Accommodating intraocular lens assembly with multi-functional capsular bag ring

Information

  • Patent Grant
  • 6972033
  • Patent Number
    6,972,033
  • Date Filed
    Monday, August 26, 2002
    21 years ago
  • Date Issued
    Tuesday, December 6, 2005
    18 years ago
Abstract
An intraocular lens (IOL) has been provided with an accommodation assembly that effects axial movement of the IOL optic through both the radial action of ciliary muscles and the axial forces resulting from vitreous pressure on the posterior wall of the capsular bag. In a preferred embodiment, the assembly comprises an IOL having substantially rigid, posteriorly extending fixation members which extend through slots in an accommodation ring encircling the optic. Axial forces exerted by vitreous fluids on the posterior wall of the capsular bag are transmitted from the posterior wall to the ring to the fixation members at the slot areas, causing axial movement of the IOL. At the same time, the angulation of the haptics converts radial forces due to contraction or expansion of the capsular bag into axial forces, causing still more axial movement of the IOL.
Description
FIELD OF THE INVENTION

This invention relates to intraocular lenses (IOLs). More particularly, the invention relates to intraocular lenses which provide accommodating movement in the eye.


The human visual system includes the eyes, the extraocular muscles which control eye position within the eye socket, the optic and other nerves that connect the eyes to the brain, and particular areas of the brain that are in neural communication with the eyes. Each eye forms an image upon a vast array of light sensitive photoreceptors of the retina. The cornea is the primary refracting surface which admits light through the anterior part of the outer surface of the eye. The iris contains muscles which alter the size of the entrance port of the eye, or pupil. The crystalline lens has a variable shape within the capsular bag, under the indirect control of the ciliary muscle. Having a refractive index higher than the surrounding media, the crystalline lens gives the eye a variable focal length, allowing accommodation to objects at varying distances from the eye.


Much of the remainder of the eye is filled with fluids and materials under pressure which help the eye maintain its shape. For example, the aqueous humor fills the anterior chamber between the cornea and the iris, and the vitreous humor fills the majority of the volume of the eye in the vitreous chamber behind the lens. The crystalline lens is contained within a third chamber of the eye, the posterior chamber, which is positioned between the anterior and vitreous chambers.


The human eye is susceptible to numerous disorders and diseases, a number of which attack the crystalline lens. For example, cataracts mar vision through cloudy or opaque discoloration of the lens of the eye. Cataracts often result in partial or complete blindness. If this is the case, the crystalline lens can be removed and replaced with an intraocular lens, or IOL.


While restoring vision, conventional IOLs have limited ability for accommodation (i.e., the focusing on near objects). This condition is known as presbyopia. To overcome presbyopia of an IOL, a patient may be prescribed eyeglasses. Alternative attempts in the art to overcome presbyopia focus on providing IOLs with accommodation ability. Accommodation may be accomplished by either changing the shape of the IOL, e.g., to become more convex to focus on near objects, or by moving the IOL along its optical axis. Examples of this latter approach are disclosed in U.S. Pat. No. 6,176,878 to Gwon et al. and U.S. Pat. No. 6,406,494 to Laquette et al. The contents of both these patents are incorporated herein by reference.


In a healthy eye, accommodation is achieved through the actions of the ciliary muscles as well as through changes in the pressure exerted by vitreous fluids on the capsular bag. Prior art accommodating IOLs have typically attempted to take advantage of one of these two naturally occurring mechanisms. For instance, one class of accommodating IOL, exemplified by the patent to Gwon et al., takes advantage of changes in the pressure of the vitreous fluids by placing the optic of the IOL in direct contact with the posterior wall of the capsular bag. Thus, axial forces on the capsular bag are transmitted directly to the optic. Another class of accommodating IOLs, exemplified by the patent to Laquette et al., takes advantage of the actions of the ciliary muscles by circumscribing the optic with a flexible, posteriorly extending movement assembly that converts contraction and expansion of the capsular bag into axial movement of the optic.


Both the posteriorly positioned IOLs of the type disclosed by Gwon et al. and the anteriorly vaulted IOLs disclosed by Laquette et al. are satisfactory in most respects. However, because each relies on only one of the two available mechanisms for moving the IOL axially, neither achieves as much as accommodation as would be available if both mechanisms were used.


