The present invention relates to an access port member and a method of manufacturing the access port member which is to be connected to a blood circuit for causing a patient's blood to extracorporeally circulate to enable collection of blood or injection of a drug with a connecting member such as a syringe.
In general, a blood circuit for causing a patient's blood to extracorporeally circulate used in a blood purification treatment such as a hemodialysis treatment is mainly comprised of a flexible tube, and an access port member (may also be referred as a “rubber button” or “coinfusion member”) is connected to a predetermined portion of the blood circuit. For example, as disclosed in PTL 1, a known access port member may be mentioned, which includes: a body connected to a blood circuit; a valve in which a slit is formed; and a cap part fixed to the body with the valve interposed therebetween.
Because the known access port member is connected to a blood circuit, blood can be collected (blood collection) into a syringe or a liquid drug can be injected (drug injection) from a syringe by pressing the peripheral portion of the slit in the valve with the tip of a connecting member such as a syringe to cause a transition of the slit from a closed state to an open state by a pressing force. Since the valve is made of an elastic member such as a rubber material, the closed state of the slit can be maintained by the elastic force.
Furthermore, the cap part in the known access port member has a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member such as a syringe. The tip of a syringe or the like is pressed against the front surface of the valve to cause a transition of the slit to an open state, then the thread shape of the locking part is screwed and locked into the thread shape of the syringe or the like, thus the syringe or the like can be connected and held at the access port member.
However, when the valve of a known access port member is repeatedly pressed by the tip of a syringe or the like, a difference in level may occur in the slit, which may cause a failure in closing. Measures may be taken such as making the entire valve thicker so that a difference in level is unlikely to occur in the slit; however, in this case, a large pressing force is necessary to achieve an open state of the slit, thus a connection work for a syringe or the like may not be easily performed.
In the known access port member, when the tip of a syringe or the like causes a transition of the slit of the valve to an open state, the tapered surface formed on the cap part and the tapered surface formed on the syringe or the like are brought into contact to make sealing, thus if a dimension error occurs in the tapered surfaces, the slit is opened with improper sealing, so that liquid may be leaked to the outside.
In the known access port member, if a dimension error occurs in the thread shape of the locking part, when the thread shape of the locking part is smaller than the set dimensions, screwing between the thread shape of the locking part and the thread shape of the syringe or the like becomes tight, and the workability of locking is reduced, whereas when the thread shape of the locking part is larger than the set dimensions, screwing between the thread shape of the locking part and the thread shape of the syringe or the like becomes loose, thus the connection state with the syringe or the like may not be securely and reliably locked.
The present invention has been conceived in view of the above circumstances and it is an object to provide an access port member capable of facilitating connection work of a connecting member while preventing a failure in closing of the slit, an access port member capable of avoiding leakage of liquid to the outside when the slit of the valve is in an open state by securing the sealing between the slit and the connecting member, and an access port member and a method of manufacturing the access port member which are capable of smoothly performing the lock work by the locking part as well as securely and reliably performing the locking by the locking part.
An access port member according to an embodiment of the present invention includes: a body having an opening; a valve made of an elastic member covering the opening and attached to an attachment part of the body, the valve including a slit that makes a transition from a closed state to an open state when pressed by a tip of a connecting member capable of collecting blood or injecting a drug; a cap part fixed to the body with the valve interposed therebetween and the slit facing outward, the cap part having a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member; and a rib integrally formed over a periphery of the slit in the valve.
An access port member according to an embodiment of the present invention includes: a body having an opening; a valve made of an elastic member covering the opening and attached to an attachment part of the body, the valve including a slit that makes a transition from a closed state to an open state when pressed by a tip of a connecting member capable of collecting blood or injecting a drug; a cap part fixed to the body with the valve interposed therebetween and the slit facing outward, the cap part having a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member; and a seal part formed over a periphery of the slit in the valve and configured to, when the slit is in an open state, match and seal the tip of the connecting member.
In addition, an access port member according to an embodiment of the present invention includes: a body having an opening; a valve made of an elastic member covering the opening and attached to an attachment part of the body, the valve including a slit that makes a transition from a closed state to an open state when pressed by a tip of a connecting member capable of collecting blood or injecting a drug; and a cap part fixed to the body with the valve interposed therebetween and the slit facing outward, the cap part having a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member. The thread shape of the locking part is formed such that a thread height at a terminal end is higher than a thread height in other portions.
According to the present invention, an access port member includes: a body having an opening; a valve made of an elastic member covering the opening and attached to an attachment part of the body, the valve including a slit that makes a transition from a closed state to an open state when pressed by a tip of a connecting member capable of collecting blood or injecting a drug; a cap part fixed to the body with the valve interposed therebetween and the slit facing outward, the cap part having a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member; and a rib integrally formed over a periphery of the slit in the valve, thus connection work of the connecting member can be facilitated while preventing a failure in closing of the slit.
According to the present invention, an access port member includes: a body having an opening; a valve made of an elastic member covering the opening and attached to an attachment part of the body, the valve including a slit that makes a transition from a closed state to an open state when pressed by a tip of a connecting member capable of collecting blood or injecting a drug; a cap part fixed to the body with the valve interposed therebetween and the slit facing outward, the cap part having a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member; and a seal part formed over a periphery of the slit in the valve and configured to, when the slit is in an open state, match and seal the tip of the connecting member, thus when the slit of the valve is in an open state, leakage of liquid to the outside can be avoided by securing the sealing between the slit and the connecting member.
Furthermore, according to the present invention, an access port member includes: a body having an opening; a valve made of an elastic member covering the opening and attached to an attachment part of the body, the valve including a slit that makes a transition from a closed state to an open state when pressed by a tip of a connecting member capable of collecting blood or injecting a drug; and a cap part fixed to the body with the valve interposed therebetween and the slit facing outward, the cap part having a locking part with a thread shape to be screwed and locked into a thread shape formed in the connecting member. The thread shape of the locking part is formed such that a thread height at a terminal end is higher than a thread height in other portions, thus lock work by the locking part can be smoothly performed, and locking by the locking part can be securely and reliably conducted.
