The instant application is a national phase of PCT International Application No. PCT/EP2017/054533 filed Feb. 27, 2017, and claims priority to GB Patent Application Serial No. 1603417.5 filed Feb. 26, 2016, the entire specifications of both of which are expressly incorporated herein by reference.
The present invention relates to accessories for vacuum cleaners, and in particular to accessories for use with central vacuum cleaners, also known as built-in or ducted vacuum cleaners.
Vacuum cleaners can be classed into two basic types: portable vacuum cleaners and central vacuum cleaners. In a portable vacuum cleaner, the components of the cleaner such as the vacuum source, nozzle and waste compartment are physically moved about by the user during the cleaning process, and are typically mounted on wheels for this purpose. In contrast, central vacuum cleaners have a central vacuum source installed into a building at a permanent or semi-permanent stationary location (in residential settings this will often be the garage or utility room). A network of pipes runs throughout the building to provide a number of strategically located inlet ports. A user can connect an accessory such as a hose to an inlet port in order to vacuum the building. Central vacuum cleaners can use more powerful vacuum sources than portable vacuum cleaners as the vacuum source does not have to be carried around by the user during the vacuuming. In addition, unlike portable vacuum cleaners, central vacuum cleaners do not recirculate exhaust air into the space being cleaned and thus avoid the issue of recirculating allergens and unpleasant odours.
Most existing portable and central vacuum cleaner systems are limited in that they only have a dry vacuum cleaning function. The vacuum cleaner is generally only adapted for vacuuming dry surfaces and has a simple accessory for performing the cleaning such as a simple hose having a nozzle and, optionally, one or more brushes. A user will not be able to vacuum a wet surface (e.g. after soiled liquid has been spilt on the surface), and will instead have to wait for the surface to dry before they can use the vacuum system to perform a dry vacuum cleaning. If the surface has not sufficiently dried, then liquid can be sucked up into the vacuum pump causing damage to the vacuum cleaner. Moreover, if a user desires to perform a wet cleaning of a surface then they will have to use a separate device, such as a spray hose connected to a water outlet, increasing the cleaning time and the burden on the user.
The existing systems are unsatisfactory as they require complete replacement or modification of the vacuum cleaner in order to provide the liquid filtration function. This is especially problematic in central vacuum cleaning systems as the existing, installed, central vacuum cleaners are relatively expensive and permanent devices which the user does not expect to have to modify/replace. Furthermore, the centrifugal fan arrangement is heavy and requires a large power source.
It is an object of the present invention to obviate or mitigate the problem of requiring modification/replacement of the vacuum cleaner in order to provide both dry vacuum cleaning and wet vacuum cleaning operations.
It is a further object of the present invention to obviate or mitigate the problem of the limited applications of central vacuum cleaners and provide central vacuum cleaner systems that can be utilized in both dry vacuum cleaning and wet vacuum cleaning operations.
It is a further object of the present invention to provide a central vacuum cleaner that can be utilized in both dry vacuum cleaning and wet vacuum cleaning operations which requires minimal modification to an already installed central vacuum system.
It is a further object of the present invention to obviate or mitigate the problem of vacuum cleaning wet or damp surfaces using a central vacuum cleaner.
Accordingly, the present invention provides an accessory for use with a vacuum cleaner, the accessory being adaptable to releasably connect to the vacuum cleaner, the accessory comprising:
a vacuum intake head having a chamber arranged such that when the accessory is connected to the vacuum cleaner, the chamber is in fluid communication with the vacuum cleaner and adaptable to receive air and liquid from and around the surface to be cleaned; and
filtration means adaptable to separate the liquid from the air such that substantially no liquid returns to the vacuum cleaner.
Advantageously, the present invention provides an accessory for a vacuum cleaner that can be used to perform both a dry vacuum cleaning and a wet vacuum cleaning operation. In particular, the accessory can operate in a traditional manner to suck dirt, dust and other contaminants from the surface to be cleaned. In addition, the accessory can suck up liquid on the surface to be cleaned, such as soiled liquid which is contaminated with dirt, dust and other contaminants and separate the liquid from the air flow such that the liquid does not return to the vacuum cleaner where it could damage the vacuum pump. The filtration means is part of the releasably connectable accessory, rather than part of the vacuum cleaner itself. This means that the accessory of the present invention is useable with vacuum cleaners for wet cleaning operations even if the vacuum cleaners do not have liquid filtration means. As a result, the present invention does not require modification to the vacuum cleaner in order to provide the wet cleaning operation as the wet cleaning and filtering operations are performed by the accessory, with the vacuum cleaner just performing the conventional role of providing a vacuum source.
Preferably, the accessory being for use with a central vacuum cleaner, the accessory being adaptable to releasably connect to the central vacuum cleaner. Advantageously, the present invention provides dry cleaning and wet cleaning operations for central vacuum cleaners, without requiring any modification to the central vacuum cleaners themselves, which could be expensive and undesirable.
Ideally, the filtration means being disposed within the accessory and in the fluid path between the chamber of the vacuum intake head and the vacuum cleaner.
Preferably, the filtration means comprising a waste fluid storage means having an inlet in fluid communication with the chamber of the vacuum intake head and an outlet in fluid communication with the vacuum cleaner.
Ideally, the outlet of the waste fluid storage means is restricted in size to limit the amount of liquid that escapes from the outlet. Advantageously, the outlet of the waste fluid storage means restricts the water flow from leaving the waste fluid storage means, while still allowing air to escape.
In one arrangement, the filtration means being an active filtration means.
Ideally, the active filtration means comprising a powered centrifugal fan.
More preferably, the filtration means being a passive filtration means.
Advantageously, the passive filtration means does not require any power source (other than the vacuum provided by the vacuum cleaner) to separate the liquid from the air stream, and thus can be incorporated into the accessory of the vacuum cleaner without substantially increasing the weight or power consumption of the accessory.
Preferably, the passive filtration means comprising a waste fluid storage means having an inlet in fluid communication with the chamber of the vacuum intake head and an outlet in fluid communication with the vacuum cleaner.
Ideally, the outlet of the waste fluid storage means is restricted in size to limit the amount of liquid that escapes from the outlet. Advantageously, the outlet of the waste fluid storage means restricts the water flow from leaving the waste fluid storage means, while still allowing air to escape.
Preferably, the outlet of the waste fluid storage means is a slit or slot.
In a first arrangement, the passive filtration means comprising: a waste fluid storage means having an inlet in fluid communication with the chamber of the vacuum intake head and an outlet; a filter in fluid communication with the outlet of the waste fluid storage means; and an outlet conduit extending from the filter and adaptable to be releasably connected to the vacuum cleaner, the filter adaptable to trap contaminated liquid that has escaped from the outlet of the waste fluid storage means and prevent it entering the outlet conduit.
Advantageously, the filter is adaptable to trap liquid and prevent it from entering the outlet conduit, and thereby prevent the liquid from reaching the vacuum cleaner.
