This application claims priority to and the benefit of Great Britain Application No. 1108105.6 filed May 16, 2011.
The present invention relates to accessing a base station and in particular to controlling access to a cell served by a base station.
As will be familiar to a person skilled in the art, a base station is the unit which provides a user equipment such as a mobile phone or computer with access to a wireless cellular network such as a network operating according to both 3G and 4G standards, the base station being the first stage up from the user equipment in the cellular hierarchy, i.e. the unit with which the user equipment immediately communicates via a wireless connection (without an intermediary station). According to 3GPP terminology, a base station is sometimes referred to as a “node B”, but the more generic term “base station” will be maintained herein for convenience.
A femtocell is a type of cellular base station designed to operate over a relatively short range compared to a conventional base station. Short-range dedicated base stations such as femtocells have become more viable in recent years due to reduction in the cost and size of the electronics required to implement a cellular base station. The idea is to provide a dedicated base station to cover a relatively small geographical area which is expected to experience a high density of users and/or regular usage. For example femtocells are typically intended to be deployed in a small office, shop, café or even the home. Other types of short range base stations include picocells or microcells, typically covering an intermediately sized area; although the scope of femtocells is increasing as they are encroaching on what have been traditionally called picocells and microcells, supporting large offices, shopping malls and outdoor deployments. The scope of femtocells is increasing due to increased functionality over picocells and microcells. In some wireless standards, femtocells combine the functionality of several wireless network elements, for example in UMTS a femtocell combines the functionality of a base station and radio network controller (RNC). Also, it is typical for a femtocell to be installed by the end user, not the network operator, and extra functionality is required to support this, such as the ability to locate (sniff) neighboring base stations. This is in contrast to picocells to and microcells that are installed by a network operator and only provide base station functionality.
A feature of femtocells which may be different from other types of base-stations is their support for different types of access modes: open, closed and hybrid. The access mode defines which users are allowed to access the femtocell. If the femtocell implements an open access mode then the femtocell is available to all UEs which attempt to access the femtocell. If the femtocell implements a closed access mode then the femtocell is only available to UEs of users who are members of a particular closed subscriber group (CSG) associated with the closed access mode. If the femtocell implements a hybrid access mode then the femtocell is available to all UEs but a preferential service is given to those UEs of users who are members of the particular CSG. Femtocells are configured into one of these access modes.
The inventors have realized that the access mode of a cell served by a femtocell, or other base station, may be controlled in order to improve the performance of the femtocell. In particular, the access mode of a cell served by a base station may be dynamically controlled (e.g. in real-time) based on the current operating conditions in the cell, or cells, served by the base station. By controlling the access mode of a cell, the users which are allowed to access the cell can be controlled.
According to a first aspect of the invention there is provided a method of to controlling access to a base station, the base station being arranged to serve a zone, said zone comprising a first cell implementing an access mode as one of: (i) an open access mode, (ii) a hybrid access mode, and (iii) a closed access mode, the method comprising: determining operating conditions of the zone served by the base station; and controlling the access mode of the first cell based on the determined operating conditions of the zone served by the base station.
Advantageously, the method can allow the access mode of the first cell to be configured based on the current operating conditions of the zone of the base station. By configuring the access mode of the first cell in accordance with the current operating conditions, the performance of the base station may be improved. The performance improvement may relate to the throughput and/or quality of service (QOS) achieved by a user equipment (UE) or by multiple UEs accessing the base station, or by UEs accessing neighboring base stations. The zone may represent one or more cells which are served by the base station.
In one embodiment the base station is a multi-mode base station, the zone further comprising a second cell implementing an access mode as one of: (i) an open access mode, (ii) a hybrid access mode, and (iii) a closed access mode. For example, the multi-mode base station may be a dual-mode femtocell, which is a base-station operating as two cells. The two cells could be operating with different radio access technologies (RAT), or the same RATs, but in different frequency sub-bands. In a dual-cell femtocell a joint radio resource management (RRM) entity may be capable of controlling the access mode configuration of each cell to thereby improve the performance of both cells. The RRM entity can take into consideration the operating conditions of both of the cells when controlling the access modes of the cells. In this way the RRM entity provides global control of the access modes of the cells, rather than considering each cell separately. Global control of the cells, such as this, may improve the overall performance of the dual-mode femtocell.
Where the base station is a multi-mode base station the method may further comprise controlling the access mode of the second cell based on the determined operating conditions of the zone served by the base station. The first and second cells to may operate using different radio access technologies or operate in different frequency sub bands. The access mode of the first cell may be controlled based on the access mode of the second cell. In this way the access modes of the first and second cells may be controlled in dependence upon each other to provide a global control of the access modes of the cells of a multi-mode base station.
The step of controlling the access mode of the first cell may comprise dynamically adjusting the access mode of the first cell, e.g. based on the current operating conditions of the zone served by the base station.
The step of determining operating conditions of the zone may comprise monitoring activity in the zone. In this case, the step of controlling the access mode of the first cell may comprise changing the access mode of the first cell from the closed access mode to the hybrid access mode or the open access mode if the monitored activity in the zone indicates that the level of activity of a user group associated with the closed access mode of the first cell is below a threshold activity level. Furthermore, in this case, the step of controlling the access mode of the first cell may comprise changing the access mode of the first cell to the closed access mode from the hybrid access mode or the open access mode if the monitored activity in the zone indicates that the level of activity of a user group associated with the closed access mode of the first cell is above a threshold activity level.
