The disclosure relates in general to an electronic device and a controlling method thereof, and an access point in a geographic routing system and a controlling method thereof.
The intelligent transportation system (ITS) is a system for monitoring and managing the transportation via the electronics, software, communication and controlling technology. The European Telecommunication Standards Institute (ETSI) defines some protocols, such as GeoNetworking Forwarding Algorithm, for the ITS.
In the geographic routing system, when a car moves through and detects an uneven area on a road, an on board unit (OBU) on the car will broadcast a traffic event packet to inform other cars to notice the uneven area. The OBU on this car will periodically broadcast the traffic event packets.
In lower traffic flow, when the OBU on this car broadcasts the traffic event packets, the traffic event packets may not be received by any other car because there is no car located in the transmitting range of the OBU. Further, this car will go away the uneven area and cannot be kept at the uneven area to broadcast the traffic event packets. Therefore, the efficiency of the traffic event diffusion is low and is needed to be improved.
The disclosure is directed to an access point in a geographic routing system and a controlling method thereof.
According to one embodiment, a controlling method of an access point in a geographic routing system is provided. The controlling method of the access point in the geographic routing includes the following steps. A traffic event packet is received by the access point. A back-off timer of the access point is set to be a first back-off time value. The first back-off time value is less than a second back-off time value of any on board unit (OBU) which receives the traffic event packet. The traffic event packet is broadcasted by the access point when the back-off timer is counted down to be zero.
According to another embodiment, a controlling method of an access point in a geographic routing system is provided. The controlling method of the access point in the geographic routing includes the following steps. A traffic event packet is received by the access point. Whether there is another access point which is closer to a destination area than the access point is determined. The traffic event packet is forwarded to the another access point, if there is the another access point which is closer to the destination area than the access point. The traffic event packet is also broadcasted by the access point.
According to an alternative embodiment, an access point in a geographic routing system is provided. The access point in the geographic routing system includes a transmitter and a processor. The transmitter receives a traffic event packet and transmits the traffic event packet when a back-off timer of the access point is counted down to be zero. The processor sets a back-off timer of the access point to be a first back-off time value. The first back-off time value is less than a second back-off time value of any on board unit (OBU) which receives the traffic event packet.
According to another embodiment, an access point in a geographic routing system is provided. The access point in the geographic routing system includes a transmitter, a location provider and a processor. The transmitter receives a traffic event packet and transmits the traffic event packet when a back-off timer of the access point is counted down to be zero. The location provider provides a location of the access point. The processor determines whether there is another access point which is closer to a destination area than the access point according to the location of the access point. The transmitter forwards the traffic event packet to the another access point, if there is the another access point which is closer to the destination area than the access point.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
Please refer to
Referring to
Please refer to
Referring to
For example, the back-off timer can be set according to the following equation (1). DefMin is a predetermined minimum time value, and DefMax is a predetermined maximum time value. Distance(A,B) is a function for calculating a distance between A and B. Fwd is the node to be broadcasted, such as the access point 100 on the stand 300A and the OBU 200 on the car 400B. Dst is the center of the destination area 800. Src is the node that first broadcasts the traffic event packet, such as the OBU 200 on the car 400A. According to the equation (1), the car 400B is closer to the destination area 800 than the stand 300A, so the second back-off time value of the back-off timer T2 is less than the first back-off time value of the back-off timer T1.
Referring to
When the access point 100 on the stand 300A receives the traffic event P0 secondly, the back-off timer T1 will be frozen and thrown. Hence, the access point 100 on the stand 300A will not broadcast the traffic event packet P0, again.
However, because the OBU 200 on the car 400C is not located within the transmitting range 720B of the OBU 200 on the car 400B, the traffic event packet P0 cannot be sent to the OBU 200 on the car 400C. Therefore, in the embodiment in
Please refer to
Referring to
In this embodiment, the first back-off time value of the back-off timer T1 is set to be less than the second back-off time value of the back-off timer T2 of any OBU 200 which receives the traffic event packet P0. For example, according to the equation (2), the first back-off time value is the predetermined minimum time value, such as zero.
