The present invention is generally directed to an improved access port, such as access ports suitable for providing in-plant processing of air conditioning and refrigeration systems and for connecting standard field service equipment to same, for units that are typically charged with fluids, e.g., refrigerants. The term “fluid” as used in this disclosure is not limited to refrigerants and may include other liquids, gases, or liquid-gas mixtures. Among other applications, an access port in accordance with the present invention may find use in residential and commercial air conditioning systems or the like.
Among other advantages, the access port of the present invention permits a high fluid flow rate through the access port to provide rapid in-plant processing of air conditioning and refrigeration systems. Additionally, the inventive access port permits the connection of standard field service equipment, to facilitate repair of the air conditioning and refrigeration systems.
Referring initially to
In a preferred embodiment, the process port 22 comprises a body (preferably made of a metal such as brass or steel, by machining a forged bar stock) having a duct 32 therethrough that extends from a first end 34 configured to mate (e.g., brazed) with a fluid line 34 in an air conditioning or refrigeration system 35 (see
In a preferred embodiment, a portion of the duct 32 adjacent the second end 36 of the process port is provided with an internal threaded surface portion 48. The valve core 40 preferably includes an externally threaded portion 50 that threadably engages the internally threaded surface portion of the duct 32 to retain the valve core with the body of the process port. The duct 32 and valve core 40 are preferably configured to provide a fluid flow rate approximately equivalent to the fluid flow rate through a quarter-inch process tube when the adapter is not connected.
The body 30 of the process port 22 preferably includes external features such as at 52 that facilitate retention of the separate female coupling member 37 (FIG. 8). In a preferred embodiment, the inventive process port is configured to mate with a conventional ball-latch style quick disconnect female coupling, for example, a Series 250 Coupler Assembly manufactured by PCU, Inc. The inventive process port allows a ball-latch style female coupling member to be connected quickly and easily with a minimum amount of force, thereby minimizing process time and user fatigue. The female coupling member 37 may be modified to include a specially designed shaft 53 to accommodate the valve core 40 of the inventive process port to reduce air inclusion and/or fluid loss during connection.
Referring again to
The duct 56 of the adapter is configured to receive a depressor 70 that actuates the valve core 40 of the process port upon attachment of a process conduit. In a preferred embodiment, the depressor 70 is manufactured from a metal, such as brass, and as also shown in
Alternatively, as shown in
In any case, when a process conduit is not connected, the second end 60 of the adapter preferably includes a cap 66, such as a polymeric or metal screw-on cap, to inhibit the escape of fluid (such as refrigerant) from the system. In a preferred embodiment, the cap 66 is manufactured of a polymer, such as plastic, enabling the cap to be hand-tightened to provide a seal. Alternatively, the cap 66 may be manufactured of a metal, such as brass, requiring that the cap be tightened according to a predetermined amount of torque, such as 6-8 ft. lbs., to ensure a seal. In this embodiment, a means of mechanically “locking” or otherwise retaining the adapter 24 in the process port 22 may be required. For example, a typical thread-locking compound, such as Dri-loc® dry film threadlocker manufactured by Loctite Corporation, may be applied to the external threads 62 of the first end of the adapter prior to connecting the adapter to the process port. The locking compound ensures that the torque required to disconnect the adapter from the process port is higher than the torque required to disconnect the cap from the adapter.
Upon connection of the adapter 24 to the process port 22, a metal-to-metal seal is formed between an internal frustoconical chamfer 84 adjacent the second end 36 of the process port and an annular edge 83 of the mating adapter. A metal-to-metal seal is advantageous because it substantially eliminates fluid permeation between the process port and the adapter.
Alternately, referring now to
While the adapter 24 is connected to the process port 22, the valve core 40 of the process port remains unactuated (i.e., sealed by means of flexible seal 44) to prevent fluid loss from the system. Upon connection of a process conduit to the adapter, the depressor 70 engagably moved into abutment with the valve 42 causing the valve to be actuated to an “open” position permitting fluid flow through the process port 22. Upon disconnection of either the process conduit from the adapter 24, or the adapter 24 from the process port 22, the biasing force of the valve spring 43 causes the valve to reseal. An advantage of this design is that inadvertent removal of the adapter 24 from the process port 22 will not result in fluid loss.
A further embodiment of the present invention is shown in
Likewise,
The present invention also contemplates the use of a plurality of similar, but non-interchangeable process port and adapter configurations to prevent the inadvertent mixing of incompatible fluids, such as refrigerants R22 and R410A. This may be accomplished, for example, by dimensionally varying the thread size of the second end of the adapter from {fraction (7/16)}-20 to ½-20. Alternatively, the size and/or position of the external features of the process port may be modified to selectively limit the type of female coupling member that may be connected thereto.
Among other things, the present invention may provide the following advantages to end users:
The present invention may also provide, inter alia, manufacturing advantages, such as the following.
Further description of the present invention may be included with the attached informal drawings. Moreover, the present invention is not limited to any specific embodiment and/or dimensions that may be included with the embodiments set forth in connection with the attached informal drawings.
The present application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/299,163; filed Jun. 18, 2001 and U.S. Provisional Ser. No. 60/332,274, filed Nov. 10, 2001, the disclosures of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3574314 | Quercia | Apr 1971 | A |
3704002 | Skarzynski | Nov 1972 | A |
3916641 | Mullins | Nov 1975 | A |
4069686 | Hoelman | Jan 1978 | A |
4338793 | O'Hern, Jr. | Jul 1982 | A |
4458719 | Strybel | Jul 1984 | A |
4509554 | Failla | Apr 1985 | A |
4979721 | Gilbert | Dec 1990 | A |
5010743 | Hale | Apr 1991 | A |
5139049 | Jensen et al. | Aug 1992 | A |
5244010 | Barjasteh et al. | Sep 1993 | A |
5248125 | Fritch et al. | Sep 1993 | A |
5415200 | Haunhorst et al. | May 1995 | A |
6009902 | Troiani et al. | Jan 2000 | A |
6032691 | Powell et al. | Mar 2000 | A |
6050295 | Meisinger et al. | Apr 2000 | A |
6237631 | Giesler et al. | May 2001 | B1 |
6269840 | Beaver | Aug 2001 | B1 |
6273397 | Schultz et al. | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
9826203 | Jun 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20030015679 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60299163 | Jun 2001 | US | |
60332274 | Nov 2001 | US |