In some embodiments the first cell implements the closed access mode and the step of controlling the access mode of the first cell comprises dynamically adjusting the closed access mode to thereby dynamically adjust a set of users which are associated with the closed access mode and are thereby allowed to access the first cell.
The step of determining operating conditions of the zone may comprise monitoring loading in the zone. Furthermore, the step of determining operating conditions of the zone may comprise monitoring loading in a cell of a neighboring base station, said cell of the neighboring base station operating in the same frequency band as at least part of the zone served by the base station. The step of controlling the access mode of the first cell may comprise changing the access mode of the first cell to the open access mode or the hybrid access mode if the monitored loading in the cell of the neighboring base station is above a threshold load.
The method may further comprise monitoring a power level in a cell of a neighboring base station, said cell of the neighboring base station operating in the same frequency band as the first cell, wherein if the monitored power level is below a threshold power level then said controlling the access mode of the first cell may comprise setting the access mode of the first cell to the open access mode or the hybrid access mode. If the monitored power level is above the threshold power level then said controlling the access mode of the first cell may comprise setting the access mode of the first cell to the closed access mode.
According to a second aspect of the invention there is provided a base station arranged to serve a zone, said zone comprising a first cell implementing an access mode as one of: (i) an open access mode, (ii) a hybrid access mode, and (iii) a closed access mode, and the base station comprising a radio resource manager for controlling access to the base station, the radio resource manager being configured to perform operations in accordance with any of the methods described herein. The base station may be a dual-mode femtocell.
According to a third aspect of the invention there is provided a computer program product for controlling access to a base station, the base station being arranged to serve a zone, said zone comprising a first cell implementing an access mode as one of: (i) an open access mode, (ii) a hybrid access mode, and (iii) a closed access mode, and the computer program product being embodied on a non-transient computer-readable medium and configured so as when executed on a processor of the base station to perform the operations of any of the methods described herein.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views. For a better understanding of the present invention and to show how the same may be put into effect, reference will now be made, by way of example, to the following drawings in which:
Preferred embodiments of the invention will now be described by way of example only. The preferred embodiments described below are based on improvements which could be made with a joint Radio Resource Management (RRM) control of the access modes applied to a dual-mode femtocell. In other embodiments other base stations may be implemented.
Furthermore, the femtocell 4 is configured as a dual-mode femtocell. A dual-mode femtocell is a base station serving two logical cells 4a and 4b. These cells 4a, 4b are configured to operate according to different radio access technologies (RATs), i.e. different telecommunication standards, and/or in different frequency sub-bands. For example one of the dual cells may be arranged to operate according to a 3G standard such as a Universal Mobile Telecommunications System (UMTS) standard and the other of the dual cells may be arranged to operate according to a 4G standard such as a Long Term Evolution (LTE) standard. The reach of the cells 4a, 4b does not necessarily extend across exactly the same geographical area. Range is highly dependent on RAT and frequency, e.g. cell 4a could be twice the size of cell 4b. The arrangement shown in
The invention could apply equally to any multi-mode base station (having at to least two cells), but by way of illustration the following embodiments are described in relation to a dual-mode femtocell 4.
The UEs 2A1, 2A2, 2B1 and 2B2 are arranged to be able to request admission to a particular cell, and when they do so, e.g. requesting admission to cell 4a, to request a particular quality of service. For example they could request to be provided with at least a certain uplink or downlink throughput, or to be provided with no more than a certain uplink or downlink latency.
Each of the base stations (4 and 6) comprises a radio resource management (RRM) entity (or “radio resource manager”) arranged to receive admission requests from the UEs, if the UEs decide to select it, and decide whether to admit the UEs to the requested cell. The RRM entity of the dual mode femtocell 4 is a joint RRM entity for the two cells 4a and 4b. In this way the RRM entity for the dual mode femtocell 4 can manage the resources of the two cells 4a and 4b based on information relating to both of the cells (rather than based on information relating to just one of the cells).
The inventors have realized that in a multi-mode base station, such as a dual mode femtocell, if the different cells of the multi-mode base station operate using independent RRM entities, this can lead to inefficient use of base-station resources. In particular, if the access modes of the cells are configured inefficiently then a scenario may occur in which one of the cells is heavily loaded while another of the cells is lightly loaded. An imbalance such as this in the loading of the cells of a multi-mode base station may result in a poor Quality of Service (QOS) being provided to at least some of the UEs in the cells.
The inventors have further realized that it may be advantageous to control the access modes of the cells of a multi-mode base station based on the operating conditions of the cells since this may lead to an improved QOS for communication between the UEs and the multi-mode base station. This can be achieved using a joint RRM in a multi-mode base station which manages the resources for the plurality of cells of the multi-mode base station. In this way, a joint RRM can, advantageously, take account of operating conditions of all of the cells of the multi-mode base station to when controlling the access mode of one of the cells.
At a higher level of the cellular hierarchy the network may comprise one or more higher-level controller stations, which may be arranged to perform various further management functions. However, the present invention is concerned with radio resource management at the level of a multi-mode base station.
