This invention relates to a breaching access structure for a sealed package having a breaching bubble which edge breaches to provide peel flaps for opening the package, and more particularly to such a breaching bubble having a bursting detonator that initiates the breaching.
Heretofore, U.S. Pat. No. 6,726,364 to Perell et al teaches a storage package with a band seal formed by opposed laminae enclosing a breaching bubble. The band seal has an inner seal between the bubble and the interior of the package, and an outer seal between the bubble and the edge of the package. The bubble may be expanded by external pressure applied to the bubble by the user. The expansion separates the opposed laminae causing the bubble to breach along the edge. Opposed peel flaps form along the edge breach by the separation of the opposed laminae of the outer seal. These small initial flaps are grasped by the user and manually peeled apart to separate the remainder of the outer seal and the inner seal, and open the package.
It is therefore an object of this invention to provide an access structure with a bursting detonator within the breaching bubble. Pressure on the bursting fluid within the detonator causes the detonator wall to rupture, initiating the breaching of the bubble. The rupture communicates the high fluid pressure within the bursting detonator into the bubble. This step change in internal bubble pressure urges the laminae toward separation, causing the bubble to edge breach.
It is a further object of this invention to provide such a bursting detonator which ruptures almost instantaneously causing a rapid, sudden and energetic edge breach. As the user presses on the bubble and detonator therein, compression energy builds in the bursting fluid. The external mechanical energy provided by the user, is transformed into internal compression energy. The compression continues to build until released by rupture into the bubble. The bulk of this accumulated energy is instantaneously transferred at burst into the breaching bubble causing the bubble to expand and breech. The slow energy introduction by the user over the entire period of pressing, is released in an instant as an intense pressure pulse.
It is a further object of this invention to provide such a bursting detonator having uniform rupture threshold. That is, the detonators in each package are generally the same size, shape, and wall thickness, and made of the same material. These mass manufactured detonators rupture at about the same fluid pressure. The user's package opening technique is simplified. He merely applies the same pressure at same place in the same manner.
It is a further object of this invention to provide such a bursting detonator with a bursting tract for providing a sponsored rupture. The bursting tract is scored or otherwise weakened, in order to promote rupture.
It is a further object of this invention to provide such a bursting detonator which produces a uniform sound upon bursting.
It is a further object of this invention to provide such a bursting detonator as an inner container for items accompanying the product within the sealed interior. Manufacturers frequently provide product accessories and utensils which are not in the sealed interior with the product, such as prizes and instructions. These items may be included in the bursting detonator.
It is a further object of this invention to provide an access structure with multiple bursting detonators.
Briefly, these and other objects of the present invention are accomplished by providing a breaching access structure having an access region proximate a breaching edge. The structure has a band seal extending thereacross containing a breaching bubble. The band seal has an outer seal portion between the breaching bubble and the breaching edge, and an inner seal portion between the breaching bubble and a sealed interior. A bursting detonator proximate the breaching bubble contains bursting fluid. The detonator bursts in response to applied pressure for establishing fluid communication from the detonator to the breaching bubble. The detonator pressure causes the breaching bubble to breach for facilitating opening the inner seal portion providing access to the interior.
Further objects and advantages of the access structure having a breaching bubble and bursting detonator, will become apparent from the following detailed description and drawings (not drawn to scale) in which:
The first digit of each reference numeral in the above figures indicates the figure in which an element or feature is most prominently shown. The second digit indicates related elements or features, and a final letter (when used) indicates a sub-portion of an element or feature.
The table below lists the reference numerals employed in the figures, and identifies the element designated by each numeral.
Breaching access structure 10S provides easy access to contents 10C of sealed interior 10I of storage package 10 through breaching edge 12E which extends along the edge of the access structure. The package is formed by enclosure material, which may be any suitable confining substance such as films, plastics, paper (with wood and/or cotton content) fabric, cellophane, or biodegradable matter. Thin mylar plastic forms a flexible film with hermetic properties, and is commonly used as a enclosure material for packages. Contents 10C may be any tangible object such as snacks, candies, prepared foods, edibles generally, agricultural commodities, pharmaceuticals, sterile supplies and instruments, manufactured products, or sundry household goods.
Access region 12A is within the access structure proximate breaching edge 12E, and provides entrance into the sealed interior and access to the contents. Band seal 14 extends across the access region and is formed by opposed laminae of enclosure material. The band seal has upper lamina 14U and lower lamina 14L pressed into a sealing engagement. Breaching bubble 16 is enclosed between the opposed laminae within the band seal. The band seal has inner seal portion 14I and outer seal portion 14O, both formed by the opposed laminae material. The inner seal portion is between the breaching bubble and the sealed interior. The outer seal portion is between the bubble and breaching edge 12E of the access region. The opposed laminae forming the band seal and the seal portions therein, may be pressed into a sealing engagement, trapping breaching bubble 16 therebetween. The sealing engagement may be frangible, forming a seal which is easily broken without destruction. Such frangible seals may be formed under controlled pressure and temperature and time conditions. A additional details of a suitable access structure are disclosed in U.S. Pat. No. 6,726,364 issued on 27 Apr. 2004 to Perell et al, the subject matter of which is hereby incorporated by reference in its entirety into this disclosure.
