The present disclosure is generally directed to accessories for a surface treatment apparatus and more specifically to accessories having a plurality of operational states.
Surface treatment apparatus (e.g., vacuum cleaners) may include multiple accessories capable of improving the performance and/or usability of the surface treatment apparatus when conducting a specific cleaning operation. For example, a vacuum cleaner may include a brush attachment, a crevice attachment, a wand, and/or any other accessory. In some cases, each accessory is coupled to the surface treatment apparatus such that an operator can interchange accessories during operation of the surface cleaning apparatus. However, as the number of accessories increases, it may become more difficult to store the accessories on the surface treatment apparatus.
Features and advantages of the claimed subject matter will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:
The present disclosure is generally directed to a surface treatment apparatus capable of being coupled to one or more accessories, each having at least two operational states. The surface treatment apparatus may include a toggle (e.g., a trigger or a button) that, when actuated, causes an accessory coupled to the surface treatment apparatus to transition between operational states. By positioning the toggle on the surface treatment apparatus (instead of, for example, on the accessory) an operator is able to change the operational state of the accessory without having to directly manipulate (e.g., touch) the accessory. In some instances, this may prevent an operator from having to bend over and directly manipulate the accessory. Further, by utilizing accessories having at least two operational states, it may be possible to carry fewer accessories without having to sacrifice functionality.
A coupling 114 is provided proximate the inlet 104 (e.g., the coupling 114 may extend around at least a portion of the inlet 104) and is configured to couple to, for example, an accessory 110. As shown, an actuator 111 is proximate the coupling (e.g., the coupling 114 may include the actuator 111), which is configured to engage at least a portion of the accessory 110, when coupled to the coupling 114. The actuator 111 transitions between a first state and a second state in response to the actuation of a toggle 116 (e.g., a button or a trigger). The movement of the actuator 111 causes a corresponding movement in the accessory 110. For example, movement of the actuator 111 may cause the accessory 110 to transition from a first operational state to a second operational state such that the performance of the accessory 110 may be changed. Therefore, the accessory 110 may generally be described as transitioning between operational states in response to the actuation of the toggle 116.
The actuator 111 may be positioned at any location relative to the coupling 114. When in an unactuated state, the actuator 111 may extend from the coupling 114 by an extension distance 113 that measures in a range of, for example, 0 millimeters (mm) to 20 mm. In some instances, when in the unactuated state, the actuator 111 may be recessed relative to the coupling 114. When in an actuated state, the extension distance 113 may measure in a range of, for example, 10 mm to 40 mm. The actuator 111 may be spaced apart from a central axis 115 of the inlet 104 by a separation distance 117 measuring in a range of, for example, 10 mm to 40 mm. A maximum width of the actuator 111 may measure in a range of, for example, 1 mm to 20 mm.
The toggle 116 may be configured as latching or non-latching. When the toggle 116 is latching the accessory 110 only transitions between operational states when the toggle 116 is transitioned from a first state (e.g., a first position) to a second state (e.g., a second position). When the toggle 116 is configured as non-latching, the accessory 110 transitions between operational states in response to the toggle 116 transitioning from the first state and the second state and from the second state to the first state.
As shown, the toggle 116 is proximate a handle 118 (e.g., the handle 118 may be on an opposing side of the vacuum chamber 102 relative to the inlet 104). For example, the toggle 116 may be coupled to the handle 118 and/or the vacuum chamber 102. As such, an operator of the surface treatment apparatus 100 is able to change an operational state of the accessory 110 without having to directly manipulate (e.g., touch) the accessory 110. In some instances, a plurality of accessories 110, each having at least two operational states, are configured to cooperate with the coupling 114 and the actuator 111.
The accessory 110 may include, for example, a crevice tool, a brush, and/or a wand. As will be discussed further herein, the accessory 110 has at least two operational states. This may allow a single accessory to perform multiple functions, allowing an operator of the surface treatment apparatus 100 to carry fewer accessories to perform a given cleaning task. In some instances, a plurality of accessories may be coupled to the surface treatment apparatus 100. For example, a wand may fluidly couple a crevice tool to the surface treatment apparatus 100, wherein at least one of the wand or the crevice tool have a plurality of operational states.