Hereinafter, an embodiment of the present invention will now be described specifically with reference to the drawings. An access port member according to a first embodiment is connected to a blood circuit for causing a patient's blood to extracorporeally circulate to enable a connecting member such as a syringe to collect blood or inject a drug, and as illustrated in
The arterial blood circuit 1 is formed of flexible tubes through which predetermined liquid is allowed to flow. The arterial blood circuit 1 is provided at the distal end thereof with a connector c, to which an arterial puncture needle a is attachable. The arterial blood circuit 1 is further provided with a squeezable tube 1a at a halfway position thereof. The squeezable tube 1a is attachable to the blood pump 4. The blood pump 4 is a peristaltic pump capable of delivering a priming solution or a patient's blood (liquid) in the blood circuit, and driving the blood pump 4 can cause a patient's blood to extracorporeally circulate.
The venous blood circuit 2 is formed of flexible tubes through which predetermined liquid is allowed to flow. The venous blood circuit 2 is provided at the distal end thereof with a connector d, to which a venous puncture needle b is attachable. The air-trap chamber 5 is connected to a halfway position of the venous blood circuit 2 to enable removal of the air contained in the blood that is under extracorporeal circulation in the blood circuit. A liquid drug infusion line La with a connecting part K attached to the distal end thereof for infusing liquid drug into the blood circuit extends from the top of the air-trap chamber 5. The blood circuit may not be provided with the liquid drug infusion line La at the top of the air-trap chamber 5.
The dialyzer 3 has, in a housing thereof, a plurality of hollow fibers each having microscopic holes (pores), and is capable of introducing dialysate from a dialysis device 6 as well as purifying the blood under extracorporeal circulation in the blood circuit by discharging drain liquid to the dialysis device 6. Specifically, the dialyzer 3 is connected between the arterial blood circuit 1 and the venous blood circuit 2, and the blood pump 4 is activated with the patient being punctured with the arterial puncture needle a and the venous puncture needle b, whereby the patient's blood is caused to extracorporeally circulate through the blood circuit (the arterial blood circuit 1 and the venous blood circuit 2) and the dialyzer 3 and is returned to the patient after being purified.
In the present embodiment, the access port member 7 is connected to a predetermined portion (for example, as illustrated, a portion between the connector c and the blood pump 4) of the arterial blood circuit 1, and a predetermined portion (for example, as illustrated, a portion between the dialyzer 3 and the air-trap chamber 5) of the venous blood circuit 2. The access port member 7 enables blood collection or drug injection for the blood that is under extracorporeal circulation in the blood circuit, and as illustrated in
The body 8 is comprised of a resin molded part, and connected to a predetermined portion of the blood circuit (the arterial blood circuit 1 or the venous blood circuit 2) for causing a patient's blood to extracorporeally circulate, and as illustrated in
The attachment part 8d is in a depressed shape formed at the opening peripheral edge of the opening 8c, and has a shape copying the contour shape (shape copying a rectangle in the present embodiment) of the valve 9. The dimensions of the attachment part 8d are set to be slightly smaller than the external dimensions of the valve 9, allowing the valve 9 to be attached in a press-fitted state. Thus, the valve 9 is fixed with a compressive force applied inward from the outer peripheral edge, whereby the slit 9a is securely sealed.
The valve 9 is made of an elastic member (rubber material) covering the opening 8c and attached to the attachment part 8d of the body 8, and the slit 9a in a line segment shape is formed at a central portion. As illustrated in
As illustrated in
The valve 9 according to the present embodiment includes an annular rib 9b that projects along the periphery of the slit 9a. The rib 9b having a tip surface 9ba and a lateral surface 9bb is composed of a protrusion (thick wall portion) surrounding the periphery of the slit 9a in the front surface of the valve 9 and continuously projecting, and is formed by copying the shape of the tip 11a of the syringe 11. As illustrated in
Specifically, as illustrated in
Furthermore, as illustrated in
Specifically, when the slit 9a is in a closed state, the tip 11a of the syringe 11 is brought into contact with the tip surface 9ba of the rib 9b (
Although the rib 9b according to the present embodiment is composed of the protrusion formed on the front surface of the valve 9, the rib 9b may be composed of the protrusion formed on the rear surface of the valve 9, or may be composed of the protrusion formed on both front and rear surfaces. Although the rib 9b according to the present embodiment is circular in a plan view, the rib 9b may be elliptical or rectangular in a plan view, and the slit 9a may be formed in the internal region 9bc. In addition to the manner in which the slit 9a is formed in a line segment shape, the slit 9a may be formed in a cross shape.
The cap part 10 is comprised of a component obtained by resin molding, and as illustrated in
The locking part 10a internally includes the communication hole 10d through which the tip 11a of the syringe 11 is insertable and removable, and a spiral thread shape 10aa configured to match and screw into the thread shape 11b of the syringe 11 is integrally formed on the outer peripheral surface. Consequently, as illustrated in
The access port member 7 according to the present embodiment includes: the body 8 having the opening 8c; the valve 9 made of an elastic member covering the opening 8c and attached to the attachment part 8d of the body 8, the valve 9 including the slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of the syringe 11 (connecting member) capable of collecting blood or injecting a drug; the cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward; and the rib 9b integrally formed over the periphery of the slit 9a in the valve 9, thus, the access port member 7 can facilitate connection work of the syringe 11 (connecting member) while preventing a failure in closing of the slit 9a.
In particular, the body 8 is connected to a predetermined portion of the blood circuit for causing a patient's blood to extracorporeally circulate, thus the following effects can be achieved. Specifically, occurrence of a stagnation point on the rear surface of the valve 9 may cause blood clotting, thus such an occurrence needs to be reduced as much as possible. However, when the valve 9 is located closer to the flow route to prevent stagnation, the valve 9 cannot be sufficiently pressed by the tip 11a of the syringe 11, which makes it difficult to open the slit 9a. Thus, providing the valve 9 with the rib 9b as in the present embodiment allows the valve 9 to be sufficiently pressed by the tip 11a of the syringe 11, whereby both easiness of opening the slit 9a and less occurrence of a stagnation point can be achieved.