The users associated with the UEs may be members of closed subscriber groups (CSGs). More specifically, it is the IMSI (SIM card identifier) that is the member of the CSG. The IMSI identifies the user associated with the UE. The user may move the SIM card to a different UE device and still be a member of the CSG. In the example scenario shown in
With reference to the flow chart shown in
In step S202 the operating conditions of the cells 4a and 4b are determined This may occur before or after the UEs are admitted to the cells.
In step S204 the access modes of the cells 4a and 4b are controlled based on the determined operating conditions. The joint RRM entity in the dual-mode femtocell 4 performs steps S202 and S204. For example, the access mode of the cells 4a and 4b may be dynamically adjusted based on the current operating conditions of the cells 4a and 4b. This allows the access modes of the cells 4a and 4b to be adapted to suit the current operating conditions in the zone (i.e. the network coverage area) of the dual-mode femtocell 4. By controlling the access modes of the cells 4a and 4b to suit the operating conditions experienced by the femtocell 4 the performance of the femtocell 4 can be improved. The improvements could be related to the throughput and QOS achieved by one of the UEs, by all of the UEs served by the femtocell 4 and/or UEs served by the neighboring base station 6.
There are described below some example scenarios in which the method described above can improve the performance within the system shown in
In a first example scenario, the joint RRM entity of the dual-mode femtocell 4 could take a simple approach of dynamically adjusting the closed access mode of each cell (4a and 4b) to provide different levels of service for different user groups. For example, the femtocell 4 may be installed by a company to provide an improved service for its employees and the company may want to ensure that a select group of employees receive the best possible level of service. This could be achieved in two similar, but slightly different implementations, as described below.
In a first implementation, all of the employees are added into the user group CSGA, while only the select group of employees are also added into the user group CSGB. In the dual-mode femtocell 4, the cell 4a is configured to operate in a closed access mode for CSGA (such that all of the employees can access cell 4a), while the cell 4b is configured to operate in a closed access mode for CSGB (such that only the select group of employees can access cell 4b). In the example shown in
In a second implementation, the select group of employees are added to the user group CSGB and all other employees (but not the select group of employees) are added to CSGA. In the dual-mode femtocell, cell 4b is configured to operate in a closed access mode for CSGB (such that only the select group of employees can access cell 4b), while cell 4a is configured to operate in a closed access mode allowing access for UEs of users of both CSGA and CSGB (such that all of the employees can access cell 4a). In the example shown in
The method may be expanded to a closed/hybrid access scenario, where CSG members are the select group of employees and non-CSG members are all other users. The joint RRM of the dual-mode femtocell 4 can dynamically adjust whether the cells 4a and 4b operate in closed access modes or hybrid access modes based on the activity of the CSG members. For example, if the activity of the select group of employees is low (e.g. below a threshold activity level) then the access modes of the cells 4a and 4b may be controlled to both be the hybrid access mode. In this way UEs associated with users who are not in the select group of users can access both cells 4a and 4b, while the UEs of the select group of users are provided a preferential service to from the cells 4a and 4b when they do communicate with the cells. However, if the activity of the select group of employees is high (e.g. above the threshold activity level) then the access mode of cell 4b may be controlled to be a closed access mode allowing only UEs of the select group of users to access the cell 4b, whereas the access mode of the cell 4a may be controlled to be the hybrid access mode. In this way only UEs associated with the select group of users (e.g. UEs 2B1 and 2B2 in
In a second example scenario, the joint RRM of the dual-mode femtocell 4 could take a more complex approach to adjusting the access modes of the cells 4a and 4b using the interference and loading levels of the cells 4a and 4b, and of the cell 6a of the neighboring base station 6. The interference and loading levels of other neighboring cells (not shown in
The joint RRM entity in the dual-mode femtocell 4 can use sniffing functionality to determine the received signal powers P_A and P_B from neighboring cells in the respective frequency sub-bands A and B. The joint RRM entity will then make a decision on whether cells 4a and 4b should operate in the open access mode, a hybrid access mode or a closed access mode as described below.
In a first step, it is determined whether at least one of the neighboring cells has to a poor power level. In other words, it is determined whether the signal strength of signals being transmitted within a neighboring cell is below a threshold. For example, there may be a neighboring cell A operating in frequency sub-band A which currently has a power level of P_A and there may be a neighboring cell B operating in frequency sub-band B which currently has a power level of P_B. The power level P_A is compared to a threshold power level “threshA”, and the power level P_B is compared to a threshold power level “threshB”. In this way it can be determined whether P_A<threshA or P_B<threshB, to thereby determine whether at least one of the neighboring cells has a poor power level. The thresholds (threshA and threshB) may or may not be equal to each other. For example, if the neighboring cells implement different RATs then the thresholds threshA and threshB indicating what constitutes a poor power level may be different for the different neighboring cells.