The toggle 308 may generally be described as being either latching or non-latching. When the toggle 308 is latching, the accessory 307 transitions between the brush tool 312 and the crevice tool 310 only when the toggle is transitioned, for example, from the first state to the second state. When the toggle 308 is non-latching, the accessory 307 transitions between the brush tool 312 and the crevice tool 310 when the toggle 308 is transitioned, for example, from the first state to the second state and from the second state to the first state.
The accessory 307 is capable of transitioning between a crevice tool 310 and a brush tool 312 in response to the actuation of the toggle 308. As shown, the brush tool 312 slideably engages the crevice tool 310 such that the brush tool 312 is capable of transitioning between a first state (e.g., a stored state) and second state (e.g., a use state). For example, in response to actuating the toggle 308, the brush tool 312 slides along the crevice tool 310 from a proximal end 316 (e.g., an end closest an operator of the handheld surface cleaning apparatus 300) of the crevice tool 310 to a distal end 318 (e.g., an end closest to a surface to be cleaned) of the crevice tool 310 such that the brush tool 312 is capable of engaging (e.g., contacting) a surface 320 (e.g., a floor).
As the first rack 504 moves along the longitudinal axis 506, the first rack 504 causes a first pinion 508 to rotate. The rotation of the first pinion 508 results in a corresponding rotation of a second pinion 510. The rotation of the second pinion 510 causes a second rack 512 to move along the longitudinal axis 506. The movement of the second rack 512 causes the brush tool 312 to slide along the crevice tool 310. Therefore, the second rack 512 is coupled to the brush tool 312 such that the brush tool 312 moves with the second rack 512.
As shown, the first pinion 508 has a diameter that measures less than a diameter of the second pinion 510. In some instances, the first and second pinions 508 and 510 form a unitary body. In other instances, the first and second pinions 508 and 510 are coupled to each other using, for example, an adhesive, a press-fit, a snap-fit, a threaded fastener (e.g., a bolt or a screw), and/or any other suitable form of coupling.
In some instances, the collar 704 slides along the brush 702 in response to the actuation of the toggle 308, which may be either latching or non-latching. For example, when the toggle 308 is transitioned from the first state to the second state, the collar 704 transitions from a first state (e.g., as shown in
As also shown, the translational arm 910 is coupled to the pivot arm 906. For example, the pivot arm 906 may include a slot 912 for receiving a corresponding protrusion 914 extending from the translational arm 910. As the pivot arm 906 pivots about the pivot point 908, the protrusion 914 slides within the slot 912. In some instances, a portion of the pivot arm 906 is received within a track 916. The track 916 may guide the pivot arm 906 as the pivot arm 906 pivots about the pivot point 908.
In some instances, when the collar 704 is in the first state, an engagement surface 918 of the plunger 902 is transverse to the pivot arm 906 and an engagement surface 920 of the translational arm 910 is substantially parallel to the pivot arm 906. When the collar 704 is in the second state, the engagement surface 918 of the plunger 902 may be substantially parallel to the pivot arm 906 and the engagement surface 920 of the translational arm 910 may be transverse to the pivot arm 906. The engagement surfaces 918 and 920 are configured to at least partially engage at least a portion of the pivot arm 906 in response to actuation of the toggle 308.
The plunger 902 may engage (e.g., contact) the actuator 303 of the handheld surface cleaning apparatus 300. The actuator 303 is configured to move along the longitudinal axis 904 in response to, for example, the toggle 308 transitioning from the first state to the second state. As the actuator 303 moves, the actuator 303 causes the plunger 902 to move. In some instances, the plunger 902 may be coupled to the actuator 303 using, for example, an adhesive, a press-fit, a snap-fit, a threaded fastener (e.g., a bolt or a screw), and/or any other suitable form of coupling. In some instances, the actuator 303 is detachably coupled to the plunger 902 such that the accessory 700 can be removed from the handheld surface cleaning apparatus 300. In some instances, a biasing mechanism may be provided that urges the plunger 902 in a direction of the actuator 303. The biasing mechanism may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism. In some instances, the accessory 700 may not include the plunger 902 and the actuator 303 may engage (e.g., contact) the pivot arm 906.