Ideally in the first arrangement, the passive filtration means comprising a plurality of filters arranged in series between the outlet of the waste fluid storage means and the outlet conduit.
Preferably in the first arrangement, the plurality of filters have different grades of permeability such that filters closer to the outlet of the waste fluid storage means are more permeable than filters closer to the outlet conduit.
Ideally in the first arrangement, the permeability of the plurality of filters decreases consecutively from the outlet of the waste fluid storage means to the outlet conduit.
Most preferably in the first arrangement, the size of the outlet of the waste fluid storage means is restricted to limit the amount of liquid that escapes from the waste fluid storage means.
Advantageously, the outlet of the waste fluid storage means restricts the water flow from leaving the waste fluid storage means, while still allowing air to escape. The filter provided downstream of the waste fluid storage means is able to trap any contaminated work fluid that does manage to exit the waste fluid storage means and prevent it from reaching the vacuum cleaner.
Ideally in the first arrangement, the outlet of the waste fluid storage means is a slit or slot.
Preferably in the first arrangement, the waste fluid storage means comprising a plurality of outlets, the passive filtration means comprising a corresponding number of filters and outlet conduits associated with the plurality of outlets.
Ideally in the first arrangement, the passive filtration means further comprises an inlet conduit extending between the chamber of the vacuum intake head and the inlet of the waste fluid storage means.
Preferably in the first arrangement, the waste fluid storage means comprises a plurality of inlets and a corresponding number of inlet conduits extending between the chamber of the vacuum intake head and the inlet of the waste fluid storage means.
Preferably in the first arrangement, the filtration means further comprising a filter enclosure.
Ideally in the first arrangement, the filter is removable from the filter enclosure. Advantageously, this enables the filter to be cleaned/replaced.
Ideally in the first arrangement, the filter enclosure comprising a drain in fluid communication with the waste fluid storage means. Advantageously, the drain enables liquid in the enclosure (i.e. liquid that was trapped by the filters) to return to the waste fluid storage means.
In a second arrangement, the passive filtration means comprising a waste fluid storage means having an inlet in fluid communication with the chamber of the vacuum intake head and an outlet; and an outlet conduit extending from the outlet of the waste fluid storage means and adaptable to be releasably connected to the vacuum cleaner, the outlet conduit having at least one twist or turn arranged such that liquid travelling in the outlet conduit loses kinetic energy due to collisions with the walls of the outlet conduit and returns to the waste fluid storage means.
Advantageously, the at least one twist or turn in the outlet conduit causes the liquid molecules to collide with the walls of the outlet conduit, causing them to lose energy and return to the waste fluid storage means due to gravity. This means that the liquid molecules do not enter the vacuum cleaner, and thus avoid the risk of damage to the vacuum pump.
Ideally in the second arrangement, the passive filtration means further comprises an inlet conduit extending between the chamber of the vacuum intake head and the inlet of the waste fluid storage means.
Preferably in the second arrangement, the waste fluid storage means comprises a plurality of inlets and a corresponding number of inlet conduits extending between the chamber of the vacuum intake head and the inlet of the waste fluid storage means.
Ideally in the second arrangement, the waste fluid storage means comprises a plurality of outlets and a corresponding number of outlet conduits extending from the outlet of the waste fluid storage means.
Preferably, each of the outlet conduits having at least one twist or turn arranged such that liquid travelling in the outlet conduits loses kinetic energy due to collisions with the walls of the outlet conduits and returns to the waste fluid storage means.
Ideally, the accessory further comprising cut-off valve means for cutting-off the fluid communication between the waste fluid storage means and the vacuum cleaner.
Preferably, the accessory further comprising an elongate body extending upright from the vacuum intake head.
Ideally, the cut-off valve means being disposed within the elongate body of the accessory.
Preferably, the passive filtration means is housed in the elongate body of the accessory.
Ideally, the cut-off valve means being adaptable to cut-off fluid communication between the waste fluid storage means and the vacuum cleaner in response to the longitudinal axis of the elongate body substantially being aligned with the horizontal. Advantageously, the cut-off valve means can cut-off the fluid communication when the elongate body is dropped or placed on the ground. Therefore, any waste fluid that leaks out of the waste fluid storage means in this situation will not return to the vacuum cleaner.
Preferably, the cut-off valve means being adaptable to cut-off fluid communication between the waste fluid storage means and the vacuum cleaner in response to the longitudinal axis of the elongate body being over 45° away from the vertical.
Ideally, the cut-off valve means being adaptable to cut-off fluid communication between the waste fluid storage means and the vacuum cleaner in response to the longitudinal axis of the elongate body being over 60° away from the vertical.
Preferably, the cut-off valve means being adaptable allow fluid communication between the waste fluid storage means and the vacuum cleaner when the longitudinal axis of the elongate body is less than 45° away from the vertical.
Ideally, the cut-off valve means being adaptable allow fluid communication between the waste fluid storage means and the vacuum cleaner when the longitudinal axis of the elongate body is less than 60° away from the vertical.
In one preferred arrangement, the cut-off valve means comprising a flap disposed within the fluid path between the waste fluid storage means and the vacuum cleaner, the flap being adaptable to transition between an open position allowing fluid communication between the waste fluid storage means and the vacuum cleaner, and a closed position cutting-off fluid communication between the waste fluid storage means and the vacuum cleaner.
Ideally, the flap being sized to remain in the open position when the longitudinal axis of the elongate body is less than 45°, or more preferably less than 60° away from the vertical.
Ideally, the flap being sized to transition to the closed position in response to the longitudinal axis of the elongate body being more than 45°, or more preferably more than 60° away from the vertical.
In another preferred arrangement, the cut-off valve means comprising a retaining means disposed within the elongate body and a ball adaptable to be releasably held in the retaining means, the ball being sized to have a diameter greater to or substantially equal to the width of at least part of the fluid path between the waste fluid storage means and the vacuum cleaner upstream of the retaining means.
Ideally, the retaining means comprising a cage for retaining the ball and a ramp extending into the fluid path between the waste fluid storage means and the vacuum cleaner, the ramp being shaped to prevent the ball for leaving the cage until the longitudinal axis of the elongate body moves beyond a threshold angle away from the vertical.
Ideally, the ramp being further shaped to guide the ball back to the cage when the longitudinal axis of the elongate body returns to an angle less than the threshold angle away from the vertical.
Preferably, the ramp comprises one or more perforations to allow fluid flow through the ramp. Advantageously, this means that the ramp does not overly affect the fluid communication during normal use.
Ideally, the fluid path comprises a tapered section proximal to an outlet of the accessory, the ball being sized to have a diameter greater to or substantially equal to the minimum width of the tapered section of the fluid path.
Preferably, the retaining means being adaptable to retain the ball when the longitudinal axis of the elongate body is less than 45°, or more preferably less than 60° away from the vertical.