If it is determined that at least one of the neighboring cells has a poor power level then the joint RRM entity of the dual-mode femtocell 4 can determine that there is a coverage gap (hole) in the network which it could help fill by setting at least one of its cells (in the relevant frequency band) to a hybrid or open access mode. The joint RRM entity will preferably control the access mode of the cell which is in the same sub-band as the neighboring cell with the “worst” power level to be either a hybrid or open access mode. This may increase the number of UEs which can access the cell (as compared to operating the cell in the closed access mode), thereby providing access to more UEs in a frequency sub-band for which the power level in neighboring cells is low. This can be advantageous in terms of lowering the interference experienced by the UEs in the cell. As an example, the neighboring cell with the “worst” power level can be found by determining the maximum of (threshA−P_A) and (threshB−P_B), in other words by determining the cell with a power level which is furthest below its respective threshold level. For example, if it is found that the neighboring cell A operating in frequency sub-band A has the worst power level then the access mode of the cell 4a (which is also operating in frequency sub-band A) is set to a hybrid or open access mode, thereby allowing a greater number of UEs to access the cell 4a (as compared to operating the cell 4a in a closed access to mode). Selecting the cell 4a for making the access mode hybrid or open on the basis of the neighboring cell A having the worst power level will help ensure that inter-frequency measurements/handover are not likely to be required by “visiting UEs” from neighboring cells, thereby reducing the signalling interaction between the femtocell 4 and the cells of the neighboring base stations (e.g. cell 6a). Furthermore, this ensures that the cell 4a which is in the hybrid or open access mode is least impacted by interference from the downlink of the neighboring cells (since those neighboring cells in frequency sub-band A have a low power level). This means that the dual-mode femtocell 4 is more likely to have capacity available for visiting UEs.
However, if the neighboring cells do not have a poor power level (i.e. the power levels are above the threshold power levels, that is P_A>threshA and P_B>thresh) then the RRM entity of the dual-mode femtocell 4 may choose not the make the access mode of any of its cells hybrid or open. This ensures that a good level of performance can be provided to the users in the closed subscriber groups associated with the closed access modes of the cells of the dual-mode femtocell 4.
The access modes of the cells 4a and 4b may be initially assigned by the joint RRM entity of the dual-mode femtocell 4, as described above. However, the initial assignment may be subsequently modified based on loading, or other operating conditions of the cells 4a and 4b which may change. The operating conditions of the cells 4a and 4b are affected by the conditions on neighboring cells as described above. For example the operating conditions of the cells 4a and 4b are affected by the power level in neighboring cells operating in the same frequency sub-bands as the cells 4a and 4b. For example, during the operation of the dual-mode femtocell 4 the RRM entity of the dual-mode femtocell 4 may detect that the available bandwidth in cell 4b has reached a low-resource available threshold. The cell 4b may implement a Radio Access Technology RATB whereas the cell 4a may implement a Radio Access Technology RATA. It may be that RATB has a higher data throughput than RATA. In this case, the RRM entity performs an inter-RAT handover to move non-CSG UEs (e.g. UEs 2A1 and 2A2) to cell 4a. If cell 4b is still highly occupied, the RRM entity may dynamically adjust the access mode of the cell 4b to be a closed access mode in to which only UEs of members of the CSGB can access the cell 4b. In this way the bandwidth available for users in CSGB (e.g. users of UEs 2B1 and 2B2) can be preserved. At some later point in time, when the loading in the dual-mode femtocell 4 reduces, the access mode of the cell 4b could be returned to either an open or hybrid access mode, thereby allowing other UEs (e.g. UEs 2A1 and 2A2) to access the cell 4b as well as the cell 4a.