The rib 9b according to the present embodiment is composed of a protrusion formed on the front surface, the rear surface, or both surfaces of the valve 9, is circular, elliptical or rectangular in a plan view, and includes the slit 9a in the internal region 9bc, thus elastic deformation is made easily by reducing an elastic force around the slit 9a so that an open state can be achieved, and a difference in level can be prevented from occurring by improving the restoring force after the elastic deformation with the rib 9b.
As illustrated in
In addition, the cap part 10 according to the present embodiment includes the locking part 10a with the thread shape 10aa to be screwed and locked into the thread shape 11b of the syringe 11 (connecting member), thus the following effects can be achieved. Specifically, since the dimensions of the locking part 10a are strictly defined by a standard, the slit 9a of the valve 9 may not be sufficiently pressed by the tip 11a of the syringe 11 (connecting member), thus the slit 9a may not be sufficiently opened. However, when the valve 9 is moved to the side where the syringe 11 is connected to prevent such a failure (for example, when the front surface of the valve 9 is superficialized to the side where the syringe 11 is connected), the valve 9 is made thicker, making it further difficult to open the slit 9a. When the valve 9 is made thinner and the valve 9 is superficialized, a liquid stagnation point occurs in greater number on the flow route side of the valve 9, and stagnation of blood and liquid drug is likely to occur, and in particular, when blood stagnates, blood clotting may occur. Thus, a structure needs to be created in which the slit 9a is reliably opened and stagnation is unlikely to occur. Thus, according to the present embodiment, providing the valve 9 with the rib 9b allows the tip 11a of the syringe 11 to sufficiently press the valve 9, whereby both easiness of opening the slit 9a and prevention of a stagnation point can be achieved.
The connecting member to be used is not limited to the syringe 11, and may be another connecting member (for example, a connecting member attached to the distal end of an infusion tube) which has a tip capable of pressing the rib 9b, and causes a transition of the slit 9a from a closed state to an open state by pressing to enable blood collection or drug injection. The depressions 8e may not be formed in the body 8. The valve 9 is not limited to the one having the contour of a rectangle in a plan view, and may be square, circular, elliptical or rectangular in a plan view.
In addition, the present invention is not limited to the one connected to a flow route for blood in the blood circuit, and may be connected to various flow routes (such as a liquid drug infusion line or a liquid drug delivery line serving as a flow route for a liquid drug) extending from the blood circuit. More specifically, in addition to the blood circuit for causing a patient's blood to extracorporeally circulate, the present invention is applicable to a circuit connected to a liquid delivery circuit, used for collection of blood flowing in the liquid delivery circuit, sampling of a liquid drug, and infusion of a liquid drug. For application to a liquid delivery circuit, an access port member may be used with one end thereof connected to an infusion bag and the other end connected to a connector coupled to an infusion line such as an indwelling needle or a blood circuit to enable drug injection and sampling, or an access port member may be used with connected to a liquid drug delivery circuit extended from a blood purifier such as the dialyzer 3 or various filters such as a blood adsorber, and a plasma separator to enable drug injection and sampling.
For application to a liquid delivery circuit, an access port member 12 having the configuration illustrated in
Meanwhile, when the valve 9 according to the embodiment is attached to the attachment part 8d of the body 8, the valve 9 is compressed in a direction in which the slit 9a is closed; however, as illustrated in
As illustrated in
Furthermore, as illustrated in
Thus, when the cap part G is attached to the attachment part 8d of the body 8, positioning in the rotational direction can be made by fitting the protrusions Gc into the depressions 8e. However, when the positioning in the rotational direction is not correct at the time of attachment of the cap part G, a protrusion Gc having a larger size cannot be fitted into a depression 8e having a smaller size, and comes into contact with its peripheral surface, thus energy more than necessary is consumed at the time of ultrasonic welding, which makes it possible to inform of an error. In particular, the cap part G includes the inclined surface M that causes the valve 9 to be compressed in a closing direction of the slit 9a, thus positioning can be accurately made so that the inclined surface M becomes parallel to the slit 9a.
When the cap part G is welded and fixed to the body 8, if the positioning of the cap part G in the rotational direction is correct, each projection part Gd is opposed to the wall surface of a corresponding notch N as illustrated in
Next, an access port member according to a second embodiment of the present invention will be described.
An access port member according to the second embodiment is connected to a blood circuit for causing a patient's blood to extracorporeally circulate to enable a connecting member such as a syringe to collect blood or inject a drug, and as illustrated in
In the present embodiment, the access port member 7 is connected to a predetermined portion (for example, as illustrated, a portion between the connector c and the blood pump 4) of the arterial blood circuit 1, and a predetermined portion (for example, as illustrated, a portion between the dialyzer 3 and the air-trap chamber 5) of the venous blood circuit 2. The access port member 7 enables blood collection or drug injection for the blood that is under extracorporeal circulation in the blood circuit, and as illustrated in
The body 8 is comprised of a resin molded part, and connected to a predetermined portion of the blood circuit (the arterial blood circuit 1 or the venous blood circuit 2) for causing a patient's blood to extracorporeally circulate, and as illustrated in
The attachment part 8d is in a depressed shape formed at the opening peripheral edge of the opening 8c, and has a shape copying the contour shape (shape copying a rectangle in the present embodiment) of the valve 9. The dimensions of the attachment part 8d are set to be slightly smaller than the external dimensions of the valve 9, allowing the valve 9 to be attached in a press-fitted state. Thus, the valve 9 is fixed with a compressive force applied inward from the outer peripheral edge, whereby the slit 9a is securely sealed.