Ideally, the retaining means being adaptable to release the ball into the fluid path in response to the longitudinal axis of the elongate body being more than 45°, or more preferably more than 60° away from the vertical, the ball being adaptable to block the fluid path at a position where the width of the fluid path is substantially equal to or narrower than the width of the ball.
In another preferred arrangement, the cut-off valve means being adaptable to cut-off fluid communication between the waste fluid storage means and the vacuum cleaner in response to liquid escaping from the filtration means.
Preferably, the cut-off valve means comprising a sensing means for detecting liquid escaping from the filtration means.
Ideally, the cut-off valve means comprising a flap disposed within the fluid path between the filtration means and the vacuum cleaner, the flap being moveable between an open position allowing fluid communication between the filtration means and the vacuum cleaner, and a closed position cutting-off fluid communication between the filtration means and the vacuum cleaner; and drive means adaptable to move the flap to the closed position in response to the sensing means detecting liquid escaping from the filtration means.
Preferably, the sensing means being located upstream of the flap.
Ideally, the waste fluid storage means comprising a waste fluid storage container.
Ideally, the waste fluid storage container comprising an inlet in fluid communication with the chamber of the vacuum intake head and an outlet, the outlet of the waste fluid storage container being in fluid communication with the vacuum cleaner.
Preferably, the outlet of the waste fluid storage container being locatable on an upper portion of the waste fluid storage container. Advantageously, this means that during normal use, the outlet of the waste fluid storage container will remain above the water line in the waste fluid storage tank.
Ideally, the outlet of the waste fluid storage container being locatable on a top surface of the waste fluid storage container.
Preferably, the waste fluid storage container being releasably attachable to the accessory. Advantageously, the waste fluid storage container can be removed from the accessory so that the waste fluid storage container can be emptied and cleaned, if necessary.
Ideally, the waste fluid storage container further comprising a carrying handle.
Alternatively, the waste fluid storage container being integrally formed with the accessory/elongate body.
Ideally, the elongate body and the waste fluid storage container are manufactured as a one piece/homogeneous unit.
Preferably, the waste fluid storage container having drainage means to allow the waste fluid storage container to be emptied. Such as into a sink or toilet.
Ideally, the waste fluid storage container comprising a push button on an outside surface thereof, actuation of the push button opens the drainage means to allow the waste fluid storage container to be emptied.
Preferably, the waste fluid storage container further comprising means for closing the outlet of the waste fluid storage container in response to the volume of liquid in the waste fluid storage container exceeding a threshold value. Advantageously, this seals off the outlet if the waste fluid storage container is overfilled, preventing liquid from escaping from the outlet.
Ideally, the means for closing the outlet comprising a ballcock valve adaptable to rise with the liquid level in the waste fluid storage container and block the outlet of the waste fluid storage container once the volume of liquid in the waste fluid storage container exceeds a threshold value.
Alternatively, the means for closing the outlet comprising a cage attached to an inside surface of the waste fluid storage container and enclosing the outlet; and a ball disposed within the cage, the ball being adaptable to rise with the liquid level and block the outlet of the waste fluid storage container once the volume of liquid in the waste fluid storage container excess a threshold value.
Ideally, the accessory comprising spraying means for spraying a work fluid onto a surface to be cleaned. Advantageously, the spraying means can spray a work fluid onto the surface to be cleaned to perform a wet cleaning operation.
Preferably, the spraying means being adaptable to spray work fluid directly onto the surface to be cleaned.
Ideally, the surface to be cleaned being the floor or ground which the vacuum intake head is positioned over.
Ideally, the spraying means comprises a work fluid storage means; a pumping means; and at least one work fluid conduit in fluid communication with the work fluid storage means, the pumping means being adaptable to pump work fluid from the work fluid storage means and through the at least one work fluid conduit.
Ideally, the at least one work fluid conduit terminating in at least one nozzle. Advantageously, the nozzle can concentrate the work fluid into a stream to be sprayed onto the surface to be cleaned.
Ideally, the stream will have a pressure in the range of 2.5 to 40 PSI.
Preferably, the stream will have a pressure in the range of 25 to 40 PSI.
Preferably, the work fluid storage means comprising an inlet, an outlet and a valve means biased to close the outlet, the valve means being adaptable to open the outlet when the work fluid storage means is positioned within the accessory.
Ideally, the work fluid conduit being adaptable to align with the outlet of the work fluid storage means in use.
Preferably, the valve means being adaptable to open the outlet when the work fluid conduit is aligned with the outlet of the work fluid storage means.
Ideally, the valve means being adaptable to close the outlet when the work fluid conduit is out of alignment with the outlet of the work fluid storage means.
Preferably, the inlet being an accessible inlet for receiving work fluid.
Advantageously, the user can fill the work fluid storage means using the accessible inlet, such as by using a water jug or kettle, and does not have to separate the work fluid storage means and take it to a water source in order to fill it.
Ideally, the accessible inlet is located on an outer side surface of the accessory.
Preferably, the work fluid storage means comprising a means for restricting access to the inlet.
Ideally, the means for restricting access to the inlet being a pivotally moveable flap. Preferably, the work fluid storage means comprising a work fluid storage container.
Ideally, the work fluid storage means being releasably attachable to the accessory. Advantageously, the work fluid storage means can be removed from the accessory to be refilled with work fluid and/or cleaned.
Preferably, the work fluid storage means further comprising a carrying handle connected to the work fluid container.
Alternatively, the work fluid storage means being formed from the same material or integrally formed with the accessory.
Advantageously, in this alternative arrangement the accessory has a simple construction requiring fewer separable components. In addition, the fixed work fluid storage means can be optimally designed to receive and retain boiling water.
Ideally, the pumping means being one of a diaphragm pump, peristaltic pump or vane pump.
More preferably, the pumping means being a compressor. Advantageously, the compressor enables the spraying means to spray boiling or nearly boiling water onto the surface to be cleaned.
Ideally, the pumping means being adaptable to intermittently spray work fluid onto the surface to be cleaned.
Preferably, the work fluid storage means comprising control means operable to selectively activate the pumping means.
In one arrangement, the control means being a manually operated switch positioned on an external surface of the accessory, the switch being operable to trigger the pumping means to spray work fluid onto the surface to be cleaned. Advantageously, by operating the switch, the user can control when work fluid is sprayed onto the surface to be cleaned.
Ideally, the accessory comprising a handle, the switch being positioned proximal to the handle. Advantageously, the switch is in a position that can easily be reached by a user during a cleaning operation.
Preferably, the switch being a trigger switch.
In another arrangement, the control means being a controller disposed within the accessory, the controller being programmable to selectively activate the pumping means to spray work fluid.
Ideally, the controller being programmable to periodically activate the pumping means to spray work fluid.