A ratio of a measure of the expanded width 1110 to a measure of the unexpanded width 1112 may be, for example, in a range of 4:3 to 5:1. By way of further example, a ratio of a measure of the expanded width 1110 to a measure of the unexpanded width 1112 may be in a range of 3:2 to 3:1. By way of even further example, a ratio of a measure of the expanded width 1110 to a measure of the unexpanded width 1112 may be 2:1.
In some instances, the crevice tool accessory 1100 includes a hinge 1104 such that at least a portion of the crevice tool accessory 1100 pivots about a pivot axis 1106 of the hinge 1104. By pivoting the crevice tool accessory 1100 about the pivot axis 1106, a length 1108 of the crevice tool accessory 1100 may be reduced. When the length 1108 is reduced, the crevice tool accessory 1100 may expose a secondary air inlet such that debris may still be drawn into the crevice tool accessory 1100. In some instances, when the length 1108 is reduced, an additional accessory may be coupled to the crevice tool accessory 1100.
In some instances, the cleaning head 1401 rotates only in the clockwise direction or only in the counter-clockwise direction. For example, each time the toggle 308 is transitioned from the first state to the second state, the cleaning head 1401 rotates a predetermined distance in only one of the clockwise direction or the counter-clockwise direction (e.g., 45°, 90°, 120°, and/or any other suitable rotation angle). In other instances, the cleaning head 1401 rotates in both the clockwise direction and the counter-clockwise direction.
In some instances, the cleaning head 1401 may be detachable from the accessory 1400 (e.g., as shown in
The actuatable bleed valve 1912 can be disposed along the accessory 1902 at a location between the proximal and distal ends 1904 and 1908. For example, the actuatable bleed valve 1912 can be positioned in a distal end region 1914. The distal end region 1914 can extend from the distal end 1908 to a midpoint point 1916 of the accessory 1902.
The bleed valve 1912 can be transitioned between open and closed states in response to, for example, the actuation of a toggle 1918. As shown, the toggle 1918 is disposed proximate a handle 1920 of the surface cleaning apparatus 1900. As such, a user of the surface cleaning apparatus 1900 can actuate the toggle 1918 while continuing to use the surface cleaning apparatus 1900. The toggle 1918 can be, for example, a button configured to be depressed (e.g., in a direction away from the user) or a trigger configured to be pulled (e.g., in a direction toward the user).
The bleed valve body 2002 is moved relative to the accessory body 2003 of the accessory 1902 in response to a movement of an actuator 2008. The actuator 2008 engages (e.g., contacts) the bleed valve body 2002. The actuator 2008 is configured to move in response to, for example, actuation of the toggle 1918 (
The bleed valve body 2202 is moved relative to the accessory body 2203 of the accessory 1902 in response to a movement of an actuator 2208. The actuator 2008 engages (e.g., contacts) a pivot arm 2210 pivotally coupled to the accessory body 2203. The pivot arm 2210 engages (e.g., contacts) the bleed valve body 2202 such that the bleed valve body 2202 is urged towards the open state in response to the pivotal movement of the pivot arm 2210. The bleed valve body 2202 can be biased towards the closed state using a biasing mechanism 2212. As such, when the actuator 2208 returns to an unactuated state (e.g., comes out of engagement with the pivot arm 2210), the bleed valve body 2202 is urged towards the closed state. The biasing mechanism 2212 may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
The accessory 2402 can also include a scissor mechanism 2412. A first portion of the scissor mechanism 2412 can be coupled to the proximal end region 2408 of the crevice tool 2404 and a second portion of the scissor mechanism 2412 can be coupled to the brush tool 2406. As such, when the scissor mechanism 2412 transitions between a retracted state (e.g., as shown in
The scissor mechanism 2412 can be caused to transition between the retracted state and the extended state in response to actuation of a toggle 2414. A biasing mechanism 2413 can be provided to urge the scissor mechanism 2412 towards the retracted state. For example, when the toggle 2414 is a non-latching toggle, the biasing mechanism 2413 may cause the scissor mechanism 2412 to transition from the extended state to the retracted state in response to a user releasing the toggle 2414. The biasing mechanism 2413 may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
The brush body 2606 can include a latch 2610 configured to engage the crevice tool 2602 such that the brush tool 2604 can selectively transition between the stored state and the use state. The latch 2610 can be configured to engage the crevice tool 2602 such that the brush tool 2604 is retained at a desired state.