The valve 9 is made of an elastic member (rubber material) covering the opening 8c and attached to the attachment part 8d of the body 8, and the slit 9a in a line segment shape is formed at a central portion. As illustrated in
As illustrated in
The valve 9 according to the present embodiment includes the annular rib 9b that projects along the periphery of the slit 9a. The rib 9b having the tip surface 9ba and the lateral surface 9bb constitutes the seal part of the present invention, and is composed of the protrusion (thick wall portion) surrounding the periphery of the slit 9a in the front surface of the valve 9 and continuously projecting, and is formed by copying the shape of the tip 11a of the syringe 11. In particular, the rib 9b according to the present embodiment is configured to be able to, when the slit 9a is in an open state, match and seal the tip 11a of the syringe 11.
Specifically, as illustrated in
Specifically, when the slit 9a is in a closed state, the tip 11a of the syringe 11 is brought into contact with the tip surface 9ba of the rib 9b (
As illustrated in
Specifically, as illustrated in
Although the rib 9b according to the present embodiment is composed of the protrusion formed on the front surface of the valve 9, the rib 9b may be composed of the protrusion formed on both front and rear surfaces. In this case, the rib formed on the front surface of the valve 9 constitutes the seal part that matches and seals the tip 11a of the syringe 11. In addition to the manner in which the slit 9a is formed in a line segment shape, the slit 9a may be formed in a cross shape.
The cap part 10 is comprised of a component obtained by resin molding, and as illustrated in
The locking part 10a internally includes the communication hole 10d through which the tip 11a of the syringe 11 is insertable and removable, and the spiral thread shape 10aa configured to match and screw into the thread shape 11b of the syringe 11 is integrally formed on the outer peripheral surface. Consequently, as illustrated in
The access port member 7 according to the present embodiment includes: the body 8 having the opening 8c; the valve 9 made of an elastic member covering the opening 8c and attached to the attachment part 8d of the body 8, the valve 9 including the slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of the syringe 11 (connecting member) capable of collecting blood or injecting a drug; the cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward; and the rib 9b as a seal part formed over the periphery of the slit 9a in the valve 9 and configured to, when the slit 9a is in an open state, match and seal the tip 11a of the syringe 11 (connecting member), thus when the slit 9a of the valve 9 is in an open state, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
In particular, the body 8 is connected to a predetermined portion of the blood circuit for causing a patient's blood to extracorporeally circulate, thus the following effects can be achieved. Specifically, occurrence of a stagnation point on the rear surface of the valve 9 may cause blood clotting, thus such an occurrence needs to be reduced as much as possible. However, when the valve 9 is located closer to the flow route to prevent stagnation, the valve 9 cannot be sufficiently pressed by the tip 11a of the syringe 11, which makes it difficult to open the slit 9a. Thus, providing the valve 9 with the rib 9b as in the present embodiment allows the valve 9 to be sufficiently pressed by the tip 11a of the syringe 11, whereby both easiness of opening the slit 9a and less occurrence of a stagnation point can be achieved.
The rib 9b as a seal part maintains a contact state with the tip 11a of the syringe 11 (connecting member) during a transition of the slit 9a from a closed state to an open state and during a transition of the slit 9a from an open state to a closed state, thus in both cases where the syringe 11 is brought into contact with the front surface of the valve 9 to open the slit 9a and where the syringe 11 is moved away from the front surface of the valve 9 to close the slit 9a, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
The seal part is comprised of the rib 9b which is formed by copying the shape of the tip 11a of the syringe 11 (connecting member), thus can avoid leakage of liquid to the outside by securing the sealing between the slit 9a and the syringe 11, and can facilitate connection work of the syringe 11 (connecting member) while preventing a failure in closing of the slit 9a.
As illustrated in
In addition, the cap part 10 according to the present embodiment includes the locking part 10a with the thread shape 10aa to be screwed and locked into the thread shape 11b of the syringe 11 (connecting member), thus the following effects can be achieved. Specifically, since the dimensions of the locking part 10a are strictly defined by a standard, the slit 9a of the valve 9 may not be sufficiently pressed by the tip 11a of the syringe 11 (connecting member), thus the slit 9a may not be sufficiently opened. However, when the valve 9 is moved to the side where the syringe 11 is connected to prevent such a failure (for example, when the front surface of the valve 9 is superficialized to the side where the syringe 11 is connected), the valve 9 is made thicker, making it further difficult to open the slit 9a. When the valve 9 is made thinner and the valve 9 is superficialized, a liquid stagnation point occurs in greater number on the flow route side of the valve 9, and stagnation of blood and liquid drug is likely to occur, and in particular, when blood stagnates, blood clotting may occur. Thus, a structure needs to be created in which the slit 9a is reliably opened and stagnation is unlikely to occur. Thus, according to the present embodiment, providing the valve 9 with the rib 9b allows the tip 11a of the syringe 11 to sufficiently press the valve 9, whereby both easiness of opening the slit 9a and prevention of a stagnation point can be achieved.
Although the present embodiment has been described above, the present invention is not limited to this, and the connecting member to be used is not limited to the syringe 11, and may be another connecting member (for example, a connecting member attached to the distal end of an infusion tube) which has a tip capable of pressing the rib 9b, and causes a transition of the slit 9a from a closed state to an open state by pressing to enable blood collection or drug injection. The depressions 8e may not be formed in the body 8. The valve 9 is not limited to the one having the contour of a rectangle in a plan view, and may be square, circular, elliptical or rectangular in a plan view.
In addition, the present invention is not limited to the one connected to a flow route for blood in the blood circuit, and may be connected to various flow routes (such as a liquid drug infusion line or a liquid drug delivery line serving as a flow route for a liquid drug) extending from the blood circuit. More specifically, in addition to the blood circuit for causing a patient's blood to extracorporeally circulate, the present invention is applicable to a circuit connected to a liquid delivery circuit, used for collection of blood flowing in the liquid delivery circuit, sampling of a liquid drug, and infusion of a liquid drug. For application to a liquid delivery circuit, an access port member may be used with one end thereof connected to an infusion bag and the other end connected to a connector coupled to an infusion line such as an indwelling needle or a blood circuit to enable drug injection and sampling, or an access port member may be used with connected to a liquid drug delivery circuit extended from a blood purifier such as the dialyzer 3 or various filters such as a blood adsorber, and a plasma separator to enable drug injection and sampling.