Accordingly, it would be advantageous to provide an IOL accommodation assembly that converts both the action of the ciliary muscles and the forces resulting from vitreous pressure on the posterior wall of the capsular bag into axial movement of the IOL optic.


SUMMARY OF THE INVENTION

An intraocular lens (IOL) has been provided with an accommodation assembly that effects axial movement of the IOL optic through both the radial action of ciliary muscles and the axial forces resulting from vitreous pressure on the posterior wall of the capsular bag. The accommodation assembly is configured to retard or prevent cellular growth across the optic of the IOL. In addition, the assembly comprises separate pieces, allowing each component to be formed of different materials, and the properties of each to be independently optimized. The assembly is relatively straightforward, can be produced using conventional IOL manufacturing procedures, and can be inserted in the eye of a patient using surgical techniques which are the same or similar to techniques used with conventional IOLs.


According to one aspect of the invention, the assembly comprises an IOL having substantially rigid, posteriorly extending fixation members, or haptics, which pass through slots formed in an accommodation ring surrounding the IOL. The IOL and the accommodation ring are substantially separate from and independent of one another, with contact between them occurring only at the walls of the slots. Axial forces exerted by vitreous fluids on the posterior wall of the capsular bag are thus transmitted from the posterior wall to the ring to the fixation members at the slot areas, causing axial movement of the IOL. At the same time, the angulation of the haptics converts radial forces due to contraction or expansion of the capsular bag into axial forces, causing still more axial movement of the IOL. Thus, an effective amount of accommodation is achieved.


One of the advantages of the present invention is that the accommodation assembly is arranged such that the IOL optic is always spaced from the walls of the capsular bag. Because there is no direct contact between the capsular bag and the IOL optic, the potential for cellular growth across the optic is minimized. In a preferred embodiment, this potential is reduced still further by providing the accommodation ring with sharp, preferably square, corners which have been shown to deter such growth. Thus, such problems as posterior capsule opacification (PCO) of the optic, which can interfere with vision, and fibrosis of the capsular bag, which can reduce the bag's ability to contract and expand, are decreased.


In addition, the accommodation ring is preferably provided with a plurality of circumferentially spaced, radially extending positioning members which maintain a distance between the body of the ring and equator of the capsular bag. Preferably, each of the positioning members makes minimal contact with the capsular equator so that contraction of the bag is not inhibited.


Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.


Additional aspects, features, and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numbers.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view showing an IOL accommodation assembly according to the present invention;



FIG. 2 is an cross-sectional elevation of the IOL accommodation assembly of FIG. 1 implanted in the posterior capsular of an eye; and



FIG. 3 is a plan view of FIG. 2.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring to the drawings in more detail, an intraocular lens assembly 10 according to an exemplary embodiment of the present invention is illustrated in FIG. 1. The assembly 10 comprises an IOL 12, including an optic 14 and at least two fixation members 16, 17, and an accommodation ring 18. The optic 14 is adapted to focus light on a retina of an eye, while the fixation members 16, 17, are adapted to secure the optic within the capsular bag of the eye, and the accommodation ring 18 is adapted to transmit forces exerted by the ciliary muscles and vitreous fluids on the capsular bag to the fixation members 16, 17, as will be discussed in greater detail below.


The optic 14 of the IOL may be of any conventional shape or curvature depending on the type of vision correction needed. It may be constructed of rigid biocompatible materials, such as polymethyl methacrylate (PMMA), or flexible, deformable materials, such as silicone polymeric material, acrylic polymeric material, hydrogel polymeric material, and the like, which enable the lens body to be rolled or folded for insertion through a small incision in the eye.


The illustrated fixation members 16, 17 are filament-type haptics, although other types of relatively long and narrow fixation members, such as loop-type haptics, may also be used. The fixation members 16, 17 may be formed of any biocompatible material having sufficient rigidity to transmit forces from the capsular bag to the optic 14 yet flexible enough to minimize the risk of damage to the eye. Polymethyl methacrylate (PMMA) and polypropylene are two such materials, although other materials having similar characteristics will be readily apparent to one skilled in the art. In addition, the fixation members 16, 17 may be integral with or mechanically coupled to the optic 14, or secured thereto by adhesive or ultrasonic bonding. Regardless of the means of attachment used, the fixation members 16, 17 should be disposed at an angle such that the distal end 19 of each extends in a posterior direction relative to the optic 14.