The moveable bar 2806 is configured to move in a direction parallel to a crevice tool longitudinal axis 2812. As the moveable bar 2806 is urged towards a distal end 2814 of the crevice tool body 2601, the storage and use catches 2808 and 2810 are urged into the actuator channel 2804 such that the retaining bar 2801 does not engage the storage catch 2808 or the use catch 2810. As such, the brush body 2606 is able to slide relative to the crevice tool body 2601. As the moveable bar 2806 is urged towards a proximal end 2816 of the crevice tool body 2601, the storage and use catches 2808 and 2810 are urged out of the actuator channel 2804 such that the retaining bar 2801 engages a respective one of the storage catch 2808 or the use catch 2810. Therefore, moving the moveable bar 2806 in a direction of the distal end 2814 of the crevice tool body 2601 allows the brush body 2606 to transition between the stored and use states and moving the moveable bar 2806 in a direction of the proximal end 2816 of the crevice tool body 2601 allows the brush body 2606 to be retained in a respective one of the store or use states. In some instances, the moveable bar 2806 can be biased towards the proximal end 2816 using, for example, a biasing mechanism. The biasing mechanism may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
The moveable bar 2806 can include a retaining catch 2817 configured prevent the brush body 2606 from disengaging the crevice tool body 2601. As shown, the use catch 2810 is disposed between the storage catch 2808 and the retaining catch 2817. As such, when the brush body 2606 is in the use state the retaining bar 2801 is disposed between the retaining catch 2817 and the use catch 2810.
The latch 2610 can include a lever 2818 configured to transition between an unactuated state and an actuated state. When the lever 2818 is transitioned to the actuated state, the lever 2818 urges a respective one or more of the storage catch 2808, the use catch 2810, and/or the retaining catch 2817 into the actuator channel 2804 such that the brush body 2606 can move relative to the crevice tool body 2601. As such, the brush body 2606 is capable of transitioning between stored and use states without moving the moveable bar 2806 in a direction parallel to the crevice tool longitudinal axis 2812. When in the use state, transitioning the lever 2818 to an actuated state may urge the retaining catch 2817 into the actuator channel 2804 such that the brush body 2606 can be removed from the crevice tool body 2601.
The lever 2818 can include one or more protrusions 2820 configured to engage a respective one or more of the storage catch 2808, the use catch 2810, and/or the retaining catch 2817. The one or more protrusions 2820 can urge respective ones of the storage catch 2808, the use catch 2810, and/or the retaining catch 2817 into the actuator channel 2804.
An actuator 3112 can be configured to transition between an actuated and unactuated state. The actuator 3112 can be included with, for example, a surface treatment apparatus, such as the surface treatment apparatus 100 of
The main body cavity 3306 is configured to be fluidly coupled to a surface treatment apparatus such as, for example, the surface treatment apparatus 100 of
The moveable cleaning body 3312 can include a second cleaning feature 3314. The second cleaning feature 3314 may include, for example, a firm brush (e.g., as compared the first cleaning feature 3310). The moveable cleaning body 3312 is configured to move within the main body cavity 3306 such that the second cleaning feature 3314 can transition between a stored state (e.g., as shown in
The second cleaning feature 3314 can be transitioned between the stored and use states in response to actuation of an actuator 3316. The actuator 3316 can be included with a surface cleaning apparatus such as, for example, the surface cleaning apparatus 100 of
The stand 3504 may transition between the use state and the stored state in response to the actuation of a toggle 3503 (e.g., a trigger or button). When in the stored state, the stand 3504 is positioned adjacent the wand 3502 such that an operator of the handheld surface cleaning apparatus 3501 can move the surface cleaning head 3506 over a surface 3505 (e.g., a floor). When the stand 3504 is in the use state, the stand 3504 extends in a direction away from the wand 3502 such that the stand 3504 engages the surface 3505. The engagement of the stand 3504 with the surface 3505 supports the handheld surface cleaning apparatus 3501 at a location above the surface 3505.
