The present disclosure relates generally to a system and method for wireless communications and, in particular embodiments, to authentication and validation for next generation serving networks.
A user of a mobile telecommunication device such as a user equipment (UE) may subscribe to telecommunication services through a service provider. The network through which the provider provides services to the user is referred to as the user's home network. At times, the user may access telecommunication services through a network other than the user's home network, such as when the user is in a physical location where the home network is not directly available. Such a network is referred to as a serving network. In existing telecommunication systems, the provider of the home network and the provider of the serving network may have a roaming agreement that allows the user to access network services via the serving network. The roaming agreement typically specifies how services should be provided by the serving network, how the services are to be billed, and how communication via the home network and the serving network is to occur.
However, users of next generation telecommunication services may access network services dynamically and may use serving networks in an unpredictable fashion. For example, an airport or other large public venue may operate a serving network that users may access on a temporary basis. As another example, a large corporation may operate its own telecommunication network for use by its employees but may allow non-employees to access its network for a fee. As another example, an enterprise may create a serving network in a location with limited access to other networks and charge users a fee while accessing its network. Such networks may or may not have a roaming agreement with a UE user's home network. In addition, such serving networks may use different access technologies for access to their networks, such as Long Term Evolution, Wi-Fi, or WiMAX.
In accordance with an embodiment of the present disclosure, a method for serving network authentication and validation by a UE comprises encrypting an identifier associated with the UE using a first instance of a public key associated with a serving network to which the UE is attempting to gain access; transmitting the identifier to the serving network; receiving from the serving network an authentication vector containing a second instance of the public key, the second instance of the public key having been encrypted using a key shared by the UE and a home network associated with the UE; decrypting the second instance of the public key using the key shared by the UE and the home network; comparing the first instance of the public key to the second instance of the public key; and when the first instance of the public key and the second instance of the public key are the same, determining that the home network has authenticated and validated the serving network.
In accordance with another embodiment of the present disclosure, a method for serving network authentication and validation by a serving network comprises receiving, from a UE, an identifier associated with the UE, the identifier having been encrypted using a first instance of a public key associated with the serving network; transmitting, to a home network associated with the UE, the encrypted identifier and the first instance of the public key associated with the serving network; receiving from the home network an authentication vector containing a second instance of the public key, the second instance of the public key having been encrypted using a key shared by the UE and the home network; extracting an expected response value from the received authentication vector; and transmitting the remaining authentication vector to the UE.
In accordance with another embodiment of the present disclosure, a method for serving network authentication and validation by a home network comprises receiving, from a serving network, a first instance of a public key associated with the serving network and an identifier associated with a UE, the identifier having been encrypted using a private key associated with the serving network; using the first instance of the public key as a digital identifier to obtain previously established authentication and validation information associated with the serving network; when the serving network has been authenticated and validated, generating an authentication vector containing an AUTN value combined with the first instance of the public key that has been encrypted with a key shared by the UE and the home network; and transmitting the authentication vector to the serving network.
In accordance with another embodiment of the present disclosure, a method for three-way authentication comprises transmitting, by a first entity, a first instance of a public key associated with the first entity together with system clock information associated with the first entity, the system clock information having been encrypted using a private key associated with the first entity; receiving, by a second entity, the first instance of the public key and the system clock information; determining, by the second entity, that the first instance of the public key and the private key are a legitimate key pair by decrypting the system clock information using the first instance of the public key; encrypting, by the second entity, an identifier associated with the second entity using the first instance of a public key; transmitting, by the second entity, to the first entity, the identifier; decrypting, by the first entity, the identifier to determine information in the identifier identifying a third entity associated with the second entity; encrypting, by the first entity, the identifier using the private key associated with the first entity; transmitting, by the first entity, to the third entity, the identifier and the first instance of the public key; using, by the third entity, the first instance of the public key as a digital identifier to obtain previously established authentication and validation information associated with the first entity; transmitting, by the third entity, to the first entity, in an authentication vector, a second instance of the public key created by encrypting the first instance of the public key using a key shared by the second entity and the third entity, and the authentication and validation information of the first entity by the third entity; extracting, by the first entity, an expected response from the authentication vector containing the second instance of the public key; forwarding, by the first entity, to the second entity, the remaining authentication vector along with authentication and validation information and the second instance of the public key; decrypting, by the second entity, the second instance of the public key using the key shared by the second entity and the third entity; comparing, by the second entity, the first instance of the public key to the second instance of the public key; and when the first instance of the public key and the second instance of the public key are determined to be the same, determining that the third entity has authenticated and validated the first entity.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable novel concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the embodiments and do not limit the scope of the disclosure.
The embodiments disclosed herein provide a serving network authentication and validation mechanism. The disclosure is exemplified using the Authentication and Key Agreement (AKA) procedure but can be implemented in other authentication mechanisms. The embodiments can also be implemented in any type of access technology and are thus agnostic with respect to the type of access network.