Preferably, the controller having a first operating mode for periodically activating the pumping means to spray work fluid at a first frequency, and at least one other operating mode for periodically activating the pumping means to spray work fluid at a second frequency different to the first frequency. Advantageously, the operating mode can be chosen, e.g. by a user, based on the surface to be cleaned. For example, the controller may have a “high frequency”, “medium frequency” and “low frequency” operating modes which will activate the pumping means at different frequencies. The “high frequency” mode would activate the pumping means at a relatively fast rate making it suitable for cleaning excessively soiled areas but would drain the work fluid storage means of work fluid relatively quickly. The “medium frequency” and “low frequency” operating modes would operate at correspondingly slower rates making them suitable for less soiled areas and drain the work fluid storage means more slowly. A user would be able to select operating mode through use of a control panel located on an external surface of the handle.
In one arrangement, the spraying means comprising: a work fluid storage means fixedly attached to the accessory; a compressor; and at least one work fluid conduit in fluid communication with the work fluid storage means, the compressor being adaptable to pump work fluid from the work fluid storage means and through the at least one work fluid conduit. Advantageously, in this arrangement, the fixedly attached work fluid storage device can be optimally designed to receive and retain boiling water, and resist the water pressure within the work fluid storage means caused by a compressor.
Preferably, the work fluid storage means further comprising insulation means. Advantageously, the insulation means reduces the spread of heat from the work fluid storage means.
Ideally, the work fluid storage means further comprising a heating element for heating the work fluid. Advantageously, the heating element can heat or help maintain the temperature of the work fluid in the work fluid storage means.
Preferably, the heating element being a resistive heating element. Exemplary restive heating elements include metal heating elements, ceramic heating elements and positive thermal coefficient (PTC) ceramic heating element.
Most preferably, the heating element being a thermoelectric heating element.
Ideally, the chamber of the vacuum intake head is adaptable to receive air and contaminated work fluid from and around the surface to be cleaned. Here, “contaminated work fluid” means work fluid laden with dust or dirt particles or other contaminants.
Ideally, the vacuum intake head comprising a hollowing housing having at least one air intake slot in fluid communication with the chamber and at least one liquid outlet slot in fluid communication with the spraying means, the spraying means being adaptable to spray work fluid onto the surface to be cleaned through the liquid outlet slot.
Preferably, the air intake slot and liquid outlet slot being disposed in the floor of the housing.
Ideally, the air intake slot being positioned towards the leading edge/portion of the housing, the liquid outlet slot being positioned behind the air intake slot. In a typical cleaning operation, a user will sweep the vacuum intake head forwards over the surface to be cleaned. The air intake slot is positioned towards the leading edge/portion of the housing and so will come into contact with the surface to be cleaned before the work fluid sprayed out of the work fluid storage means. The suction through the air intake slot will act to suck up the loose dust, dirt and debris, but contaminants which are more rigidly adhered to the surface to be cleaned may remain despite the presence of the suction path. Beneficially, the work fluid which is sprayed onto the surface to be cleaned will help to loosen these contaminants. A user can then sweep the vacuum intake head backwards over the surface to be cleaned to suck up the wetted contaminants. Optionally, and as discussed in one or more arrangements later on, the vacuum intake head will have one or more rotatable brushes for agitating the wetted surface to be cleaned to help loosen the contaminants from the surface.
Preferably, the vacuum intake head comprising two air intake slots, a first of the air intake slots being positioned towards the leading edge/portion of the housing and a second of the air intake slots being positioned towards the rear end portion of the housing, the liquid outlet slot being disposed between the air intake slots. Advantageously, in this arrangement, the second air intake slot will suck up the contaminants loosened by the work fluid during the forward sweeping operation. Optionally, the housing comprising more than two air intake slots and/or more than one liquid outlet slots.
Preferably, the vacuum intake head comprising an internal member shaped to separate the air intake slot from the liquid outlet slot.
Preferably, the internal member being a bifurcated member comprising a first wall section and a second wall section, the chamber being defined above the upper surface of the first wall section and the upper surface of the second wall section.
Ideally, the first wall section being a generally planar wall extending from a lower front end portion of the vacuum intake head to an upper rear end portion of the vacuum intake head.
Preferably, the first wall section tapers from the lower front end portion of the vacuum intake head to the upper rear end portion of the vacuum intake head.
Ideally, the first wall section is generally arcuate.
Preferably, the second wall section generally extending from the upper rear end portion of the vacuum intake head to the lower rear end portion of the vacuum intake head.
Ideally, the hollow housing of the vacuum intake head comprising an openable flap. Advantageously, the openable flap enables an operator to access the components inside the vacuum intake head, such as for maintenance.
Ideally, at least one nozzle of the spraying means being provided in the hollow housing in fluid communication with the liquid outlet slot. Preferably, the vacuum intake head comprising at least one rotatable brush for agitating the surface to be cleaned.
Ideally, the at least one rotatable brush being disposed over the liquid outlet slot such that a portion of the at least one rotatable brush is adaptable to be in contact with the surface to be cleaned through the liquid outlet slot.
Alternatively, the housing comprising two or more liquid outlet slots, the spraying means being adaptable to spray work fluid through one of the liquid outlet slots and the at least one rotatable brush being disposed over another of the liquid outlet slots.
Preferably, the spraying means being adaptable to spray work fluid onto and around the at least one rotatable brush.
Preferably, the spraying means being adaptable to spray work fluid onto and around the at least one rotatable brush to perform a brush cleaning operation.
Ideally, the spraying means being adaptable to spray work fluid onto and around the surface to be cleaned and spray work fluid onto and around the at least one rotatable brush.
Ideally, the spraying means being adaptable to switch between spraying work fluid onto and around the surface to be cleaned and spraying work fluid onto and around the at least one rotatable brush. In this way, a user can switch between a surface/floor cleaning operation and a brush cleaning operation. Preferably, the accessory comprising control means to enable a user to switch the spraying means between spraying work fluid onto and around the surface to be cleaned and spraying work fluid onto and around the at least one rotatable brush.
Preferably, the at least one rotatable brush being rotatably connected to the housing.
Ideally, the at least one rotatable brush is detachable from the housing.
Advantageously, this means that the at least one rotatable brush can be removed from the housing and replaced. Ideally, the accessory further comprising a motor adaptable to rotate the rotatable brush. Advantageously, the rotatable brush agitates the surface to be cleaned, such as where the work fluid has already been applied by the spraying means. The work fluid gets contaminated by the dust and dirt particles on the surface to be cleaned, and is removed from the surface to be cleaned by the suction force generated by the vacuum cleaner.
Preferably, the motor adaptable to rotate the rotatable brush is locatable within the vacuum intake head.
Ideally, the vacuum intake head comprising at least one non-rotatable brush.
Preferably, the at least one rotatable brush being one of a nylon, polypropylene, horse hair, micro fibre, Tampico, or a Palmyra brush.
Ideally, the at least one non-rotatable brush being one of a nylon, polypropylene, horse hair, micro fibre, Tampico, or a Palmyra brush.
Preferably, the at least one non-rotatable brush being detachable from the housing.