A first end 3508 of the stand 3504 is pivotally coupled to the wand 3502. The first end 3508 of the stand 3504 is coupled to the wand 3502 at a location proximate to an air inlet 3510 of the handheld surface cleaning apparatus 3501. When in the stored state, a second end 3512 of the stand 3504 may be releasably coupled to the wand 3502 at a location proximate the surface cleaning head 3506. In response to the toggle 3503 being actuated, the second end 3512 of the stand 3504 can pivot in a direction of the surface 3505.
Once in the use state, the stand 3504 may be further pivoted such that the stand 3504 transitions in to a locked state. When in the locked state and the toggle 3503 is actuated an additional time, the stand 3504 may be urged in a direction of the wand 3502 (e.g., towards the stored state). The stand 3504 may be urged to the stored state using, for example, a biasing mechanism. Therefore, the biasing mechanism may generally be described as urging the stand 3504 from the use state to the stored state in response to the actuation of the toggle 3503. The biasing mechanism may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
As shown, an expanding foot 3608 can be provided proximate a distal end 3606 of the stand 3604, the distal end 3606 of the stand 3604 being proximate a surface (e.g., a floor). The expanding foot 3608 can be configured to engage a surface (e.g., a floor) when the stand 3604 is in the use state. The expanding foot 3608 includes supports 3610 pivotally coupled to a foot body 3612. The supports are configured to transition between a stored state (e.g., as shown in
The pivot joint 3904 may pivot between a use state and a stored state when a toggle is actuated. For example, while the toggle is transitioned from a first state to a second state, the pivot joint 3904 may be capable of pivoting between the use and stored states. When in the use state, a first portion 3908 of the wand 3902 may be pivoted relative to a second portion 3910 of the wand 3902.
In some instances, the pivot joint 3904 may include a biasing mechanism that urges the pivot joint 3904 to the use and/or stored state. The biasing mechanism may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
As shown, a catch 4116 is pivotally coupled to the main body 4110 such that actuation of the toggle 4112 causes the catch 4116 to pivot in response to movement of, for example, the actuator 4114. As the catch 4116 pivots, it moves out of engagement (e.g., contact) with a corresponding latch 4118 of the onboard accessory 4108. When the catch 4116 is moved out of engagement with the latch 4118 the onboard accessory 4108 is capable of pivoting from the stored state to the use state. In some instances, the onboard accessory 4108 may be biased towards to use state (e.g., using a spring).
The handheld surface treatment apparatus 4300 may also include one or more cyclonic separators 4316. The cyclonic separator 4316 is configured to separate at least a portion of debris from an airflow by cyclonic action.
As also shown, the power connector 4312 and the actuator 4314 can be disposed on opposing sides of the handheld surface treatment apparatus 4300. The power connector 4312 can be electrically coupled to a power supply (e.g., one or more batteries and/or an electrical grid) via power cables extending through a cable channel 4412. The cable channel 4412 can be configured to extend around at least one cyclonic separator 4316.
An accessory (e.g., any one of the accessories disclosed herein) can be coupled and decoupled from the coupling 4310 in response to actuation of a release 4414. The release 4414 may include a pivotal lever and a latch configured to releasably engage at least a portion of the coupling 4310.
As shown, the pivot linkage 4604 includes a pivot body 4606, a toggle arm 4608, and an actuator arm 4610. The pivot body 4606 is pivotally coupled to a portion of the body 4502 of the handheld surface treatment apparatus 4500 at a body pivot point 4612. The toggle arm 4608 is pivotally coupled to the pivot body 4606 at a toggle arm pivot point 4614 and the actuator arm 4610 is pivotally coupled to the pivot body 4606 at an actuator arm pivot point 4616. As shown, the toggle arm 4608 and the actuator arm 4610 are coupled at opposing ends of the pivot body 4606 such that the body pivot point 4612 is disposed between the toggle arm pivot point 4614 and the actuator arm pivot point 4616. The toggle arm 4608 is pivotally coupled to the toggle 4508 at a toggle pivot point 4618 and the actuator arm 4610 is pivotally coupled to the actuator 4512 at an actuator pivot point 4620. In some instances, the toggle pivot point 4618, the actuator pivot point 4620, and the body pivot point 4612 are aligned along a common axis.