The structure and function of the accommodation ring 18 may be best understood after reviewing the anatomy of the posterior chamber of the eye, the relevant portions of which are shown in FIG. 2. Briefly, the posterior chamber comprises the capsular bag 20, which is connected to a ciliary muscle 22 by suspensory ligaments or zonules 24. The capsular bag 20 includes a posterior wall 26 that separates the posterior chamber from the vitreous chamber 28, an anterior wall 30, which after removal of the natural crystalline lens is often called the anterior flap, and an equator 32 formed at the intersection between the posterior and anterior walls 26, 30.


In a healthy eye, the ciliary muscle 22 constricts for near vision, causing the capsular equator 32 to contract to its minimum diameter and the pressure of fluids in the vitreous chamber 28 to increase. Conversely, for far vision, the ciliary muscle 22 relaxes, causing the capsular equator 32 to expand to its maximum diameter and the vitreous chamber pressure to decrease. The accommodation ring 18 of the present invention is configured to take advantage of this natural behavior of the ciliary muscle by transmitting the axial and radial forces FA and FR from the vitreous chamber 28 and the capsular equator 32, respectively, to the fixation members 16, 17 and converting these forces into axial movement of the IOL optic 14.


The accommodation ring 18 comprises a ring body 34 having an outer diameter that is less than the diameter of the capsular equator 32 in its most contracted state. A plurality of circumferentially spaced positioning members 35, 36, 37, 38 extend radially outwardly from the outer surface of the ring body 34. The length of each positioning member 35, 36, 37, 38 is selected such that the distance from the outermost edge of one positioning member 35 to the outermost edge of a diametrically opposed positioning member 37 is approximately equal to the diameter of the capsular equator 32 in its most expanded state. Thus, the positioning members 35, 36, 37, 38 serve to maintain space between the ring body 34 and the capsular equator 32.


Each of the positioning members 35, 36, 37 and 38 has a width in the circumferential direction which is very small relative to the total circumference of the ring body 34. This results in minimal contact between the accommodation ring 18 and the capsular equator 32, and thus does not significantly interfere with contraction of the capsular bag 20.


The ring body 34 includes a plurality of slots 40, 41, each one receiving a different one of the fixation members 16, 17. Each slot 40, 41 has a posterior wall 43 extending transversely to its respective fixation member 16, 17 so that any forces FA exerted on the ring body 34 due to vitreous pressure are transmitted from the slot walls 43 to the fixation members 16, 17, causing the IOL optic 14 to move forward. These forces are added to the radial forces FR exerted on the fixation members 16, 17 by the ciliary muscles 22, thus resulting in greater accommodation than would be possible if only forces due to vitreous pressure were utilized.


The potential for epithelial cell growth across the optic 14 of the IOL 12 is relatively small, since the optic 14 does not directly contact the capsular bag 20. This potential may be reduced still further, however, by providing the ring body 34 with sharp, preferably square, corners 44, which have been shown to inhibit epithelial cell growth.


The accommodation ring 18 is preferably formed of a biocompatible material that is sufficiently deformable to allow it to be rolled, folded or otherwise compressed to facilitate its passage through a small incision in the eye. Because it is formed entirely separately from the IOL 12, however, it may be made of different material than the IOL optic 14 and fixation members 16, 17, and thus can have such properties as strength, hardness and rigidity optimized independently of the other elements.


The IOL 12 may be inserted into the capsular bag 20 of a mammalian eye using a two step procedure after the natural lens has been removed using a phacoemulsification technique. First, the accommodation ring 18 may be rolled or folded and inserted through a small incision, for example on the order of about 3.2 mm. Then the IOL 12 may also be rolled or folded and inserted through the same incision using any suitable insertion apparatus. After the IOL 12 has been inserted through the incision, the fixation members 16, 17 may be positioned in the slots 40, 41 of the ring body 34 and the distal ends of the fixation members 16, 17 tucked under the anterior flap 30 of the capsular bag 20 using the tip of the insertion apparatus or another tool favored by the ophthalmic surgeon.