That is to say, the access point 100 on the stand 300A will broadcast first, even if the stand 300A is farther to the destination area 800 than the car 400B. Thus, by setting the back-off timer of the access point 100 to be the first back-off time value which is lower than the second back-off time value of the OBU 200, the access point 100 has a high priority to broadcast the traffic event packet P0.
Further, the transmitting power of the access point 100 is set to be a first transmitting power value. The first transmitting power value is larger than a second transmitting power value of any OBU 200. For example, the first transmitting power value is a predetermined maximum power value. Referring to
Further, please refer to
Referring to
The traffic event packet P0 will be broadcasted again if the back-off timer T1 is counted down to be zero. The access point 100 on the stand 300A will broadcast the traffic event packet P0 to the OBU 200 on the car 400C.
Referring to
In the embodiment of
However, for informing the uneven area 900 to the car 400K, the traffic event packet P0 is transmitted via several OBUs 200 on several cars. The transmission of the traffic event packet P0 spends a lot of time.
Please refer to
Referring to
Referring to
Furthermore, after the access point 100 on the stand 300A found the access point 100 on the stand 300B which is closer to the destination area 800, the traffic event packet P0 not only be forwarded to the access point 100 on the stand 300B, but also be broadcasted by the access point 100 on the stand 300A. In the embodiment of
In the embodiments described above, the transmitting efficiency of the traffic event packet P0 can be improved by setting the back-off timer, setting the transmitting power, setting the hop limit value, or directly forwarding the traffic event packet P0 to another access point 100. Please refer to
In step S701, the transmitter 110 of the access point 100 receives the traffic event packet P0.
In step S702, the processor 120 of the access point 100 sets the back-off timer of the access point 100 to be the first back-off time value which is less than the second back-off time value of any OBU 200. Therefore, the priority of the access point 100 can be higher than the priority of the OBU 200.
In step S703, the processor 120 of the access point 100 sets the transmitting power of the access point 100 to be the first transmitting power value which is larger than the second transmitting power value of any OBU 200. Therefore, the transmitting range of the access point 100 can be enlarged for sending to more OBUs 200 (or more access points 100).
In step S704, the processor 120 of the access point 100 decreases the hop limit value by 1. The hop limit value is used to limit the number of transmitting times of the traffic event packet P0.
In step S705, the processor 120 starts to count down the back-off timer.
In step S706, the processor 120 determines whether the hop limit value is larger than zero or not. If the hop limit value is larger than zero, then the process proceeds to step S707; if the hop limit value is not larger than zero, then the process is terminated.
In step S707, the processor 120 determines whether there is another access point 100 which is closer to the destination area 800 than this access point 100. If there is another access point 100 which is closer to the destination area 800 than this access point 100, then the process proceeds to step S711; if there is no access point 100 which is closer to the destination area 800 than this access point 100, then the process proceeds to step S708.
In step S708, the processor 120 of the access point 100 determines whether this access point 100 receives the traffic event packet P0 secondly or not. If this access point 100 receives the traffic event packet P0 secondly, then the process is terminated; if this access point 100 does not receive the traffic event packet P0 secondly, then the process proceeds to step S709.
In step S709, the processor 120 of the access point 100 determines whether the back-off timer is counted down to be zero. If the back-off timer is counted down to be zero, then the process proceeds to step S710; if the back-off timer is not counted down to be zero, then the process proceeds to step S708.
In step S710, the transmitter 110 of the access point 100 broadcasts the traffic event packet P0.
If there is another access point 100 which is closer to the destination area 800 than this access point 100, then the process proceeds to step S711.
In step S711, the processor 120 of the access point 100 freeze the back-off timer and throws the back-off timer away.
In step S712, the transmitter 110 of the access point 100 directly forwards the traffic event packet P0 to another access point 100 which is closer to the destination area 800 than this access point 100.
In step S713, the transmitter 110 of the access point 100 broadcasts the traffic event packet P0 and the processor 120 of the access point 100 set the hop limit value to be 1.
According to the embodiments described above, the transmitting efficiency of the traffic event packet P0 can be improved by setting the back-off timer, setting the transmitting power, setting the hop limit value, or directly forwarding the traffic event packet P0 to another access point 100.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.