For application to a liquid delivery circuit, the access port member 12 having the configuration illustrated in
Next, an access port member according to a third embodiment of the present invention will be described.
An access port member according to the third embodiment is connected to a blood circuit for causing a patient's blood to extracorporeally circulate to enable a connecting member such as a syringe to collect blood or inject a drug, and as illustrated in
In the present embodiment, the access port member 7 is connected to a predetermined portion (for example, as illustrated, a portion between the connector c and the blood pump 4) of the arterial blood circuit 1, and a predetermined portion (for example, as illustrated, a portion between the dialyzer 3 and the air-trap chamber 5) of the venous blood circuit 2. The access port member 7 enables blood collection or drug injection for the blood that is under extracorporeal circulation in the blood circuit, and as illustrated in
The body 8 is comprised of a resin molded part, and connected to a predetermined portion of the blood circuit (the arterial blood circuit 1 or the venous blood circuit 2) for causing a patient's blood to extracorporeally circulate, and as illustrated in
The attachment part 8d is in a depressed shape formed at the opening peripheral edge of the opening 8c, and has a shape copying the contour shape (shape copying a rectangle in the present embodiment) of the valve 9. The dimensions of the attachment part 8d are set to be slightly smaller than the external dimensions of the valve 9, allowing the valve 9 to be attached in a press-fitted state. Thus, the valve 9 is fixed with a compressive force applied inward from the outer peripheral edge, whereby the slit 9a is securely sealed.
The valve 9 is made of an elastic member (rubber material) covering the opening 8c and attached to the attachment part 8d of the body 8, and the slit 9a in a line segment shape is formed at a central portion. As illustrated in
As illustrated in
The valve 9 according to the present embodiment includes the annular rib 9b that projects along the periphery of the slit 9a. The rib 9b having the tip surface 9ba and the lateral surface 9bb is composed of a protrusion (thick wall portion) surrounding the periphery of the slit 9a in the front surface of the valve 9 and continuously projecting, and is formed by copying the shape of the tip 11a of the syringe 11. As illustrated in
Specifically, as illustrated in
Furthermore, as illustrated in
Specifically, when the slit 9a is in a closed state, the tip 11a of the syringe 11 is brought into contact with the tip surface 9ba of the rib 9b (
Although the rib 9b according to the present embodiment is composed of the protrusion formed on the front surface of the valve 9, the rib 9b may be composed of the protrusion formed on the rear surface of the valve 9, or may be composed of the protrusion formed on both front and rear surfaces. Although the rib 9b according to the present embodiment is circular in a plan view, the rib 9b may be elliptical or rectangular in a plan view, and the slit 9a may be formed in the internal region 9bc. In addition to the manner in which the slit 9a is formed in a line segment shape, the slit 9a may be formed in a cross shape.
The cap part 10 is comprised of a component obtained by resin molding, and as illustrated in
The locking part 10a internally includes the communication hole 10d through which the tip 11a of the syringe 11 is insertable and removable, and the spiral thread shape 10aa configured to match and screw into the thread shape 11b of the syringe 11 is integrally formed on the outer peripheral surface. Consequently, as illustrated in
In particular, as illustrated in
Specifically, as illustrated in
In the present embodiment, the first thread region R1 (range where the terminal end F1 is formed) is formed over a range of 71° with respect to the central axis L of the cap part 10, and the second thread region R2 (range where the expanded diameter part F2 is formed) is formed over a range of 22° with respect to the central axis L of the cap part 10. The outer peripheral edge 10b of the cap part 10 has a large thickness and a polygonal shape in an outer peripheral direction.
The cap part 10 according to the present embodiment is comprised of a component obtained by resin molding, and as illustrated in
Specifically, the profiles k1a, k1b of the cap part 10 are formed by the rotating mold k1 and other molds k2, k3, and resin is passed through gate G formed in the mold k3 into the profiles, and cooled and solidified. Subsequently, the rotating mold k1 is rotated around the central axis L, and moved in a direction away from the mold k3, thus can be removed while avoiding interference between the profile k1a of the rotating mold k1 and the formed thread shape 10aa of the locking part 10a.
The molds k2, k3 are each removed, thereby making it possible to obtain the cap part 10 having the thread shape 10aa corresponding to the profile k1a and the inner peripheral depression 10c corresponding to the profile k1b. In the thread shape 10aa according to the present embodiment, the terminal end F1 has a higher thread height than that of other portions, thus when the rotating mold k1 is removed, the interference between the profile k1a of the rotating mold k1 and the formed thread shape 10aa of the locking part 10a can be easily and reliably avoided.
The access port member 7 according to the present embodiment includes: the body 8 having the opening 8c; the valve 9 made of an elastic member covering the opening 8c and attached to the attachment part 8d of the body 8, the valve 9 including the slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of the syringe 11 (connecting member) capable of collecting blood or injecting a drug; and the cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward, the cap part 10 having the locking part 10a with the thread shape 10aa to be screwed and locked into the thread shape 11b formed in the syringe 11 (connecting member). The thread shape 10aa of the locking part 10a is formed such that the thread height t2 of the terminal end F1 is higher than the thread height t1 in other portions, thus the lock work by the locking part 10a can be smoothly performed, and locking by the locking part can be securely and reliably conducted.
Specifically, the thread shape 10aa of the locking part 10a is formed such that the thread height t2 of the terminal end F1 is higher than the thread height t1 in other portions, thus as compared to when the thread is made higher over the entire thread shape 10aa or the thread is made higher in the range other than the terminal end F1, a large force is not required for screwing, therefore, the lock work by the locking part 10a can be smoothly performed, and in the process (the last stage) of a connection work made by screwing the syringe 11 into the thread shape 10aa, the terminal end F1 and the thread shape 11b of the syringe 11 can be elastically deformed, thus locking by the locking part can be securely and reliably conducted.