If the IOL accommodation assembly 10 is to be implanted in an adult human eye, the optic 14 preferably has a diameter in the range of about 3.5 mm to about 7 mm and, more preferably, in the range of about 5 mm to 6 mm. Further, the accommodation assembly 10 may have an overall diameter, with fixation members 16, 17 and accommodation ring 18 in unstressed conditions, of about 8 mm to about 13 mm. Additionally, the optic 14 preferably has a far vision correction power for infinity in an unaccommodated state.


While the present invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.

Claims
  • 1. An intraocular lens assembly comprising: an optic adapted to focus light to a retina of an eye and having a central optical axis; andaccommodation means for positioning the optic in the capsular bag of an eye, the capsular bag including an equator, a posterior wall and an anterior flap, the accommodation means includingfirst means encircling the optic for transmitting axial forces and radial forces to a second means for maintaining the optic in forwardly spaced relationship to the posterior wall of the capsular bag, causing axial movement of the optic;the second means extending outside and beyond an outer perimeter of the first means.
  • 2. The assembly of claim 1, wherein the second means comprises a plurality of fixation members extending radially from the optic, each of the fixation members having a proximal end coupled to the optic and a distal end configured for placement in the equator of the capsular bag, the distal end extending posteriorly of the optic when the assembly is implanted in an eye.
  • 3. The assembly of claim 2, wherein the fixation members comprise at least two filament-type haptics.
  • 4. The assembly of claim 2, wherein the first means comprises a slotted element encircling the optic, the fixation members extending through the element such that axial forces exerted on the element by the posterior wall are transmitted to the fixation members.
  • 5. The intraocular lens assembly according to claim 2, wherein each of the fixation members is formed of sufficiently rigid material to translate compressive forces exerted by the ciliary muscle on the equator of the capsular bag into anterior movement of the optic.
  • 6. The intraocular lens assembly according to claim 4, wherein the slotted element comprises a substantially circular ring body.
  • 7. The intraocular lens assembly according to claim 4, wherein the slotted element comprises: a ring body; anda plurality of circumferentially spaced positioning members extending outwardly from the ring body for maintaining a distance between the ring body and the equator of the capsular bag.
  • 8. The intraocular lens assembly according to claim 7, wherein the ring body has a predetermined circumference, and wherein each of the positioning members has a sufficiently small width relative to the circumference of the ring body to minimally inhibit contraction of the capsular bag.
  • 9. The intraocular lens assembly according to claim 4, wherein the slotted element is formed from a first material and the fixation members are formed from a second material having different properties from the first material.
  • 10. The intraocular lens assembly according to claim 4, wherein the slotted element includes an edge surface extending between a posterior surface and an anterior surface, the edge surface intersecting with a least one of the posterior surface and the anterior surface to form a sharp edge corner therewith.