The blocks and method steps described herein, e.g. as shown in
While this invention has been particularly shown and described with reference to preferred embodiments, it will be understood to those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as defined by the appendant claims.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. In addition, the various features, elements, and embodiments described herein may be claimed or combined in any combination or arrangement.
Number | Date | Country | Kind |
---|---|---|---|
1108105.6 | May 2011 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4380046 | Frosch et al. | Apr 1983 | A |
4574345 | Konesky | Mar 1986 | A |
4589066 | Lam et al. | May 1986 | A |
4601031 | Walker et al. | Jul 1986 | A |
4603404 | Yamauchi et al. | Jul 1986 | A |
4622632 | Tanimoto et al. | Nov 1986 | A |
4698746 | Goldstein | Oct 1987 | A |
4720780 | Dolecek | Jan 1988 | A |
4736291 | Jennings et al. | Apr 1988 | A |
4814970 | Barbagelata et al. | Mar 1989 | A |
4825359 | Ohkami et al. | Apr 1989 | A |
4858233 | Dyson et al. | Aug 1989 | A |
4890279 | Lubarsky | Dec 1989 | A |
4914653 | Bishop et al. | Apr 1990 | A |
4937741 | Harper et al. | Jun 1990 | A |
4943912 | Aoyama et al. | Jul 1990 | A |
4967326 | May | Oct 1990 | A |
4974146 | Works et al. | Nov 1990 | A |
4974190 | Curtis | Nov 1990 | A |
4992933 | Taylor | Feb 1991 | A |
5036453 | Renner et al. | Jul 1991 | A |
5038386 | Li | Aug 1991 | A |
5065308 | Evans | Nov 1991 | A |
5109329 | Strelioff | Apr 1992 | A |
5152000 | Hillis | Sep 1992 | A |
5193175 | Cutts et al. | Mar 1993 | A |
5233615 | Goetz | Aug 1993 | A |
5239641 | Horst | Aug 1993 | A |
5241491 | Carlstedt | Aug 1993 | A |
5247694 | Dahl | Sep 1993 | A |
5253308 | Johnson | Oct 1993 | A |
5265207 | Zak et al. | Nov 1993 | A |
5280584 | Caesar et al. | Jan 1994 | A |
5384697 | Pascucci | Jan 1995 | A |
5386495 | Wong et al. | Jan 1995 | A |
5408676 | Mori | Apr 1995 | A |
5410723 | Schmidt et al. | Apr 1995 | A |
5410727 | Jaffe et al. | Apr 1995 | A |
5473731 | Seligson | Dec 1995 | A |
5555548 | Iwai et al. | Sep 1996 | A |
5557751 | Banman et al. | Sep 1996 | A |
5570045 | Erdal et al. | Oct 1996 | A |
5600784 | Bissett et al. | Feb 1997 | A |
5692139 | Slavenburg | Nov 1997 | A |
5719445 | McClure | Feb 1998 | A |
5734921 | Dapp et al. | Mar 1998 | A |
5752067 | Wilkinson et al. | May 1998 | A |
5761514 | Aizikowitz et al. | Jun 1998 | A |
5790879 | Wu | Aug 1998 | A |
5795797 | Chester et al. | Aug 1998 | A |
5796937 | Kizuka | Aug 1998 | A |
5802561 | Fava et al. | Sep 1998 | A |
5805839 | Singhal | Sep 1998 | A |
5826033 | Hayashi et al. | Oct 1998 | A |
5826049 | Ogata et al. | Oct 1998 | A |
5826054 | Jacobs et al. | Oct 1998 | A |
5845060 | Vrba et al. | Dec 1998 | A |
5860008 | Bradley | Jan 1999 | A |
5861761 | Kean | Jan 1999 | A |
5864706 | Kurokawa et al. | Jan 1999 | A |
5923615 | Leach et al. | Jul 1999 | A |
5926640 | Mason et al. | Jul 1999 | A |
5946484 | Brandes | Aug 1999 | A |
5951664 | Lambrecht et al. | Sep 1999 | A |
5959995 | Wicki et al. | Sep 1999 | A |
5963609 | Huang | Oct 1999 | A |
6023757 | Nishimoto et al. | Feb 2000 | A |
6044451 | Slavenburg | Mar 2000 | A |
6052752 | Kwon | Apr 2000 | A |
6055285 | Alston | Apr 2000 | A |
6069490 | Ochotta et al. | May 2000 | A |
6101599 | Wright et al. | Aug 2000 | A |
6122677 | Porterfield | Sep 2000 | A |
6167502 | Pechanek et al. | Dec 2000 | A |
6173386 | Key et al. | Jan 2001 | B1 |
6175665 | Sawada | Jan 2001 | B1 |
6199093 | Yokoya | Mar 2001 | B1 |
6317820 | Shiell et al. | Nov 2001 | B1 |
6345046 | Tanaka | Feb 2002 | B1 |
6360259 | Bradley | Mar 2002 | B1 |
6381293 | Lee et al. | Apr 2002 | B1 |
6381461 | Besson et al. | Apr 2002 | B1 |
6393026 | Irwin | May 2002 | B1 |
6408402 | Norman | Jun 2002 | B1 |
6424870 | Maeda et al. | Jul 2002 | B1 |
6448910 | Lu | Sep 2002 | B1 |
6499096 | Suzuki | Dec 2002 | B1 |
6499097 | Tremblay et al. | Dec 2002 | B2 |
6567417 | Kalkunte et al. | May 2003 | B2 |
6615339 | Ito et al. | Sep 2003 | B1 |
6631439 | Saulsbury et al. | Oct 2003 | B2 |