In operation, when the toggle 4508 is urged rearwardly (e.g., in a direction of the user and/or the handle 4509), the toggle arm 4608 urges the pivot body 4606 to pivot such that the toggle arm pivot point 4614 moves along an arcuate path in a direction towards the user and/or the handle 4509 and the actuator arm pivot point 4616 moves along an arcuate path in a direction away from the user and/or handle 4509. As the actuator arm pivot point 4616 moves along an arcuate path in a direction away from the user and/or handle 4509, the actuator 4512 is urged in a direction away from the user and/or handle 4509 (e.g., towards the actuated state).
When the toggle 4508 is urged forwardly (e.g., in a direction away from the user and/or the handle 4509), the toggle arm 4608 urges the pivot body 4606 to pivot such that the toggle arm pivot point 4614 moves along an arcuate path in a direction away from the user and/or the handle 4509 and the actuator arm pivot point 4616 moves along an arcuate path in a direction towards the user and/or handle 4509. As the actuator arm pivot point 4616 moves along an arcuate path in a direction towards the user and/or handle 4509, the actuator 4512 is urged in a direction towards the user and/or handle 4509 (e.g., towards the unactuated state). In some instances, one or more of the toggle 4508, the pivot linkage 4604, and/or the actuator 4512 may engage and/or include a biasing mechanism that biases the actuator 4512 towards, for example, the unactuated state. The biasing mechanism may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
As shown, the handle assembly 4700 includes a rack and pinion assembly 4712 configured to urge the actuator 4710 in a direction opposite that of a movement direction of the toggle 4708. The rack and pinion assembly 4712 includes a toggle rack 4714, a pinion 4716, and an actuator rack 4718. When the toggle 4708 is urged in a rearward direction (e.g., in a direction of a user and/or the handle 4706), the toggle rack 4714 is urged in a rearward direction causing the pinion 4716 to rotate such that the actuator rack 4718 is urged in a forward direction (e.g., in a direction away from the user and/or handle 4706). When the actuator rack 4718 is urged in the forward direction, the actuator 4710 is transitioned from an unactuated state (e.g., as shown in
As shown, the latch 5012 is configured to engage a catch 5014 defined in the accessory 5002. When actuated, the latch 5012 moves into or out of engagement with the catch 5014. When the latch 5012 moves out of engagement with the catch 5014, the handle assembly 5000 can be decoupled from the accessory 5002.
The pivot body 5202 can be coupled to the toggle 5010 such that actuation of the toggle 5010 causes the pivot body 5202 to pivot about the body pivot point 5206. The pivot body 5202 can also be coupled to an actuator 5214 such that pivoting of the pivot body 5202 about the body pivot point 5206 causes the actuator 5214 to transition between actuated and unactuated states. As the actuator 5214 transitions towards the actuated state, the latch 5012 can be urged towards a delatched state (e.g., the latch 5012 comes out of engagement with the catch 5014). The toggle 5010 and the actuator 5214 can be coupled to opposing sides of the pivot body 5202 relative to a pivot axis defined by the body pivot point 5206.
As shown, the pivot body 5202 can include an arm 5208 that defines an arm slot 5210 that corresponds to at least one toggle protrusion 5212 extending from the toggle 5010. The toggle protrusion 5212 is configured to be able slide within the arm slot 5210. As such, the latch 5012 can be actuated without actuating the toggle 5010. The actuator 5214 can define an actuator slot 5216 configured to receive at least one corresponding body protrusion 5218. The body protrusion 5218 can be configured to slide within the actuator slot 5216. In some instances, one or more of the toggle 5010, the pivot linkage 5200, and/or the actuator 5214 may engage and/or include a biasing mechanism that biases the actuator 5214 towards, for example, the unactuated state. The biasing mechanism may be, for example, a spring (e.g., a tension spring, a torsion spring, a compression spring, and/or any other suitable spring), an elastic material (e.g., a rubber), and/or any other suitable biasing mechanism.