  • 11. An intraocular lens assembly for insertion into an eye having a capsular bag controlled by a ciliary muscle, the capsular bag including an equator, a posterior wall, and an anterior flap, the assembly including: an intraocular lens comprising an optic having an optic axis and a plurality of fixation members extending radially from the optic; andan accommodation ring configured to extend around the optic in radially spaced relationship thereto, the accommodation ring having a posterior surface for placement against the posterior wall of the capsular bag, an anterior surface for placement against the anterior flap of the capsular bag, and an outer perimeter, each of the fixation members extending outside and beyond the outer perimeter.
  • 12. The intraocular lens assembly according to claim 11, wherein each of the fixation members has a proximal end coupled to the optic and a distal end for placement in the equator of the capsular bag, the distal end extending posteriorly to the proximal end when the assembly is inserted in the eye.
  • 13. The intraocular lens assembly according to claim 12, wherein each of the fixation members is formed of sufficiently rigid material to translate compressive forces exerted by the ciliary muscle on the equator of the capsular bag into anterior movement of the optic.
  • 14. The intraocular lens assembly according to claim 11, wherein the accommodation ring comprises a substantially circular ring body.
  • 15. The intraocular lens assembly according to claim 11, wherein the accommodation ring comprises: a ring body; anda plurality of circumferentially spaced positioning members extending outwardly from the ring body for maintaining a distance between the ring body and the equator of the capsular bag.
  • 16. The intraocular lens assembly according to claim 15, wherein the ring body has a predetermined circumference, and wherein each of the positioning members has a sufficiently small width relative to the circumference of the ring body to minimally inhibit contraction of the capsular bag.
  • 17. The intraocular lens assembly according to claim 15, further comprising a plurality of radially extending slots, each of the slots being located in the ring body at a location circumferentially spaced from the positioning members.
  • 18. The intraocular lens assembly according to claim 11, wherein the accommodation ring is formed from a first material and the fixation members of the intraocular lens are formed from a second material having substantially different properties from the first material.
  • 19. The intraocular lens assembly according to claim 11, wherein the accommodation ring includes an edge surface extending between the posterior surface and the anterior surface, the edge surface intersecting with a least one of the posterior surface and the anterior surface to form a sharp edge corner therewith.
US Referenced Citations (151)
Number Name Date Kind
1483509 Bugbee Feb 1924 A
2129305 Feinbloom Sep 1938 A
2274142 Houchin Feb 1942 A
2405989 Beach Jun 1946 A
2511517 Spiegel Jun 1950 A
3031927 Wesley May 1962 A
3034403 Neefe May 1962 A
RE25286 Decarle Nov 1962 E
3210894 Bentley et al. Oct 1965 A
3227507 Feinbloom Jan 1966 A
3339997 Wesley Sep 1967 A
3420006 Barnett Jan 1969 A
3431327 Tsuetaki Mar 1969 A
3482906 Volk Dec 1969 A
3542461 Girard et al. Nov 1970 A
3693301 Lemaltre Sep 1972 A
3922728 Krasnov Dec 1975 A
3932148 Krewalk, Sr. Jan 1976 A
4055378 Feneberg et al. Oct 1977 A
4062629 Winthrop Dec 1977 A
4118808 Poler Oct 1978 A
4162122 Cohen Jul 1979 A
4195919 Shelton Apr 1980 A
4199231 Evans Apr 1980 A
4210391 Cohen Jul 1980 A
4240719 Guilino et al. Dec 1980 A
4253199 Banko Mar 1981 A
4254509 Tennant Mar 1981 A
4274717 Davenport Jun 1981 A
4307945 Kitchen et al. Dec 1981 A
4315673 Guilino et al. Feb 1982 A
4316293 Bayers Feb 1982 A
4338005 Cohen Jul 1982 A
4340283 Cohen Jul 1982 A
4370760 Kelman Feb 1983 A
4377329 Poler Mar 1983 A
4402579 Poler Sep 1983 A
4404694 Kelman Sep 1983 A
4409691 Levy Oct 1983 A
4418991 Breger Dec 1983 A
4476591 Arnott Oct 1984 A
4504982 Burk Mar 1985 A
4551864 Akhavi Nov 1985 A
4560383 Leiske Dec 1985 A