6681341 | Fredenburg et al. | Jan 2004 | B1 |
6775766 | Revilla et al. | Aug 2004 | B2 |
6795422 | Ohsuge | Sep 2004 | B2 |
6829296 | Troulis et al. | Dec 2004 | B1 |
6892293 | Sachs et al. | May 2005 | B2 |
6928500 | Ramanujan et al. | Aug 2005 | B1 |
6952181 | Karr et al. | Oct 2005 | B2 |
6961782 | Denneau et al. | Nov 2005 | B1 |
6996157 | Ohsuge | Feb 2006 | B2 |
7103008 | Greenblat et al. | Sep 2006 | B2 |
7161978 | Lu et al. | Jan 2007 | B2 |
7237055 | Rupp | Jun 2007 | B1 |
7302552 | Guffens et al. | Nov 2007 | B2 |
7340017 | Banerjee | Mar 2008 | B1 |
7342414 | DeHon | Mar 2008 | B2 |
7383422 | Kageyama et al. | Jun 2008 | B2 |
7428721 | Rohe et al. | Sep 2008 | B2 |
7549081 | Robbins et al. | Jun 2009 | B2 |
7672836 | Lee et al. | Mar 2010 | B2 |
7712067 | Fung et al. | May 2010 | B1 |
7801029 | Wrenn et al. | Sep 2010 | B2 |
7804719 | Chirania et al. | Sep 2010 | B1 |
8032142 | Carter et al. | Oct 2011 | B2 |
20020045433 | Vihriala | Apr 2002 | A1 |
20020069345 | Mohamed et al. | Jun 2002 | A1 |
20020174318 | Stuttard et al. | Nov 2002 | A1 |
20020198606 | Satou | Dec 2002 | A1 |
20030154358 | Seong | Aug 2003 | A1 |
20030235241 | Tamura | Dec 2003 | A1 |
20040078548 | Claydon et al. | Apr 2004 | A1 |
20040083409 | Rozenblit et al. | Apr 2004 | A1 |
20040139466 | Sharma et al. | Jul 2004 | A1 |
20040150422 | Wong et al. | Aug 2004 | A1 |
20040198386 | Dupray | Oct 2004 | A1 |
20050083840 | Wilson | Apr 2005 | A1 |
20050114565 | Gonzalez et al. | May 2005 | A1 |
20050124344 | Laroia et al. | Jun 2005 | A1 |
20050163248 | Berangi et al. | Jul 2005 | A1 |
20050250502 | Laroia et al. | Nov 2005 | A1 |
20050282500 | Wang et al. | Dec 2005 | A1 |
20060087323 | Furse et al. | Apr 2006 | A1 |
20060089154 | Laroia et al. | Apr 2006 | A1 |
20060251046 | Fujiwara | Nov 2006 | A1 |
20060268962 | Cairns et al. | Nov 2006 | A1 |
20070036251 | Jelonnek et al. | Feb 2007 | A1 |
20070127556 | Sato | Jun 2007 | A1 |
20070173255 | Tebbit et al. | Jul 2007 | A1 |
20070183427 | Nylander et al. | Aug 2007 | A1 |
20070220522 | Coene et al. | Sep 2007 | A1 |
20070220586 | Salazar | Sep 2007 | A1 |
20070248191 | Pettersson | Oct 2007 | A1 |
20070254620 | Lindqvist et al. | Nov 2007 | A1 |
20070263544 | Yamanaka et al. | Nov 2007 | A1 |
20070270151 | Claussen et al. | Nov 2007 | A1 |
20080146154 | Claussen et al. | Jun 2008 | A1 |
20080151832 | Iwasaki | Jun 2008 | A1 |
20090003263 | Foster et al. | Jan 2009 | A1 |
20090042593 | Yavuz et al. | Feb 2009 | A1 |
20090046665 | Robson et al. | Feb 2009 | A1 |
20090070694 | Ore et al. | Mar 2009 | A1 |
20090080550 | Kushioka | Mar 2009 | A1 |
20090092122 | Czaja et al. | Apr 2009 | A1 |
20090097452 | Gogic | Apr 2009 | A1 |
20090098871 | Gogic | Apr 2009 | A1 |
20090111503 | Pedersen et al. | Apr 2009 | A1 |
20090150420 | Towner | Jun 2009 | A1 |
20090163216 | Hoang et al. | Jun 2009 | A1 |
20090168726 | Thalanany et al. | Jul 2009 | A1 |
20090168907 | Mohanty et al. | Jul 2009 | A1 |
20090196253 | Semper | Aug 2009 | A1 |
20090215390 | Ku et al. | Aug 2009 | A1 |
20090252200 | Dohler et al. | Oct 2009 | A1 |
20090264077 | Damnjanovic | Oct 2009 | A1 |
20090296635 | Hui et al. | Dec 2009 | A1 |
20090325634 | Bienas et al. | Dec 2009 | A1 |
20100035556 | Cai et al. | Feb 2010 | A1 |
20100046455 | Wentink et al. | Feb 2010 | A1 |
20100054237 | Han et al. | Mar 2010 | A1 |
20100087148 | Srinivasan et al. | Apr 2010 | A1 |
20100105345 | Thampi et al. | Apr 2010 | A1 |
20100111070 | Hsu | May 2010 | A1 |
20100157906 | Yang et al. | Jun 2010 | A1 |
20100195525 | Eerolainen | Aug 2010 | A1 |
20100215032 | Jalloul et al. | Aug 2010 | A1 |
20100216403 | Harrang | Aug 2010 | A1 |
20100216485 | Hoole | Aug 2010 | A1 |
20100222068 | Gaal et al. | Sep 2010 | A1 |
20100234061 | Khandekar et al. | Sep 2010 | A1 |
20100248646 | Yamazaki et al. | Sep 2010 | A1 |
20100273481 | Meshkati et al. | Oct 2010 | A1 |
20100279689 | Tinnakornsrisuphap et al. | Nov 2010 | A1 |
20110002426 | Muirhead | Jan 2011 | A1 |
20110122834 | Walker et al. | May 2011 | A1 |
20110130143 | Mori et al. | Jun 2011 | A1 |
20110170494 | Kim et al. | Jul 2011 | A1 |
20130021933 | Kovvali et al. | Jan 2013 | A1 |
20130102313 | Tinnakornsrisuphap et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