Ideally, the spraying means being adaptable to spray work fluid onto and around the at least one non-rotatable brush.
Preferably, the spraying means being adaptable to spray work fluid onto and around the at least one non-rotatable brush to perform a brush cleaning operation.
Ideally, the spraying means being adaptable to spray work fluid onto and around the surface to be cleaned and spray work fluid onto and around the at least one non-rotatable brush.
Ideally, the spraying means being adaptable to switch between spraying work fluid onto and around the surface to be cleaned and spraying work fluid onto and around the at least one non-rotatable brush. Preferably, the accessory comprising control means to enable a user to switch the spraying means between spraying work fluid onto and around the surface to be cleaned and spraying work fluid onto and around the at least one non-rotatable brush.
Ideally, the accessory further comprising an elongate body, the vacuum intake head being releasably connected to the elongate body. Advantageously, this means that the vacuum intake head can be detached from the elongate body. In some arrangements, differently sized vacuum intake heads will be provided for cleaning different areas. For example, a large vacuum intake head can be provided for cleaning large open areas, while a smaller vacuum intake head can be provided for cleaning cracks, crevices, remote places or other places that are inaccessible with the larger vacuum intake head. A user can simply detach one of the vacuum intake heads and attach the desired replacement vacuum intake head when performing a cleaning operation. Furthermore, some of the vacuum intake heads may be better adapted for cleaning certain surfaces, such as carpet, while others may be adapted for cleaning wooden or tiled flooring. A user can interchange the vacuum intake head when carrying out the cleaning operation, without having to completely swap out the accessory.
Preferably, the accessory further comprising an elongate body, the vacuum intake head being moveably connected to the elongate body.
Ideally, the vacuum intake head being moveably connected to the elongate body such that the leading edge/portion of the vacuum intake head lifts upwards from the surface to be cleaned during a forward sweeping movement. Advantageously, the moveable connection creates a vertical clearance between the surface to be cleaned and the leading edge/portion of the vacuum intake head as the accessory is swept forwards. This means that larger objects such as stones and crumbs are not pushed forwards by the leading edge/portion of the vacuum intake head, but rather the vacuum intake head moves over the objects and can suck them up via the air intake slot.
Ideally, the vacuum intake head being moveably connected to the elongate body such that the leading edge/portion of the vacuum intake head lowers onto the surface to be cleaned during a backwards sweeping movement.
Preferably, the vacuum intake head being pivotally connected to the elongate body.
Ideally, the vacuum intake head being adaptable to pivot up/down relative to the elongate body.
Ideally, the vacuum intake head being rotatably connected to the elongate body.
Preferably, the vacuum intake head being adaptable to rotate around the longitudinal axis of the elongate body.
Ideally, the vacuum intake head being adaptable to rotate up to 180° or more preferably up to 360° around the longitudinal axis of the elongate body.
Ideally, the elongate body being an elongate shaft connected to the vacuum intake head.
Preferably, the spraying means being arranged within the elongate body.
Ideally, the filtration means being arranged within the elongate body.
Advantageously, the accessory of the present invention has a compact configuration as components such as the filtration means are arranged within the elongate body.
Ideally, the waste fluid storage means and the work fluid storage means being arranged substantially in-line and along the longitudinal axis of the elongate body. Advantageously, the waste fluid storage means and the work fluid storage means being arranged substantially in-line and along the longitudinal axis of the elongate body minimises the width of the elongate body and helps ensure that it has a compact and streamlined appearance.
Preferably, the waste fluid storage means being arranged vertically below the work fluid storage means in the elongate body.
Ideally, the capacity of the waste fluid storage means being larger than the capacity of the work fluid storage means. Advantageously, this means that the waste fluid storage means can receive all of the liquid sprayed out from the work fluid storage means without overfilling.
Ideally, the accessory further comprising a power source for powering the accessory.
Preferably, the power source being for powering a pumping means of the spraying means and/or a motor for rotating at least one rotatable brush of the vacuum intake head.
Preferably, the power source being a battery and most preferably a rechargeable battery.
Ideally, the battery is removable from the accessory. Advantageously, the battery can be removed from the accessory to be recharged/replaced.
Ideally, the accessory further comprising a handle.
Preferably, the handle comprising a hand gripping portion. Advantageously, the hand gripping portion to enable a user to hold and manipulate the accessory.
Preferably, handle being connectable to the elongate body.
Ideally, handle having an internal conduit connectable to the elongate body at one end and the vacuum cleaner at the other.
Ideally, the handle comprising a control means for controlling the accessory.
Preferably, the control means comprising a control panel positionable in operative proximity to the handle. Advantageously, this enables a user to conventionally control the accessory during use.
Ideally, the accessory comprising a battery being mountable in the handle.
Preferably, the battery is releasably attachable to the handle.
Preferably, the work fluid comprising water.
Ideally, the work fluid further comprising a cleaning agent.
Preferably, the accessory is adaptable to be mounted on a corresponding shaped docking station for charging the battery. The docking station can be mounted on a wall, for example.
Accordingly, the present invention further provides filtration means adaptable to be disposed in an accessory of a vacuum cleaner, the filtration means being adaptable to separate liquid from air such that substantially no liquid returns to the vacuum cleaner.
Ideally, the filtration means being disposed in an accessory for a central vacuum cleaner.
Ideally, the filtration means being disposed in the fluid path between a vacuum intake head of the accessory and the vacuum cleaner.
Preferably, the filtration means comprising a waste fluid storage means having an inlet in fluid communication with a chamber of the vacuum intake head and an outlet in fluid communication with the vacuum cleaner.
In one arrangement, the filtration means being an active filtration means.
Ideally, the active filtration means comprising a powered centrifugal fan.
More preferably, the filtration means being passive filtration means.
Preferably, the passive filtration means comprising a waste fluid storage means having an inlet adaptable to be in fluid communication with the chamber of the vacuum intake head and an outlet adaptable to be in fluid communication with the vacuum cleaner.
Ideally, the outlet of waste fluid storage means is restricted in size to limit the amount of liquid that escapes from the outlet.
Preferably, the outlet of the waste fluid storage means is a slit or slot.
In a first arrangement, the passive filtration means comprising: a waste fluid storage means having an inlet in fluid communication with a vacuum intake head of the accessory and an outlet; a filter in fluid communication with the outlet of the waste fluid storage means; and an outlet conduit extending from the filter and adaptable to be releasably connected to the vacuum cleaner, the filter adaptable to trap waste liquid that has escaped from the outlet of the waste fluid storage means and prevent it entering the outlet conduit.
Ideally in the first arrangement, the passive filtration means comprising a plurality of filters arranged in series between the outlet of the waste fluid storage means and the outlet conduit.
Preferably in the first arrangement, the plurality of filters have different grades of permeability such that filters closer to the outlet of the waste fluid storage means are more permeable than filters closer to the outlet conduit.
Ideally in the first arrangement, the permeability of the plurality of filters decreases consecutively from the outlet of the waste fluid storage means to the outlet conduit.