4573775 Bayshore Mar 1986 A
4580882 Nuchman et al. Apr 1986 A
4596578 Kelman Jun 1986 A
4618228 Baron et al. Oct 1986 A
4618229 Jacobstein et al. Oct 1986 A
4636049 Blaker Jan 1987 A
4636211 Nielsen et al. Jan 1987 A
4637697 Freeman Jan 1987 A
4641934 Freeman Feb 1987 A
4676792 Praeger Jun 1987 A
4687484 Kaplan Aug 1987 A
4693572 Tsnetaki et al. Sep 1987 A
RE32525 Pannu Oct 1987 E
4702244 Mazzocco Oct 1987 A
4704016 DeCarle Nov 1987 A
4720286 Bailey et al. Jan 1988 A
4725278 Shearing Feb 1988 A
4752123 Blaker Jun 1988 A
4759762 Grendahl Jul 1988 A
4769033 Nordan Sep 1988 A
4790847 Woods Dec 1988 A
4813955 Achatz et al. Mar 1989 A
4830481 Futhey et al. May 1989 A
4842601 Smith Jun 1989 A
4881804 Cohen Nov 1989 A
4888012 Horn et al. Dec 1989 A
4888015 Domino Dec 1989 A
4888016 Langerman Dec 1989 A
4890912 Visser Jan 1990 A
4890913 DeCarle Jan 1990 A
4892543 Turley Jan 1990 A
4898461 Portney Feb 1990 A
4906246 Grendahl Mar 1990 A
4917681 Nordan Apr 1990 A
4919663 Grendahl Apr 1990 A
4921496 Grendahl May 1990 A
4923296 Erickson May 1990 A
4932966 Christie et al. Jun 1990 A
4932968 Caldwell, Delmar R. et al. Jun 1990 A
4938583 Miller Jul 1990 A
4955902 Kelman Sep 1990 A
4976534 Milge et al. Dec 1990 A
4976732 Vorosmarthy Dec 1990 A
4990159 Kraff Feb 1991 A
4994082 Richards et al. Feb 1991 A
5000559 Takahashi et al. Mar 1991 A
5002382 Seidner Mar 1991 A
5019098 Mercier May 1991 A
5019099 Nordan May 1991 A
5047052 Dubroff Sep 1991 A
5071432 Baikoff Dec 1991 A
5089024 Christie et al. Feb 1992 A
5096285 Silberman Mar 1992 A
5112351 Christie et al. May 1992 A
5147397 Christ et al. Sep 1992 A
5158572 Nielsen Oct 1992 A
5166711 Portney Nov 1992 A
5166712 Portney Nov 1992 A
5171266 Wiley et al. Dec 1992 A
5173723 Volk Dec 1992 A
5192317 Kalb Mar 1993 A
5192318 Schneider Mar 1993 A
5201762 Hauber Apr 1993 A
5225858 Portney Jul 1993 A
5258025 Fedorov et al. Nov 1993 A
5260727 Oksman et al. Nov 1993 A
5270744 Portney Dec 1993 A
5275623 Sarfarazi Jan 1994 A
5354335 Lipshitz et al. Oct 1994 A
RE34998 Langerman Jul 1995 E
5443506 Garabet Aug 1995 A
5476514 Cumming Dec 1995 A
5480428 Fedorov et al. Jan 1996 A
5489302 Skottun Feb 1996 A
5496366 Cumming Mar 1996 A
5521656 Portney May 1996 A
5562731 Cumming Oct 1996 A
5578081 McDonald Nov 1996 A
5593436 Langerman Jan 1997 A
5607472 Thompson Mar 1997 A
5628795 Langerman May 1997 A
5628796 Suzuki May 1997 A
5652014 Galin et al. Jul 1997 A
5652638 Roffman et al. Jul 1997 A
5657108 Portney Aug 1997 A
5674282 Cumming Oct 1997 A
5682223 Menezes et al. Oct 1997 A
5684560 Roffman et al. Nov 1997 A
5766244 Binder Jun 1998 A
5769890 McDonald Jun 1998 A
5776191 Mazzocco Jul 1998 A
5814103 Lipshitz et al. Sep 1998 A
5824074 Koch Oct 1998 A
5843188 McDonald Dec 1998 A
5847802 Meneles et al. Dec 1998 A
5876442 Lipshitz et al. Mar 1999 A
6013101 Israel Jan 2000 A
6096078 McDonald Aug 2000 A
6176878 Gwon et al. Jan 2001 B1
6217612 Woods Apr 2001 B1
6231603 Lang et al. May 2001 B1
6485516 Boehm Nov 2002 B2
6695881 Peng et al. Feb 2004 B2
6761737 Zadno-Azizi et al. Jul 2004 B2
20020138140 Hanna Sep 2002 A1
20030114927 Nagamoto Jun 2003 A1
20030135272 Brady et al. Jul 2003 A1
Foreign Referenced Citations (28)
Number Date Country
3225789 Oct 1989 AU
0246216 Nov 1987 EP
0329981 Aug 1989 EP
0337390 Oct 1989 EP
0342895 Nov 1989 EP
0351471 Jan 1990 EP
0507292 Oct 1992 EP
0566170 Oct 1993 EP
0691109 Jan 1996 EP
0897702 Feb 1999 EP
2058391 Apr 1981 GB
2124500 Feb 1984 GB
2129155 May 1984 GB
2146791 Apr 1985 GB
2192291 Jan 1988 GB
2215076 Sep 1989 GB
8603961 Jul 1986 WO
8700299 Jan 1987 WO
8707496 Dec 1987 WO
8902251 Mar 1989 WO
8911672 Nov 1989 WO
9416648 Aug 1994 WO
9503783 Feb 1995 WO
9615734 May 1996 WO
9625126 Aug 1996 WO
9743984 Nov 1997 WO
0134067 May 2001 WO
888414 Nov 1988 ZA
Related Publications (1)
Number Date Country
20040039446 A1 Feb 2004 US