101754351 | Jun 2010 | CN |
101873688 | Oct 2010 | CN |
0 180 212 | May 1986 | EP |
492174 | Jul 1992 | EP |
0 877 533 | Nov 1998 | EP |
0 973 099 | Jan 2000 | EP |
0 977 355 | Feb 2000 | EP |
1054523 | Nov 2000 | EP |
1 134 908 | Sep 2001 | EP |
1418776 | May 2004 | EP |
1 946 506 | Jul 2008 | EP |
1876854 | Sep 2008 | EP |
2 071 738 | Jun 2009 | EP |
2 326 118 | May 2011 | EP |
2 304 495 | Mar 1997 | GB |
2 370 380 | Jun 2002 | GB |
2398651 | Aug 2004 | GB |
2 414 896 | Dec 2005 | GB |
2391083 | Mar 2006 | GB |
2 447 439 | Sep 2008 | GB |
2463074 | Mar 2010 | GB |
61123968 | Jun 1986 | JP |
A-8-297652 | Nov 1996 | JP |
11272645 | Oct 1999 | JP |
2001-034471 | Feb 2001 | JP |
2004-525439 | Aug 2004 | JP |
2006-500673 | Jan 2006 | JP |
9004235 | Apr 1990 | WO |
9111770 | Aug 1991 | WO |
97026593 | Jul 1997 | WO |
9850854 | Nov 1998 | WO |
0102960 | Jan 2001 | WO |
0250624 | Jun 2002 | WO |
0250700 | Jun 2002 | WO |
03001697 | Jan 2003 | WO |
2004029796 | Apr 2004 | WO |
2004034251 | Apr 2004 | WO |
2004102989 | Nov 2004 | WO |
2005048491 | May 2005 | WO |
2006059172 | Jun 2006 | WO |
2007021139 | Feb 2007 | WO |
2007054127 | May 2007 | WO |
2007056733 | May 2007 | WO |
2007126351 | Nov 2007 | WO |
2008030934 | Mar 2008 | WO |
2008090154 | Jul 2008 | WO |
2008099340 | Aug 2008 | WO |
2008155732 | Dec 2008 | WO |
2009054205 | Apr 2009 | WO |
2010072127 | Jul 2010 | WO |
2010126155 | Nov 2010 | WO |
Entry |
---|
“Details on specification aspects for UL ICIC”, Qualcomm Europe, May 5-May 9, 2008, 2 pages. |
3GPP TS 36.331 v9.2.0 3RD Generation Partnership Project: Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Acces (E-UTRA); Radio Resource Control (RRC) Protocol specification (Release 9) Mar. 2010, pp. 1-248. |
Alcatel-Lucent, et al., “Congested H(e)NB Hybrid Access Mode cell”, 2009, 3GPP Draft; R3-091053-Congested H(e)Nb, 3RD Generation Partnership Project (3GPP), Apr. 29, 2009, 4 pages. |
Motorola, “Text proposal for TR 36.9xx: Reducing HeNB interference by dynamically changing HeNB access mode”, 2009, 3GPP Draft: R4-094688, Apr. 29, 2009, 2 pages. |
MIPS, MIPS32 Architecture for Programmers, 2001, MIPS Technologies, vol. 2, pp. 1-253. |
Pechanek, et al. ManArray Processor Interconnection Network: An Introduction, Euro-Par'99, LNCS 1685, pp. 761-765, 1999. |
Waddington, T., Decompilation of “hello world” on Pentium and SPARC, 4 pages, [retrieved on Aug. 3, 2012]. Retrieved from the Internet :<URL: http://web.archive.org/web/20050311141936/http://boomerang.sourceforge.net/helloworld.html>. |
Balakrishnan, et al., CodeSurfer/x86—A Platform for Analyzing x86 Executables, Springer-Verlag Berlin Heidelber, 2005, [retrieved on Dec. 30, 2011], retrieved from the internet:<URL:http://www.springerlink.com/content/uneu2a95u9nvb20v/>. |
Miecznikowski, J., et al., “Decompiling Java Using Stage Encapsulation”, Proceedings of the Eighth Working Conference on Reverse Engineering, Oct. 2-5, 2001. |
Panesar, G. et al., “Deterministic Parallel Processing”, Proceedings of the 1st Microgrid Workshop, Jul. 2005. |
Towner, D. et al., “Debugging and Verification of Parallel Systems—the picoChip way”, 2004. |
picoChip, “PC7203 Development Platform Preliminary Product Brief”, Jul. 2007. |
Ennals, R. et al., “Task Partitioning for Multi-core Network Processors”, 2005. |
Rabideau, Daniel J., et al., “Simulated Annealing for Mapping DSP Algorithms on to Multiprocessors,” Signals, Systems and Computers, 1993 Conference Record of the Twenty-Seventh Asilomar Conference, Nov. 1-3, 1993, IEEE, pp. 668-672. |
Nanda, Ashwini K., et al., “Mapping Applications onto a Cache Coherent Multiprocessor,” Conference on High Performance Networking and Computing, Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, 1992, IEEE, pp. 368-377. |
Lin, Lian-Yu, et al., Communication-driven Task Binding for Multiprocessor with Latency Insensitive Network-on-Chip, Design Automation Conference, 2005 Proceedings of th ASP-DAC, Jan. 18/21, 2005, IEEE, pp. 39-44. |
Holger Claussen, Bell Laboratories, Alcatel-Lucent; “Performance of Macro and Co-Channel Femtocells in a Hierarchical Cell Structure”; The 18th Annual IEEE Internation Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07); Sep. 1, 2007; pp. 1-5, XP031168593, ISBN: 978-1-4244-1143-6; Swindon, United Kingdom. |