Most preferably in the first arrangement, the size of the outlet of waste fluid storage means is restricted to limit the amount of fluid that escapes from the waste fluid storage means.
Ideally in the first arrangement, the outlet of the waste fluid storage means is a slit or slot.
Preferably in the first arrangement, the waste fluid storage means comprising a plurality of outlets, the passive filtration means comprising a corresponding number of filters and outlet conduits associated with the plurality of outlets.
Ideally in the first arrangement, the passive filtration means further comprises an inlet conduit extending between the chamber of the vacuum intake head of the accessory and the inlet of the waste fluid storage means.
Preferably in the first arrangement, the waste fluid storage means comprises a plurality of inlets and a corresponding number of inlet conduits extending between the chamber of the vacuum intake head and the inlet of the waste fluid storage means.
In a second arrangement, the passive filtration means comprising a fluid storage means having an inlet in fluid communication with a vacuum intake head of the accessory and an outlet; and an outlet conduit extending from the outlet of the waste fluid storage means and adaptable to be releasably connected to the vacuum cleaner, the outlet conduit having at least one twist or turn arranged such that liquid travelling in the outlet conduit loses kinetic energy due to collisions with the walls of the outlet conduit and returns to the waste fluid storage means.
Ideally in the second arrangement, the passive filtration means further comprises an inlet conduit extending between the chamber of the vacuum intake head of the accessory and the inlet of the waste fluid storage means.
Preferably in the second arrangement, the waste fluid storage means comprises a plurality of inlets and a corresponding number of inlet conduits extending between the chamber of the vacuum intake head of the accessory and the inlet of the waste fluid storage means.
Ideally in the second arrangement, the waste fluid storage means comprises a plurality of outlets and a corresponding number of outlet conduits extending from the outlet of the waste fluid storage means.
Preferably, each of the outlet conduits having at least one twist or turn arranged such that liquid travelling in the outlet conduits loses kinetic energy due to collisions with the walls of the outlet conduits and returns to the waste fluid storage means
Preferably, the filtration means further comprising a filter enclosure.
Ideally, the filter is removable from the filter enclosure. Advantageously, this enables the filter to be cleaned/replaced.
Ideally, the filter enclosure comprising a drain or weep hole in fluid communication with the waste fluid storage means. Advantageously, the drain or weep hole enables liquid in the enclosure (i.e. liquid that was trapped by the filters) to return to the waste fluid storage means.
Accordingly, the present invention further provides a vacuum cleaner system comprising:
a vacuum cleaner comprising a vacuum source and at least one pipe extending from the vacuum source to at least one inlet port; and
an accessory adaptable to releasably connect to the at least one inlet port of the vacuum cleaner, the accessory comprising: a vacuum intake head having a chamber arranged such that when the accessory is connected to the at least one inlet port, the chamber is in fluid communication with the vacuum cleaner and adaptable to receive air and liquid from and around the surface to be cleaned; and filtration means adaptable to separate the liquid from the air such that substantially no liquid returns to the vacuum cleaner.
Ideally, the surface to be cleaned being the floor or ground which the vacuum intake head is positioned over.
Ideally, the vacuum cleaner being a central vacuum cleaner.
Preferably, the central vacuum cleaner comprising a central vacuum source located at a stationary permanent or semi-permanent location in a building.
Ideally, at least one inlet port being locatable in a wall or flooring or other permanent location in the building structure.
Preferably, the central vacuum cleaner comprising a plurality of inlet ports spaced apart at different locations in the building, each inlet port being in the fluid communication with the central vacuum source.
Ideally, the chamber of the vacuum intake head is adaptable to receive air and contaminated work fluid from and around the surface to be cleaned. Here, “contaminated work fluid” means work fluid laden with dust or dirt particles or other contaminants.
Preferably, the filtration means being passive filtration means.
Ideally, the accessory further comprising spraying means for spraying a work fluid onto a surface to be cleaned.
The skilled man will appreciate that all preferred or optional features of the invention described with reference to only some aspects or embodiments of the invention may be applied to all aspects of the invention.
It will be appreciated that optional features applicable to one aspect of the invention can be used in any combination, and in any number. Moreover, they can also be used with any of the other aspects of the invention in any combination and in any number. This includes, but is not limited to, the dependent claims from any claim being used as dependent claims for any other claim in the claims of this application.
The invention will now be described with reference to the accompanying drawings which shows by way of example only one embodiment of an apparatus in accordance with the invention.
In the drawings:
The present invention relates to accessories for vacuum cleaners such as portable or central vacuum cleaners. The below discussion will focus on the exemplary embodiment of the accessory being for a central vacuum cleaner. However, as can be appreciated, the accessory described below can be equally used in portable vacuum cleaner systems.
In
The vacuum intake head 21 (
The filtration device 40 is disposed within the accessory 20 and in the fluid path between the chamber 21a of the vacuum intake head 21 and the central vacuum cleaner 1. In some arrangements, the filtration device 40 is an active filtration device 40 such as a centrifugal fan. In most arrangements, however, the filtration device 40 is a passive filtration device 40. Passive filtration devices 40 do not require any power source (other than the vacuum provided by the central vacuum cleaner) to separate the liquid from the air stream, and thus can be incorporated into the accessory 20 without substantially increasing the weight or power consumption of the accessory 20.
The accessory 20 shown in
As shown in
In another arrangement not expressly shown in
While during normal use the filtration devices 40 outlined above will prevent liquid from entering the central vacuum cleaner 1, there is a risk that if/when the elongate body 22 (
In this arrangement, the fluid path 50 can comprise a tapered section 59 proximal to an outlet 24 of the accessory 20. The ball 56 is sized to have a diameter greater to or substantially equal to the minimum width of the tapered section 59 such that the ball 56 can block the fluid path 50 when released from the retaining arrangement 54. The threshold angle with which the ball 56 is released from the retaining arrangement 54 to block the fluid path 50 can be selected based on a number of factors, such as the size and shape of the ramp 58 and the cage 54. In most expected arrangements, the retaining arrangement 54 will retain the ball 56 when the longitudinal axis of the elongate body 22 is less than 45°, or more likely less than 60° away from the vertical. Further, the retaining arrangement 54 will release the ball into the fluid path 50 in response to the longitudinal axis of the elongate body 22 being more than 45°, or more likely more than 60° away from the vertical. When the ball 56 is released, it will block the fluid path 50 at a position where the width of the fluid path 50 is substantially equal to or narrower than the width of the ball 56.