In particular, the body 8 is connected to a predetermined portion of the blood circuit for causing a patient's blood to extracorporeally circulate, thus the following effects can be achieved. Specifically, occurrence of a stagnation point on the rear surface of the valve 9 may cause blood clotting, thus such an occurrence needs to be reduced as much as possible. However, when the valve 9 is located closer to the flow route to prevent stagnation, the valve 9 cannot be sufficiently pressed by the tip 11a of the syringe 11, which makes it difficult to open the slit 9a. Thus, providing the valve 9 with the rib 9b as in the present embodiment allows the valve 9 to be sufficiently pressed by the tip 11a of the syringe 11, whereby both easiness of opening the slit 9a and less occurrence of a stagnation point can be achieved. In addition, providing the cap part 10 with the inner peripheral depression 10c can keep the height of the cap part 10 low, thereby making it possible for the tip 11a of the syringe 11 to sufficiently press the rib 9b of the valve 9.
The access port member 7 according to the present embodiment includes: the body 8 having the opening 8c; the valve 9 made of an elastic member covering the opening 8c and attached to the attachment part 8d of the body 8, the valve 9 including the slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of the syringe 11 (connecting member) capable of collecting blood or injecting a drug; the cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward; and the rib 9b as a seal part formed over the periphery of the slit 9a in the valve 9 and configured to, when the slit 9a is in an open state, match and seal the tip 11a of the syringe 11 (connecting member), thus when the slit 9a of the valve 9 is in an open state, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
The rib 9b as a seal part maintains a contact state with the tip 11a of the syringe 11 (connecting member) during a transition of the slit 9a from a closed state to an open state and during a transition of the slit 9a from an open state to a closed state, thus in both cases where the syringe 11 is brought into contact with the front surface of the valve 9 to open the slit 9a and where the syringe 11 is moved away from the front surface of the valve 9 to close the slit 9a, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
The seal part is comprised of the rib 9b which is formed by copying the shape of the tip 11a of the syringe 11 (connecting member), thus can avoid leakage of liquid to the outside by securing the sealing between the slit 9a and the syringe 11, and can facilitate connection work of the syringe 11 (connecting member) while preventing a failure in closing of the slit 9a. In addition, in the process (the last stage) of a connection work made by screwing the syringe 11 into the thread shape 10aa, locking by the locking part can be securely and reliably conducted by elastically deforming the terminal end F1 and the thread shape 11b of the syringe 11, therefore the state of contact between the rib 9b as the seal part and the tip 11a of the syringe 11 can be reliably achieved, and sealed state can be reliably maintained.
The thread shape 10aa of the locking part 10a includes the first thread region R1 that constitutes the terminal end F1, and the second thread region R2 whose height gradually increases toward the terminal end F1, thus in the process of a connection work made by screwing the syringe 11 into the thread shape 10aa, elastic deformation of the thread gradually increases in the second thread region R2 (expanded diameter part F2), and the maximum elastic deformation of the thread is achieved in the first thread region R1 (terminal end F1), thus smooth screwing and lock work can be performed.
In addition, the first thread region R1 is formed over a range of approximately 70° with respect to the central axis L of the cap part 10, and the second thread region R2 is formed over a range of approximately 20° with respect to the central axis L of the cap part 10, thus smooth screwing and lock work can be performed in an appropriate range. The range of the first thread region R1 and the second thread region R2 can be set to any other angle.
However, in the cap part 10, the inner peripheral depression 10c is formed around the locking part 10a, and the outer peripheral edge 10b located on an outer diameter side of the inner peripheral depression 10c is formed to have a large thickness, thus the height dimension h (see
The cap part 10 according to the present embodiment is comprised of a component obtained by resin molding, and produced using the rotating mold k1 having profile k1a on its inner peripheral surface and removable by rotation along the spiral of the thread shape 10aa, the profile k1a corresponding to the thread shape 10aa of the locking part 10a, thus when the rotating mold k1 is removed, the interference between the profile k1a of the rotating mold k1 and the formed thread shape 10aa of the locking part 10a can be easily and reliably avoided.
In the cap part 10 according to the present embodiment, the inner peripheral depression 10c is formed around the locking part 10a, and the outer peripheral edge 10b located on an outer diameter side of the inner peripheral depression 10c is formed to have a large thickness, and the rotating mold k1 has, at its outer peripheral end, the profile k1b corresponding to the inner peripheral depression 10c, thus the inner peripheral depression 10c along with the thread shape 10aa of the locking part 10a can be easily and smoothly formed.
In addition, the access port member 7 according to the present embodiment includes: the body 8 to be connected to a predetermined portion of a blood circuit for causing a patient's blood to extracorporeally circulate, the body 8 internally including the flow path 8b for circulating the blood and having the opening 8c communicating with the flow path 8b; the valve 9 made of an elastic member covering the opening 8c and attached to the attachment part 8d of the body 8, the valve 9 including the slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of the syringe 11 (connecting member) capable of collecting blood or injecting a drug; the cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward; and the rib 9b integrally formed over the periphery of the slit 9a in the valve 9, thus the access port member 7 can facilitate connection work of the syringe 11 (connecting member) while preventing a failure in closing of the slit 9a.