In the next generation of network services, a serving network may or may not have a service agreement with a subscriber's home network. In order for a UE to access a serving network safely and reliably, serving network authentication and validation is important. Currently, circumstances may exist where no authentication occurs between a UE and a serving network, and authentication is performed only between the UE and its home network. For example, a UE may attempt to gain access to a serving network that does not have a roaming agreement with the UE's home network. It may be preferable for such a serving network to be authenticated and validated to ensure that the serving network can be trusted. In addition, there is currently no adequate solution for pre-provisioning a UE with a public key for all possible future serving networks, since the serving networks may be dynamic and numerous. It may not be possible for a UE to know in advance all the possible serving networks the UE may visit. Even if a UE knew all the possible serving networks the UE may visit, the UE may not have enough memory to store the large number of public keys for all of the expected serving networks. A complete solution to authenticate and validate a serving network has yet to be developed.
Embodiments of the present disclosure provide methods for authenticating and validating a serving network that may not have a pre-existing roaming relationship with a home network. A serving network public key can be provisioned into a UE as a result of this authentication. Furthermore, a serving network can be validated in addition to being authenticated. That is, the serving network may be given a rating or rank to indicate the level of trust that can be placed in the serving network or the quality of service the serving network provides. With such a validation, an end user can avoid using a serving network that has been authenticated but that may have low trust or provide poor service.
The embodiments can provide the fine granularity of an authentication performed, for example, on a per-access point basis, as opposed to an authentication performed on the entire serving network. Entities can be authenticated with a fine granularity that the public key infrastructure (PKI) cannot match due to the complexity and cost of PKI. For example, since each access point has its own unique identifier, each access point could be individually authenticated and validated based on its identifier.
The embodiments can provide three-way authentication among a UE, a serving network, and a home network without a need for a pre-existing roaming agreement between the serving network and the home network.
In an embodiment, a serving network may charge for services via a blockchain network instead of the charges going through a third-party clearinghouse acting as an intermediary between the home network and the serving network. In addition, a home network may authenticate and validate a serving network via blockchain using a serving network identifier such as a public key, or such as the public address of a serving network smart contract.
The embodiments avoid the single point of failure that may be present in a centralized authentication mechanism and also avoid issues from Certificate Authorities and the Web of Trust, such as the need for a trusted third party and limited accessibility.
At event 162, the serving network 130 broadcasts system information including a serving network public key (SN PuKey) and serving network system clock information encrypted using a serving network private key (SN PrKey). Alternatively, other serving network system information could be encrypted using the SN PrKey. At event 164, the UE 110 receives the broadcast and validates the system clock using the SN PuKey. That is, the UE 110 uses the SN PuKey to decrypt the system clock information and thereby ensure that the SN PuKey and the SN PrKey are a legitimate key pair. Still at event 164, the UE 110 saves the SN PuKey for later use in the authentication and validation procedure and for possible use when the UE 110 may attempt to gain access to the serving network 130 again in the future. When the UE 110 attempts to attach to the serving network 130, the serving network 130, at event 166, sends an Identity Request message to the UE 110. In response to the Identity Request message, the UE 110 sends its user identifier (ID) to the serving network 130 in an Identity Response message at event 168. In an embodiment, the UE encrypts the user ID in the Identity Response message using the SN PuKey.
It may be noted that, if the SN PuKey is already provisioned in the UE 110, the serving network 130 is already authenticated. Otherwise, the serving network 130 needs to be authenticated by the home network 140.
Following receipt of the Identity Response message from the UE 110, the serving network 130 decrypts the user ID using the SN PrKey. Using the information in the user ID, the serving network 130 determines the home network 140 associated with the UE 110. The serving network 130 then encrypts the user ID using the SN PrKey to ensure that there is no “man in the middle” interception of the user ID when the serving network 130 sends the user ID to the home network 140. At event 170, the serving network 130 sends an Authentication Request message with the encrypted user ID and the SN PuKey to the home network 140 to obtain an authentication vector.
At event 172, the home network 140 decrypts the user ID using the SN PuKey and determines whether the UE 110 associated with the user ID can legitimately access the serving network 130. The home network 140 then authenticates and validates the serving network 130 using the SN PuKey. That is, the home network 140 uses the SN PuKey to obtain previously established authentication and validation information associated with the serving network 130. The home network 140 then uses that information to determine if the serving network 130 is legitimate and also to determine a known rating or rank for the quality of service and/or level of trust associated with the serving network 130. If the home network 140 determines that the serving network 130 is legitimate and has a rating or rank above a predetermined threshold, the home network allows the UE 110 to gain access to the serving network 130. If more than one serving network 130 is available to the UE 110, the home network 140 may provide the UE access to the serving network 130 with the highest rating or rank. Alternatively, the home network 140 may allow a user of the UE 110 to choose a serving network 130 with an acceptable rating or rank. In an embodiment, the home network 140 authenticates and validates the serving network 130 via a blockchain network 190 using the SN PuKey as the serving network address or as a digital identifier.