The waste fluid storage device 41 comprises a waste fluid storage container 48 as shown in
In some arrangements, the waste fluid storage container 48 can further comprise a device for closing the outlet 420 of the waste fluid storage container 48 in response to the volume of liquid in the waste fluid storage container 48 exceeding a threshold value. This arrangement therefore seals off the outlet if the waste fluid storage container 48 is overfilled, preventing liquid from escaping from the outlet 420. This situation could arise if a user neglects to empty the waste fluid storage container 48 between cleaning operations. The device for closing is not shown in the figures, but in one arrangement can comprise a ballcock valve adaptable to rise with the liquid level in the waste fluid storage container 48 and block the outlet 420 of the waste fluid storage container 48 once the volume of liquid in the waste fluid storage container 48 exceeds the threshold value. Alternatively, the device for closing can comprise a cage attached to an inside surface of the waste fluid storage container 48 and enclosing the outlet 420. A ball disposed within the cage is adaptable to rise with the liquid level and block the outlet 420 once the volume of liquid in the waste fluid storage container 48 excess a threshold value. Of course other arrangements for closing the outlet 420 are envisioned.
The accessory 20 can further comprise a spraying device indicated generally by the reference numeral 30 (
The pumping device 70 can be one of a diaphragm pump, peristaltic pump or vane pump, or any other known device for pumping fluid. Most preferably, however, the pumping device 70 is a compressor, which enables the spraying device 30 to spray boiling or nearly boiling water onto the surface to be cleaned. Boiling water is generally preferred as a work fluid due to its enhanced cleaning properties as compared to cold or tepid water. The arrangement of the accessory 20 adaptable to receive and retain boiling water is discussed in greater detail below.
The pumping device 70 can be adaptable to intermittently spray work fluid onto the surface to be cleaned. To this end, the work fluid storage device 31 comprises a control device (not shown) operable to selectively activate the pumping device 70. In one such arrangement, the control device is a manually operated switch positioned on an external surface of the accessory 20. The switch is operable to trigger the pumping device 70 to spray work fluid onto the surface to be cleaned. In this way, the user can control when work fluid is sprayed onto the surface to be cleaned. In a further such arrangement, the switch is positioned proximal to the handle 23 of the accessory such that it can be easily reached by the user when cleaning. The switch would in this instance generally be a trigger switch.
In another arrangement, the control device is a controller disposed within the accessory 22. The controller is programmable to selectively activate the pumping device 70 to spray work fluid, and selectively activate can involve periodically activating the pumping device 70 to spray work fluid. In one exemplary embodiment, the controller has a first operating mode for periodically activating the pumping device 70 to spray work fluid at a first frequency, and at least one other operating mode for periodically activating the pumping device 70 to spray work fluid at a second frequency different to the first frequency. The operating mode can be chosen, e.g. by a user, based on the surface to be cleaned. For example, the controller may have a “high frequency”, “medium frequency” and “low frequency” operating modes which will activate the pumping device 70 at different frequencies. The “high frequency” mode would activate the pumping device 70 at a relatively fast rate making it suitable for cleaning excessively soiled areas but would drain the work fluid storage device 31 of work fluid relatively quickly. The “medium frequency” and “low frequency” operating modes would operate at correspondingly slower rates making them suitable for less soiled areas and drain the work fluid storage device 31 more slowly. A user would be able to select operating mode through use of a control panel 245 (
The inlet 315 can be an accessible inlet 315 for receiving work fluid. In this arrangement, the user is able to fill the work fluid storage device 31 using the accessible inlet 315, such as by using a water jug of kettle. Therefore, it is not necessary for the work fluid storage device 31 to be separated from the accessory 20 to perform the work fluid filling operation. An example of the accessible inlet 315 is shown in
The work fluid storage device 31 comprises a work fluid storage container 33 (
In addition, the fixedly attached work fluid storage device 31 can be optimally designed to receive and retain boiling water. In particular, the arrangement where the work fluid storage device 31 is fixedly attached to the accessory 20 and the pumping device 70 is a compressor has been found to be ideally suited for the use of boiling water as the work fluid. One of this reasons for this is that the fixedly attachable work fluid storage device 31 can be optimally designed to receive and retain boiling water, and resist the water pressure within the work fluid storage device 31 caused by a compressor. In this arrangement, the work fluid storage device 31 can further comprise insulation to reduce the spread of heat from the work fluid storage device 31, and therefore maintain the work fluid at its original temperature for longer. The work fluid storage device 31 can further comprise a heating element (not shown) for heating the work fluid. The heating element can heat or help maintain the temperature of the work fluid in the work fluid storage device 31. The heating element can be a resistive heating element, such as a metal heating elements, ceramic heating elements and positive thermal coefficient (PTC) ceramic heating element. It is more likely, however, that the heating element is a thermoelectric heating element.
The capacity of the waste fluid storage device 41 is larger than the capacity of the work fluid storage device 31. This means that the waste fluid storage device 41 can receive all of the liquid sprayed out from the work fluid storage device 31 without overfilling.
The vacuum intake head 21 has a chamber 21a (
In some arrangements not expressly shown in the figures, the vacuum intake 21 head comprises two air intake slots 270. In such an arrangement, a first of the air intake slots 270 is positioned towards the leading edge/portion of the housing 215 and a second of the air intake slots 270 being positioned towards the rear end portion of the housing 215. The liquid outlet slot 275 is disposed between the air intake slots 270. In this arrangement, the second air intake slot 270 will suck up the contaminants loosened by the work fluid during the forward sweeping operation. Of course, one skilled in the art will appreciate that other arrangements of air intake slots 270 and liquid intake slots 275 are encompassed by this application. For example, there may be more than two air intake slots 270 and more than one liquid outlet slot 275.
The housing 215 further comprises an openable cover 215a for enabling an operator to access the components inside the vacuum intake head 21, such as for maintenance. An internal member 220 is positioned within the housing 215 and separates the air intake slot 270 from the liquid outlet slot 275. The internal member 220 is a bifurcated member 220 comprising a first wall section 221 and a second wall section 222, with the chamber 21a being defined above the upper surface of the first wall section 221 and the upper surface of the second wall section 222. The first wall section 221 is a generally planar wall extending from a lower front end portion of the vacuum intake head 21 to an upper rear end portion of the vacuum intake head 21. The first wall section 221 tapers from the lower front end portion of the vacuum intake head 21 to the upper rear end portion of the vacuum intake head 21. The first wall section 221 is generally arcuate. The second wall section 22 generally extends from the upper rear end portion of the vacuum intake head 21 to the lower rear end portion of the vacuum intake head 21.