In addition, the cap part 10 according to the present embodiment includes the locking part 10a with the thread shape 10aa to be screwed and locked into the thread shape 11b of the syringe 11 (connecting member), thus the following effects can be achieved. Specifically, since the dimensions of the locking part 10a are strictly defined by a standard, the slit 9a of the valve 9 may not be sufficiently pressed by the tip 11a of the syringe 11 (connecting member), thus the slit 9a may not be sufficiently opened. However, when the valve 9 is moved to the side where the syringe 11 is connected to prevent such a failure (for example, when the front surface of the valve 9 is superficialized to the side where the syringe 11 is connected), the valve 9 is made thicker, making it further difficult to open the slit 9a. When the valve 9 is made thinner and the valve 9 is superficialized, a liquid stagnation point occurs in greater number on the flow route side of the valve 9, and stagnation of blood and liquid drug is likely to occur, and in particular, when blood stagnates, blood clotting may occur. Thus, a structure needs to be created in which the slit 9a is reliably opened and stagnation is unlikely to occur. Thus, according to the present embodiment, providing the valve 9 with the rib 9b allows the tip 11a of the syringe 11 to sufficiently press the valve 9, whereby both easiness of opening the slit 9a and prevention of a stagnation point can be achieved.
Although the present embodiment has been described above, the present invention is not limited to this, and the connecting member to be used is not limited to the syringe 11, and may be another connecting member (for example, a connecting member attached to the distal end of an infusion tube) which has a tip capable of pressing the rib 9b, and causes a transition of the slit 9a from a closed state to an open state by pressing to enable blood collection or drug injection. The depressions 8e may not be formed in the body 8. The valve 9 is not limited to the one having the contour of a rectangle in a plan view, and may be square, circular, elliptical or rectangular in a plan view. In addition, the present invention is not limited to the one connected to a flow route for blood in the blood circuit, and may be connected to various flow routes (such as a liquid drug infusion line serving as a flow route for a liquid drug) extending from the blood circuit.
In addition, the present invention is not limited to the one connected to a flow route for blood in the blood circuit, and may be connected to various flow routes (such as a liquid drug infusion line or a liquid drug delivery line serving as a flow route for a liquid drug) extending from the blood circuit. More specifically, in addition to the blood circuit for causing a patient's blood to extracorporeally circulate, the present invention is applicable to a circuit connected to a liquid delivery circuit, used for collection of blood flowing in the liquid delivery circuit, sampling of a liquid drug, and infusion of a liquid drug. For application to a liquid delivery circuit, an access port member may be used with one end thereof connected to an infusion bag and the other end connected to a connector coupled to an infusion line such as an indwelling needle or a blood circuit to enable drug injection and sampling, or an access port member may be used with connected to a liquid drug delivery circuit extended from a blood purifier such as the dialyzer 3 or various filters such as a blood adsorber, and a plasma separator to enable drug injection and sampling.
For application to a liquid delivery circuit, the access port member 12 having the configuration illustrated in
In the first to third embodiments, the access port member is applied to a blood circuit in hemodialysis treatment, but may also be applied to other flow routes (such as a blood circuit installed in an apparatus used for e.g., hemodiafiltration, hemofiltration, AFBF, continuous renal replacement therapy, hemoadsorption, selective cytapheresis, simple plasma exchange, double filtration plasmapheresis, or plasma adsorption) for enabling purification treatment of a patient's blood.
A first aspect of the present invention provides an access port member including: a body 8 having an opening 8c; a valve 9 made of an elastic member covering the opening 8c and attached to an attachment part 8d of the body 8, the valve 9 including a slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of a syringe 11 (connecting member) capable of collecting blood or injecting a drug; a cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward, the cap part 10 having a locking part 10a with a thread shape 10aa to be screwed and locked into a thread shape 11b formed in the syringe 11 (connecting member); and a rib 9b integrally formed over the periphery of the slit 9a in the valve 9. Consequently, the effect of facilitating connection work of the syringe 11 (connecting member) while preventing a failure in closing of the slit 9a is achieved.
A second aspect of the present invention provides the access port member according to the first aspect, in which the rib 9b serves as a seal part that is formed over the periphery of the slit 9a in the valve 9 and configured to, when the slit 9a is in an open state, match and seal the tip 11a of the syringe 11 (connecting member). Thus, when the slit 9a of the valve 9 is in an open state, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
A third aspect of the present invention provides the access port member according to the first aspect, in which the thread shape 10aa of the locking part 10a is formed such that the thread height t2 of the terminal end F1 is higher than the thread height t1 in other portions. Thus, the lock work by the locking part 10a can be smoothly performed, and locking by the locking part can be securely and reliably conducted.
A fourth aspect of the present invention provides the access port member according to the first aspect, in which the rib 9b serves as a seal part that is formed over the periphery of the slit 9a in the valve 9 and configured to, when the slit 9a is in an open state, match and seal the tip 11a of the syringe 11 (connecting member), and the thread shape 10aa of the locking part 10a is formed such that the thread height t2 of the terminal end F1 is higher than the thread height t1 in other portions. Thus, when the slit 9a of the valve 9 is in an open state, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11, the lock work by the locking part 10a can be smoothly performed, and locking by the locking part can be securely and reliably conducted.
A fifth aspect of the present invention provides the access port member according to the first aspect, in which the rib 9b is composed of a protrusion formed on the front surface, the rear surface, or both surfaces of the valve 9, is circular, elliptical or rectangular in a plan view, and has an internal region 9bc in which the slit 9a is formed. Thus, elastic deformation is made easily by reducing an elastic force around the slit 9a so that an open state can be achieved, and a difference in level can be prevented from occurring by improving the restoring force after the elastic deformation with the rib 9b.
A sixth aspect of the present invention provides the access port member according to the fifth aspect, in which the slit 9a is formed in the internal region 9bc of the rib, and part of the slit 9a extends to the tip surface 9ba of the rib 9b. Thus, the slit 9a can be formed in the valve 9 without requiring a high positioning accuracy.
A seventh aspect of the present invention provides the access port member according to the first to sixth aspects, in which the slit 9a is formed in a line segment shape or a cross shape. Thus, an open state can be favorably achieved by pressing the tip 11a of the syringe 11.