With continuing reference to event 172, the home network 140 generates an authentication vector (AV). The authentication vector contains a new digital value that can be referred to as AUTN* and that can be derived from an existing digital value that can be referred to as AUTN. In an embodiment, AUTN* is calculated by performing an XOR operation on AUTN and the SN PuKey that has been encrypted by a key that can be referred to as KEY and that is derived from a key the home network 140 shares with the UE 110. That is, AUTN*=AUTN (XOR) (PuKey)KEY. In other embodiments, AUTN may be combined with (PuKey)KEY in other ways. In another embodiment, the home network private key can be used to protect the SN PuKey to be validated by the UE 110, and the UE 110 can use the home network public key to decrypt the home network private key. This prevents a “man in the middle” interception of the SN PuKey and ensures that the SN PuKey is not changed as it is transmitted from the home network 140 to the UE 110. In the authentication vector, AUTN is replaced by AUTN*.
At event 174, the home network 140 sends an authentication vector response containing AUTN* and the SN PuKey to the serving network 130. At event 176, the serving network 130 extracts and retains the expected response (XRES) portion of the authentication vector and forwards the RAND and AUTN* portions of the authentication vector to the UE 110 in an Authentication Request message.
At event 178, the UE 110 derives the KEY shared by the UE 110 and the home network 140 and calculates AUTN=AUTN* (XOR) (PuKey)KEY using the shared KEY or, in another embodiment, using the home network PrKey. That is, the reverse of the XOR operation performed by the home network 140 may be performed. Using the KEY shared by the UE 110 and the home network 140, the UE 110 obtains the SN PuKey sent by the home network 140 and ensures that the instance of the SN PuKey sent by the home network 140 is the same as the instance of the SN PuKey broadcast by the serving network 130 at event 162. In this way, the UE no confirms that the serving network 130 that broadcast the SN PuKey has been authenticated and validated by the home network 140.
That is, when the UE 110 verifies the AUTN to authenticate the home network 140 and verifies that the received SN PuKey in AUTN* is the same as the broadcast SN PuKey, the UE thereby determines that the home network 140 has authenticated and validated the serving network 130, and therefore the UE 110 can reliably access network services using the serving network 130. The UE 110 then saves the SN PuKey for use in future attempts by the UE 110 to gain access to the serving network 130.
Existing authentication procedures are then followed by the UE 110 and the serving network 130 in the remainder of
When the above steps have been completed between a UE and a serving network or an access point, the serving network or access point remains authenticated and validated to the UE, and such a procedure does not need to be performed again between the UE and the serving network or access point until the next mandated authentication based on policy or configuration.
In some embodiments, the processing system 600 is included in a network device that is accessing, or part otherwise of, a telecommunications network. In one example, the processing system 600 is in a network-side device in a wireless or wireline telecommunications network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an applications server, or any other device in the telecommunications network. In other embodiments, the processing system 600 is in a user-side device accessing a wireless or wireline telecommunications network, such as a mobile station, a user equipment (UE), a personal computer (PC), a tablet, a wearable communications device (e.g., a smartwatch, etc.), or any other device adapted to access a telecommunications network.
In some embodiments, one or more of the interfaces 610, 612, 614 connects the processing system 600 to a transceiver adapted to transmit and receive signaling over the telecommunications network.
The transceiver 700 may transmit and receive signaling over any type of communications medium. In some embodiments, the transceiver 700 transmits and receives signaling over a wireless medium. For example, the transceiver 700 may be a wireless transceiver adapted to communicate in accordance with a wireless telecommunications protocol, such as a cellular protocol (e.g., long-term evolution (LTE), etc.), a wireless local area network (WLAN) protocol (e.g., Wi-Fi, etc.), or any other type of wireless protocol (e.g., Bluetooth, near field communication (NFC), etc.). In such embodiments, the network-side interface 702 comprises one or more antenna/radiating elements. For example, the network-side interface 702 may include a single antenna, multiple separate antennas, or a multi-antenna array configured for multi-layer communication, e.g., single input multiple output (SIMO), multiple input single output (MISO), multiple input multiple output (MIMO), etc. In other embodiments, the transceiver 700 transmits and receives signaling over a wireline medium, e.g., twisted-pair cable, coaxial cable, optical fiber, etc. Specific processing systems and/or transceivers may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device.
It should be appreciated that one or more steps of the embodiment methods provided herein may be performed by corresponding units or modules. For example, a signal may be transmitted by a transmitting unit or a transmitting module. A signal may be received by a receiving unit or a receiving module. A signal may be processed by a processing unit or a processing module. The respective units/modules may be hardware, software, or a combination thereof. For instance, one or more of the units/modules may be an integrated circuit, such as field programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs).
While this disclosure has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the disclosure, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application is a continuation of International Application No. PCT/US19/33387 filed on May 21, 2019 and entitled “Access Technology Agnostic Service Network Authentication”, which claims the benefit of U.S. Provisional application No. 62/674,821, filed on May 22, 2018 and entitled “Access Technology Agnostic Service Network Authentication”, which applications are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62674821 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/033387 | May 2019 | US |
Child | 17079228 | US |