Bursting detonator 18 proximate breaching bubble 16, contains bursting fluid 18F. The detonator bursts in response to fluid pressure (either external see
Opening the Band Seal
Breaching bubble 16 expands towards breaching edge 12E of the access structure (see
The outward bubble expansion progressively separates the outer seal laminae along a moving separation frontier 16F. The frontier moves across the outer seal until the frontier reaches the edge of the package, where the bubble breaches creating edge breach 16B (see
Opposed Peel Flaps
Opposed pair of peel flaps, upper flap 16U and lower flap 16L (see
The initial peel flaps formed along the edge breach become larger in area as the user peels the flaps apart (see
The bubble expands under the pressure both outward towards edge 12E of the access structure and laterally, as indicated by the small lateral arrows (see
One or both of the opposed laminae may be generally convex, such as curved lower lamina 24L and curved upper lamina 24U (see
Product Items
The bursting detonator or the breaching bubble may contain small, useful product items, such as tokens, coupons, candy, utensils fragrances, etc. Item 28P may be product information such as instructions, manufacturing data, and use-by-date, expressed in various formats, such as print, bar codes and graphics. The information may be carried on various mediums such, paper and memory chips, and even on CDs. The product item may be a status indicator, to indicate such conditions as whether:
One of the opposed laminae may be generally planar, such as flat base 34L. The other opposed lamina may be generally convex, such as curved cover 34U. The flat base provides a moving assembly platform during manufacturing, which then receives the other components of the storage package. Bursting detonator 38 may be anchored to the flat base prior to mounting the curved cover. In addition, the flat base may receive a partial lamina film forming the detonator. Partial middle lamina 34M, between the opposed laminae, extends into breach bubble 36 to form bursting detonator 38. Pinned end 34P of middle lamina 34M is pinned between upper lamina 34U and lower lamina 34L. Frangible end 34F within the bubble is secured only to the lower lamina forming frangible detonator seal 34S. Lamina detonator 38 expands under pressure causing the middle lamina to separate from the lower lamina and edge breach into the bubble along the detonator seal.
The bursting fluid contained within the bursting detonator may be any suitable compressible gas. Inert and chemically pure gases, such as nitrogen gas are preferred. Low cost ambient air may be employed as the bursting fluid. Preferably, the air is filtered to remove harmful particulate matter, such as pathogens, dust, and allergens. Alternatively, the bursting fluid may be any suitable incompressible liquid such as water or solvent. The bursting fluid may be a low-temperature gel substance which remains plastic and malleable at freezer temperatures. Frozen food packages taken right out of the freezer, may be opened immediately by bursting such a gel detonator.
Fluid substances with a low coefficient of thermal expansion may be employed. These substances exhibit less contraction or expansion as the temperature changes. Because of the lower shrinkage, the detonator remains firmer at lower temperatures. Such a firm detonator has a crisp, more reliable response to fluid pressure. In addition, low coefficient substances exhibit less expansion at higher temperatures, which may force the detonator into an untimely burst.
In the embodiment of
The breaching access structure may have multiple breaching bubbles, each with one or more bursting detonator. Breaching bubble 56 on storage package 50 contains more than one bursting detonator 58. If one of the detonators fails, the other detonator is available as a back-up. Access structure 60S on storage package 60 has multiple breaching bubbles 66, each with a detonator 68. One breaching bubble with an inner seal and an outer seal is positioned at one end of sealed interior 60I. Another breaching bubble with an inner seal and an outer seal is positioned at the other end of the sealed interior. The sealed interior may be opened from either end.
The bursting detonator may have a bursting tract defined in the material of the detonator for providing a sponsored rupture of the detonator at the tract. The sponsored rupture may have a lower rupture threshold than the remainder of the detonator, increasing the probability that the rupture will occur within the tract. The material forming the tract may be more fragile and/or thinner than the material forming the remainder of the detonator, and therefore more prone to breaking or splitting. The material forming the fragile tract may be chemically treated to become more brittle, or otherwise damaged or flawed.
The thinner tract may be a score in the surface of the detonator. Various embodiments of scored bursting tracts 58T within bursting detonators 58, are shown in
It will be apparent to those skilled in the art that the objects of this invention have been achieved as described hereinbefore by providing a bursting detonator within a breaching access structure. Various changes may be made in the structure and embodiments shown herein without departing from the concept of the invention. Further, features of embodiments shown in various figures may be employed in combination with embodiments shown in other figures. Therefore, the scope of the invention is to be determined by the terminology of the following claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2916886 | Robbins | Dec 1959 | A |
4759472 | Strenger | Jul 1988 | A |
4872556 | Farmer | Oct 1989 | A |
4890744 | Lane et al. | Jan 1990 | A |
5131760 | Farmer | Jul 1992 | A |
5373966 | O'Reilly et al. | Dec 1994 | A |
6692150 | Hoshino | Feb 2004 | B2 |
6726364 | Perell ex al. | Apr 2004 | B2 |
20020094141 | Hoshino | Jul 2002 | A1 |
20030148004 | Kawaguchi et al. | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060126970 A1 | Jun 2006 | US |