An example surface treatment apparatus may include a coupling, a handle, an accessory, and a toggle. The accessory can be coupled to the coupling and the accessory can have at least two operational states. The toggle can be proximate the handle, wherein actuation of the toggle causes the accessory to transition between operational states.
In some instances, the accessory may include a wand having a stand, wherein the stand is configured to transition between a stored state and a use state in response to the actuation of the toggle. A first end of the stand can be pivotally coupled to the wand. In some instances, the accessory may include a brush tool slideably coupled to a crevice tool, wherein the brush tool is configured to transition between a stored state and a use state in response to the actuation of the toggle. In some instances, the accessory may include a brush having a collar, wherein the collar is configured to slide along the brush between a first state and a second state in response to the actuation of the toggle. In some instances, the accessory includes a crevice tool, wherein the crevice tool is configured to expand from an unexpanded state to an expanded state in response to the actuation of the toggle. A width of the unexpanded state measures less than a width of the expanded state. In some instances, the toggle is one of a button or a trigger.
Another example of a handheld surface treatment apparatus may include a coupling, a handle, a toggle proximate the handle, a wand coupled to the coupling, and a surface cleaning head fluidly coupled to the wand. The wand may include a stand configured to be transitioned between a stored state and a use state in response to actuation of the toggle.
In some instances, a first end of the stand is pivotally coupled to the wand. In some instances, when the toggle is actuated, the stand pivots in a direction of a floor. In some instances, the handheld surface treatment apparatus includes a biasing mechanism configured to urge the stand from the use state to the stored state in response to the actuation of the toggle. In some instances, the toggle is one of a button or a trigger
Another example of a handheld surface treatment apparatus may include a handle, a toggle proximate the handle, and an actuator. The actuator may be configured to cause an accessory having at least two operational states to transition between operational states in response to actuation of the toggle.
In some instances, the handheld surface treatment apparatus may include a coupling configured to couple to the accessory. In some instances, the accessory may include a wand having a stand. The stand may be configured to transition between a stored state and a use state in response to the actuation of the toggle. In some instances, a first end of the stand may be pivotally coupled to the wand. In some instances, the accessory may include a brush tool slideably coupled to a crevice tool. The brush tool may be configured to transition between a stored state and a use state in response to the actuation of the toggle. In some instances, the accessory includes a brush having a collar. The collar may be configured to slide along the brush between a first state and a second state in response to the actuation of the toggle. In some instances, the accessory includes a crevice tool. The crevice tool may be configured to expand from an unexpanded state to an expanded state in response to the actuation of the toggle. A width of the unexpanded state measures less than a width of the expanded state. In some instances, the toggle is one of a button or a trigger.
Each of the accessories described herein are merely examples to illustrate a toggle-actuated accessory having at least two operational states. Other example accessories capable of being actuated between operational states, include, but are not limited to, a telescopic wand, an accessory having a deployable brush/squeegee, and/or any other suitable accessory.
While the present disclosure has generally shown and described various accessories being coupled to a handheld surface cleaning apparatus, such a configuration is non-limiting. For example, the accessories described herein may be capable of being used with any one or more of a canister vacuum, an upright vacuum, a stick vacuum, and/or any other suitable surface cleaning apparatus.
Furthermore, the examples of how the operation of the toggle causes the accessory to transition between operational states are merely exemplary for the purposes of illustration and the present disclosure is not limited to the disclosed examples. Additionally, each of the described examples of the operation of the toggle operation can be readily applied to each of the accessories disclosed herein as well as other accessories having at least two operational states.
Further, while the actuation of the toggle has been described herein as mechanically causing an accessory to transition between operational states, the toggle may also be coupled to an electrical circuit that causes the accessory to transition between operational states. For example, an accessory may transition between operational states in response to the toggle causing a motor, an electric linear actuator, or other electric component to be actuated. In some instances, for example, the actuation of the toggle may cause a motor to induce vibrations into an accessory having a brush.
As used herein the term engage may generally refer to direct engagement (e.g., contact) and/or indirect engagement.