An eighth aspect of the present invention provides an access port member including: a body 8 having an opening 8c; a valve 9 made of an elastic member covering the opening 8c and attached to an attachment part 8d of the body 8, the valve 9 including a slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of a syringe 11 (connecting member) capable of collecting blood or injecting a drug; a cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward, the cap part 10 having a locking part 10a with a thread shape 10aa to be screwed and locked into a thread shape 11b formed in the syringe 11 (connecting member); and a rib 9b as a seal part formed over the periphery of the slit 9a in the valve 9 and configured to, when the slit 9a is in an open state, match and seal the tip 11a of the syringe 11 (connecting member). Thus, when the slit 9a of the valve 9 is in an open state, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
A ninth aspect of the present invention provides the access port member according to the eighth aspect, in which the thread shape 10aa of the locking part 10a is formed such that the thread height t2 of the terminal end F1 is higher than the thread height t1 in other portions. Thus, the lock work by the locking part 10a can be smoothly performed, and locking by the locking part can be securely and reliably conducted.
A tenth aspect of the present invention provides the access port member according to the eighth aspect, in which the rib 9b as a seal part maintains a contact state with the tip 11a of the syringe 11 (connecting member) during a transition of the slit 9a from a closed state to an open state and during a transition of the slit 9a from an open state to a closed state. Thus, in both cases where the syringe 11 is brought into contact with the front surface of the valve 9 to open the slit 9a and where the syringe 11 is moved away from the front surface of the valve 9 to close the slit 9a, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11.
An eleventh aspect of the present invention provides the access port member according to the eighth aspect, in which the seal part is comprised of the rib 9b which is formed by copying the shape of the tip 11a of the syringe 11 (connecting member). Therefore, leakage of liquid to the outside can be avoided by securing the sealing between the slit 9a and the syringe 11, and connection work of the syringe 11 (connecting member) can be facilitated while preventing a failure in closing of the slit 9a.
A twelfth aspect of the present invention provides the access port member according to the eighth to eleventh aspects, in which the slit 9a is formed in a line segment shape or a cross shape. Thus, an open state can be favorably achieved by pressing the tip 11a of the syringe 11.
A thirteenth aspect of the present invention provides an access port member including: a body 8 having an opening 8c; a valve 9 made of an elastic member covering the opening 8c and attached to an attachment part 8d of the body 8, the valve 9 including a slit 9a that makes a transition from a closed state to an open state when pressed by the tip 11a of a syringe 11 (connecting member) capable of collecting blood or injecting a drug; and a cap part 10 fixed to the body 8 with the valve 9 interposed therebetween and the slit 9a facing outward, the cap part 10 having a locking part 10a with a thread shape 10aa to be screwed and locked into a thread shape 11b formed in the syringe 11 (connecting member). The thread shape 10aa of the locking part 10a is formed such that the thread height t2 of the terminal end F1 is higher than the thread height t1 in other portions. Thus, the lock work by the locking part 10a can be smoothly performed, and locking by the locking part can be securely and reliably conducted.
A fourteenth aspect of the present invention provides the access port member according to the thirteenth aspect, in which the thread shape 10aa of the locking part 10a includes a first thread region R1 that constitutes the terminal end F1, and a second thread region R2 where a thread height gradually increases toward the terminal end F1. Thus, in the process of a connection work made by screwing the syringe 11 into the thread shape 10aa, elastic deformation of the thread gradually increases in the second thread region R2 (expanded diameter part F2), and the maximum elastic deformation of the thread is achieved in the first thread region R1 (terminal end F1), thus smooth screwing and lock work can be performed.
A fifteenth aspect of the present invention provides the access port member according to the thirteenth or fourteenth aspect, in which in the cap part 10, the inner peripheral depression 10c is formed around the locking part 10a, and the outer peripheral edge 10b located on an outer diameter side of the inner peripheral depression 10c is formed to have a large thickness. Thus, the height dimension h of the cap part 10 can be kept low, and upon connection of the syringe 11, the tip surface 11c of the thread of the syringe 11 can be fitted into the inner peripheral depression 10c of the cap part 10, thus the tip 11a of the syringe 11 can be made further closer to the rib 9b of the valve 9.
A sixteenth aspect of the present invention provides a method of manufacturing the access port member according to the thirteenth to fifteenth aspects, in which the cap part 10 is comprised of a component obtained by resin molding, and produced using a rotating mold k1 having profile k1a on its inner peripheral surface and removable by rotation along the spiral of the thread shape 10aa, the profile k1a corresponding to the thread shape 10aa of the locking part 10a. Thus, when the rotating mold k1 is removed, the interference between the profile k1a of the rotating mold k1 and the formed thread shape 10aa of the locking part 10a can be easily and reliably avoided.
A seventeenth aspect of the present invention provides a method of manufacturing the access port member according to the sixteenth aspect, in which in the cap part 10, the inner peripheral depression 10c is formed around the locking part 10a, and the outer peripheral edge 10b located on an outer diameter side of the inner peripheral depression 10c is formed to have a large thickness, and the rotating mold k1 has the profile k1b corresponding to the inner peripheral depression 10c on an outer peripheral end. Thus, the inner peripheral depression 10c along with the thread shape 10aa of the locking part 10a can be easily and smoothly formed.
An eighteenth aspect of the present invention provides a flow route to be connected to the body 8 according to the first to seventeenth aspects, in which the flow route is comprised of a blood circuit configured to cause a patient's blood to extracorporeally circulate, a liquid delivery circuit configured to inject a liquid drug or blood to a patient, or a liquid drug delivery circuit configured to cause a liquid drug to flow. Consequently, the present invention is applicable to a blood circuit, a liquid delivery circuit configured to inject a liquid drug or blood to a patient, or a liquid drug delivery circuit configured to cause a liquid drug to flow.
The present invention is also applicable to any blood purification apparatus having a different appearance, additional functions, or the like within the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2021-215331 | Dec 2021 | JP | national |
2021-215332 | Dec 2021 | JP | national |
2021-215335 | Dec 2021 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2022/048458 | Dec 2022 | WO |
Child | 18756365 | US |