embodiments. In some embodiments, as shown in
In some embodiments, the seal or valve may be configured to help immobilize the catheter of the medical device and/or other portion or accessory of the medical device (e.g., a repositioning sheath) from moving in and out of the hub and/or in and out of the shared cannula 100. The leak-protection feature also may include one or more locking features for locking a medical device and/or other portion or accessory of the medical device (e.g., a dilator) to the leak-protection feature. In some embodiments, the locking feature and/or the hub may include a feature for a sterile sleeve. In some embodiments, the medical device may include a catheter-based pump such as a heart pump, and the leak-protection feature design may include considerations for ease of use, ease of guidewire insertion, ease of pump insertion, ease of insertion for other accessories, ease of establishing the seal, leak protection effectiveness, and pump position retention effectiveness.
Although the hub shown in
In some embodiments, the device may include a cannula with a bifurcation and a valve system. Referring to
In other embodiments, the device may include an internal bladder. In such embodiments, the bladder may be configured to act like a flap that under forward blood flow may push to the side against a medical device, such as a mechanical circulatory device (e.g., a sheath or cannula), so that flow does not interfere with the medical device (e.g., if clotting or hemolysis is a concern).
Referring to
A dilator 1120, including a tubular member 1121 attached coupled to a dilator handle 1122, may be present. In some embodiments, as disclosed herein, the tubular member may pass through an arm (e.g., the first arm) of the hub 200 into the cannula, while the dilator handle remains proximal to the hub 200. For example, in some embodiments, the tubular member 1121 of the dilator may be passed through a Touhy Borst valve 1080 coupled to a proximal end of the hub 200, passing into the first arm and then into cannula. In some embodiments, the dilator may be used to facilitate insertion of a medical device into the patient (e.g., via the first arm)
Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Embodiments of the present disclosure are described in detail with reference to the figures wherein like reference numerals identify similar or identical elements. It is to be understood that the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Well known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
The present application claims priority to US Provisional Patent Application Nos. 63/297,506, filed Jan. 7, 2022, 63/313,791, filed Feb. 25, 2022, and 63/344,300, filed May 20, 2022, the entirety of each of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63297506 | Jan 2022 | US | |
63313791 | Feb 2022 | US | |
63344300 | May 2022 | US |