At least one nozzle 74, e.g. three nozzles 74, of the spraying device 30 are provided in the housing 215 in fluid communication with the liquid outlet slot 275. The vacuum intake head 21 further comprises at least one rotatable brush 225 that is adaptable to rotate to agitate the surface to be cleaned, such as the surface to be cleaned where the work fluid has already been applied by the at least one nozzle 74. The agitation helps to contaminate the work fluid with any dust and dirt particles from the surface to be cleaned which can then be removed from the surface to be cleaned by the suction force generated by the central vacuum cleaner 1. In the arrangement shown in
As shown in
The at least one nozzle 74 is adaptable to spray work fluid onto and around the at least one rotatable brush 225. This can be, for example, to perform a bush cleaning operation. Alternatively, the at least one nozzle 74 can spray work fluid onto the surface to be cleaned via the at least one rotatable brush 225. In some arrangements, the at least one nozzle 74 is capable of spraying work fluid onto and around the surface to be cleaned and onto and around the at least one rotatable brush 225. The at least one nozzle 74 can spray work fluid simultaneously onto the surface to be cleaned and the at least one rotatable brush. Typically, the at least one nozzle 74 is adaptable to switch between spraying work fluid onto and around the surface to be cleaned and spraying work fluid onto and around the at least one rotatable brush 225. In this way, a user can switch between a surface/floor cleaning operation and a brush cleaning operation. This switching operation can be performed by a user operating a switch or button on the control panel 245 (see
The at least one rotatable brush 225 can be rotatably connected to the housing. Further, the at least one rotatable brush 225 can be detachable from the housing so that it can be removed from the housing and replaced. The rotatable brush 225 is powered by a motor (not shown), but will generally be located in the vacuum intake head 21. The vacuum intake head 21 can further comprise at least one non-rotatable brush. The at least one rotatable brush 225 and the at least one non-rotatable brush being one of a nylon, polypropylene, horse hair, micro fibre, Tampico or Palmyra brush. The specific brush material can be chosen as appropriate by one skilled in the art based on the desired application of the accessory 20. The at least one non-rotatable brush can be disposed over a liquid outlet slot 275 in a similar manner to the at least one rotatable brush 225. Further, the at least one non-rotatable brush can be detachable from the housing, such as for cleaning, and can be sprayed with work fluid by the at least one nozzle 74. In addition, the vacuum intake head 21 can comprise at least one member 240.
The elongate body 22 of the accessory 20 is releasably connected to the vacuum intake head 21. Therefore, the vacuum intake head 21 can be detached from the elongate body 22 such as for replacement or cleaning. In some arrangements, differently sized vacuum intake heads 21 will be provided for cleaning different areas. A large vacuum intake head 21 will be suitable for cleaning large open areas, while a smaller vacuum intake head 21 will be suitable for cleaning cracks, crevices, remote places or other places that are inaccessible with the larger vacuum intake head. A user can simply detach the current vacuum intake head 21 and attach the desired replacement vacuum intake head 21 when performing a cleaning operation. Furthermore, some of the vacuum intake heads 21 may be better adapted for cleaning certain surfaces, such as carpet, while others may be adapted for cleaning wooden or tiled flooring. A user can interchange the vacuum intake head 21 when carrying out the cleaning operation, without having to completely swap out the accessory 20.
Additionally or alternatively, the accessory 20 is moveably connected to the elongate body 22. In one such arrangement, the vacuum intake head 21 is moveably connected to the elongate body 22 such that the leading edge/portion of the vacuum intake head 21 lifts upwards from the surface to be cleaned during a forward sweeping movement. As the vacuum intake head 21 lifts up, a vertical clearance between the surface to be cleaned and the leading edge/portion of the vacuum intake head 21 is provided. This means that larger objects such as stones and crumbs are not pushed forwards by the leading edge/portion of the vacuum intake head 21, but rather the vacuum intake head 21 moves over the objects and can suck them up via the air intake slot 270. In this arrangement, the vacuum intake head 21 can also be moveably connected to the elongate body 22 such that the leading edge/portion of the vacuum intake head 21 lowers onto the surface to be cleaned during a backwards sweeping movement. The moveable connection can comprise a pivotal connection so that the vacuum intake head 21 can pivot up/down relative to the elongate body 22. Alternatively or additionally, the connection can comprise a rotational connection so that the vacuum intake head 21 can rotate around the longitudinal axis of the elongate body 22. In such arrangements, the vacuum intake head 21 can rotate up to 180° or even up to 360° around the longitudinal axis of the elongate body 22.
The elongate body 22 is generally an elongate shaft 22, and the fluid storage device 31 and waste fluid storage device 41 can be arranged within the elongate body 22 such that they are substantially in-line with one another and positioned along the longitudinal axis of the elongate body 22. This arrangement can be seen in
According to some implementations of the present invention, the accessory 20 is provided without the spraying device 30. In this arrangement, the filtration device 40 enables the accessory 20 to be used to vacuum up damp surfaces, such as a floor surface where a liquid has been spilled, without damaging the central vacuum cleaner 1.
In the preceding discussion of the invention, unless stated to the contrary, the disclosure of alternative values for the upper or lower limit of the permitted range of a parameter, coupled with an indication that one of the said values is more highly preferred than the other, is to be construed as an implied statement that each intermediate value of said parameter, lying between the more preferred and the less preferred of said alternatives, is itself preferred to said less preferred value and also to each value lying between said less preferred value and said intermediate value.
The features disclosed in the foregoing description or the following drawings, expressed in their specific forms or in terms of a means for performing a disclosed function, or a method or a process of attaining the disclosed result, as appropriate, may separately, or in any combination of such features be utilised for realising the invention in diverse forms thereof.
In relation to the detailed description of the different embodiments of the invention, it will be understood that one or more technical features of one embodiment can be used in combination with one or more technical features of any other embodiment where the transferred use of the one or more technical features would be immediately apparent to a person of ordinary skill in the art to carry out a similar function in a similar way on the other embodiment.
Number | Date | Country | Kind |
---|---|---|---|
1603417 | Feb 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/054533 | 2/27/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/144729 | 8/31/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2617138 | Brown, Sr. | Nov 1952 | A |
3705437 | Rukavina, Jr. | Dec 1972 | A |
4675936 | Rawlins | Jun 1987 | A |
5263224 | Lovelady | Nov 1993 | A |
5377383 | Christensen | Jan 1995 | A |
6324723 | Dodson | Dec 2001 | B1 |
8230550 | Krebs | Jul 2012 | B2 |
9186028 | White | Nov 2015 | B2 |
20150297048 | Eiichi | Oct 2015 | A1 |
20180168419 | Johnson | Jun 2018 | A1 |
20180333736 | Krebs | Nov 2018 | A1 |
20190053676 | Mallon | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
2174904 | Oct 1997 | CA |
0730897 | Sep 1996 | EP |
H10179455 | Jul 1998 | JP |
3278659 | Apr 2002 | JP |
2008049102 | Mar 2008 | JP |
2008049102 | Mar 2008 | JP |
1994008501 | Apr 1994 | WO |
1994008502 | Apr 1994 | WO |
WO-9408501 | Apr 1994 | WO |
WO-9408502 | Apr 1994 | WO |
Entry |
---|
English Abstract of EP0730897. |
English Abstract of JP2008049102. |
English Abstract of JPH10179455. |
International Search Report dated Jun. 27, 2017. |
Written Opinion of the International Searching Authority dated Jun. 27, 2017. |
International Preliminary Report on Patentability dated Aug. 28, 2018. |
Number | Date | Country | |
---|---|---|---|
20190053676 A1 | Feb 2019 | US |