Shiroshita, T., et al.: “Reliable data distribution middleware for large-scale massive data replication” Parallel and Distributed Information Systems, 1993, Fourth International Conference on Miami Beach, FL, USA Dec. 18-20, 1996, Los Alamitos, CA, USA IEEE Comput. Soc, US, Dec. 18, 1996, pp. 196-205m XP010213188 ISBN: 0-8186-7475-X. |
Levine B. N. et al.: “A comparison of known classes of reliable multicast protocols” Netowrk Protocols, 1996 International Conference on Columbus, OH, USA Oct. 29-Nov. 1, 1996, Los Alamitos, CA, USA IEEE Comput. Soc. US Oct. 29, 1996, pp. 112-121, XP010204425 ISBN: 0-8186-7453-9. |
Ishijima, et al., A Semi-Synchronous Circuit Design Method by Clock Tree Modification IEEE Trans. Fundamentals, vol. E85-A, No. 12 Dec. 2002. |
Greenstreet, et al., Implementing a STARI Chip, IEEE 1995. |
Hierarchical multiprocessor organizations; J. Archer Harris; David R. Smith; International Symposium on computer Architecture; Proceedings of the 4th annual symposium on Computer architecture pp. 41-48 Year of Publication 1977. |
“Hierarchical Interconnection Networks for Multicomputer systems” Sivarama P. Dandamudi, et al. IEEE Transactions on Computers archive vol. 39, Issue 6 (Jun. 1990) pp. 786-797 Year of Publication: 1990. |
A Cluster Structure as an Interconnection Network for Large Multimicrocomputer Systems Wu, S.B. Liu, M.T. This paper appears in: Transactions on Computers Publication Date: Apr. 1981 vol. C-30, Issue: 4 on pp. 254-264. |
Performance Analysis of Multilevel Bus Networks for Hierarchichal Multiprocessors S.M. Mahmud IEEE Transactions on Computers archive vol. 43, Issue 7 (Jul. 1994) pp. 789-805 Year of Publication: 1994. |
Performance Analysis of a Generalized Class of M-Level Hierarchical Multiprocessor Systems I.O. Mahgoub A.K. Elmagarmid Mar. 1992 (vol. 3, No. 2) pp. 129-138. |
Kober, Rudolf, “The Multiprocessor System SMS 201—Combining 128 Microprocessors to a Powerful Computer,” Sep. 1977, Compcon '77, pp. 225-230. |
Knight, Thomas and Wu, Henry, “A Method for Skew-free Distribution of Digital Signals using Matched Variable Delay Lines,” VLSI Circuits, 1993. Digest of Technicial Papers. 1993 Symposium on, May 1993, pp. 19-21. |
Popli, S.P., et al., “A Reconfigurable VLSI Array for Reliability and Yield Enhancement,” Proceedings of the International Conference on Systolic Arrays, 1988, pp. 631-642. |
John, L.K., et al., “A Dynamically Reconfigurable Interconnect for Array Processors,” IEE Transactions on Very Large Scale Integration (lvsi) Systems, vol. 6, No. 1, Mar. 1998, pp. 150-157. |
Schmidt, U., et al., “Datawave: A Single-Chip Multiprocessor for Video Applications,” IEEE Micro, vol. 11, No. 3, Jun. 1991, pp. 22-25, 88-94. |
Chean, M., et al., “A Taxonomy of Reconfiguration Techniques for Fault-Tolerant Processor Arrays,” Computer, IEEE Computer Society, vol. 23, No. 1, Jan. 1990, pp. 55-69. |
Kamiura, N., et al., “A Repairable and Diagnosable Cellular Array on Multiple-Valued Logic,” Proceedings of the 23rd International Symposium on Multiple-Valued Logic, 1993, pp. 92-97. |
LaForge, 1., “Externally Fault Tolerant Arrays,” Proceedings: International Conference on Wafer Scale Integration, 1989, pp. 365-378. |
Reiner Hartenstein, et al., On Reconfigurable Co-Processing Units, Proceedings of Reconfigurable Architectures Workshop (RAW98), Mar. 30, 1998. |
Schmidt, U., et al., “Data-Driven Array Processor for Video Signal Processing”, IEEE—1990 (USA). |
Muhammad Ali Mazidi, “The80×86 IBM PC and Compatible Computers”, 2003, Prentice Hall, 4th edition, pp. 513-515. |
Shigei, N., et al., “On Efficient Spare Arrangements and an Algorithm with Relocating Spares for Reconfiguring Processor Arrays,” IEICE Transactions on Fundamentals of Electronics, communications and Computer Sciences, vol. E80-A, No. 6, Jun. 1997, pp. 988-995. |
“Interference Management in Femto Cell Deployment”, Mingxi Fan, Mehmet Yavuz, Sanjiv Nanda, Yeliz Tokgoz, Farhad Meshkati, Raul Dangui, Qualcomm Incorporated, Qualcomm 3GPP2 Femto Workshop, Boston, MA, Oct. 15, 2007. |
Number | Date | Country | |
---|---|---|---|
20120295603 A1 | Nov 2012 | US |