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. It will be appreciated by a person skilled in the art that a vacuum attachment may embody any one or more of the features contained herein and that the features may be used in any particular combination or sub-combination. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
The present application claims the benefit of U.S. Provisional Application Ser. No. 62/628,781, filed on Feb. 9, 2018, entitled Accessories for a Surface Treatment Apparatus having a Plurality of Operational States and U.S. Provisional Application Ser. No. 62/712,634 filed on Jul. 31, 2018, entitled Upright Surface Treatment Apparatus having Removable Pod, both of which are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5389004 | Gray | Feb 1995 | A |
6530118 | Oh | Mar 2003 | B2 |
7377007 | Best | May 2008 | B2 |
8826490 | Giarmo | Sep 2014 | B1 |
8943647 | Henderson | Feb 2015 | B1 |
D740506 | Yoon | Oct 2015 | S |
D743649 | Yoon et al. | Nov 2015 | S |
D745232 | Yoon et al. | Dec 2015 | S |
10638901 | Yang et al. | May 2020 | B2 |
10986972 | Jenson | Apr 2021 | B2 |
11045062 | Innes | Jun 2021 | B2 |
20020101075 | Park et al. | Aug 2002 | A1 |
20040223803 | Fahy | Nov 2004 | A1 |
20080031678 | Gansebom et al. | Feb 2008 | A1 |
20120042471 | Spiggle | Feb 2012 | A1 |
20130255029 | Wolfe, Jr. et al. | Oct 2013 | A1 |
20140338146 | Lee | Nov 2014 | A1 |
20140338148 | Lee | Nov 2014 | A1 |
20160208981 | Kaesemeyer | Jul 2016 | A1 |
20160235267 | Han et al. | Aug 2016 | A1 |
20160270614 | Kawamura et al. | Sep 2016 | A1 |
20160270615 | Kawamura | Sep 2016 | A1 |
20170196425 | Brown et al. | Jul 2017 | A1 |
20170340182 | Caruso | Nov 2017 | A1 |
20180055313 | Yang et al. | Mar 2018 | A1 |
20180132683 | Walker | May 2018 | A1 |
20180177368 | Acker et al. | Jun 2018 | A1 |
20190357741 | Conrad | Nov 2019 | A1 |
20210345848 | Jeon | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
2549882 | May 2003 | CN |
2549882 | May 2003 | CN |
108113571 | Jun 2018 | CN |
207444893 | Jun 2018 | CN |
102008034458 | Jan 2010 | DE |
1908386 | Apr 2008 | EP |
2100546 | Sep 2009 | EP |
2007301260 | Nov 2007 | JP |
2010194070 | Sep 2010 | JP |
2013162882 | Aug 2013 | JP |
2019030554 | Feb 2019 | JP |
Entry |
---|
PCT Search Report and Written Opinion dated Apr. 26, 2019, received in corresponding PCT Application No. PCT/US19/17030, 9 pgs. |
Chinese Office Action with English translation dated Jun. 2, 2021, received in Chinese Patent Application No. 201980020798.7, 11 pages. |
PCT Search Report and Written Opinion dated Oct. 25, 2019, received in PCT Application No. PCT/US19/44483, 9 pgs. |
Chinese Office Action with English translation dated Sep. 13, 2021, received in Chinese Patent Application No. 201980062711.2, 11 pages. |
U.S. Office Action dated Nov. 3, 2021, received in U.S. Appl. No. 16/528,212, 21 pages. |
European Extended Search Report dated Feb. 10, 2022, received in European Patent Application No. 19750309.7, 10 pages. |
Chinese Office Action with English translation dated Mar. 2, 2022, received in Chinese Patent Application No. 201980020798.7, 5 pages. |
Australian Examination Report dated Mar. 3, 2022, received in Australian Patent Application No. 2019312591, 3 pages. |
European Extended Search Report dated May 10, 2022, received in European Patent Application No. 19845568.5, 8 pages. |
Canadian Examiner Report dated Jun. 23, 2022, received in Canadian Patent Application No. 3,112,975, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20190246853 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62712634 | Jul 2018 | US | |
62628781 | Feb 2018 | US |