The present invention relates to intraocular lenses (IOLs). More particularly, the present invention relates to IOLs that provide accommodating movement in the eye.
The human visual system includes the eyes, the extraocular muscles which control eye position within the eye socket, the optic and other nerves that connect the eyes to the brain, and particular areas of the brain that are in neural communication with the eyes. Each eye forms an image upon a vast array of light sensitive photoreceptors of the retina. The cornea is the primary refracting surface which admits light through the anterior part of the outer surface of the eye. The iris contains muscles which alter the size of the entrance port of the eye, or pupil. The crystalline lens has a variable shape within the capsular bag, under the indirect control of the ciliary muscle. Having a refractive index higher than the surrounding media, the crystalline lens gives the eye a variable focal length, allowing accommodation to objects at varying distances from the eye.
Much of the remainder of the eye is filled with fluids and materials under pressure which help the eye maintain its shape. For example, the aqueous humor fills the anterior chamber between the cornea and the iris, and the vitreous humor fills the majority of the volume of the eye in the vitreous chamber behind the lens. The crystalline lens is contained within a third chamber of the eye, the posterior chamber, which is positioned between the anterior and vitreous chambers.
The human eye is susceptible to numerous disorders and diseases, a number of which attack the crystalline lens. For example, cataracts mar vision through cloudy or opaque discoloration of the lens of the eye. Cataracts often result in partial or complete blindness. If this is the case, the crystalline lens can be removed and replaced with an intraocular lens, or IOL.
While restoring vision, conventional IOLs have limited ability for accommodation (i.e., the focusing on near objects). This condition is known as presbyopia. To overcome presbyopia of an IOL, a patient may be prescribed eyeglasses. Alternative attempts in the art to overcome presbyopia focus on providing IOLs with accommodation ability. Accommodation may be accomplished by either changing the shape of the IOL, e.g., to become more convex to focus on near objects, or by moving the IOL along its optical axis. Examples of this latter approach are disclosed in Gwon et al. U.S. Pat. No. 6,176,878 and Laguette et al. U.S. Pat. No. 6,406,494.
While many of the prior art approaches provide partial accommodation, a need still exists for an improved IOL configuration that allows sufficient forward axial movement to achieve full-range accommodation.
In view of the foregoing, it would be beneficial in the art to provide IOLs adapted for sufficient accommodation to reduce significantly (or to overcome) the effects of presbyopia.
The present invention provides new and enhanced intraocular lenses (IOLs) The present IOLs enhance accommodation of an optic. More specifically, the IOLs of the present invention enhance accommodation by converting radial movement of the capsular bag to axial movement of an optic.
In accordance with one aspect of the present invention, an intraocular lens comprises an optic having a circular periphery centered on an optical axis. The optic is adapted to focus light toward a retina of an eye and provide a vision correction. A fixation member attaches to the optic periphery and extends outward therefrom, generally spirally around at least half of the optic. The fixation member desirably extends around at least three-quarters of the optic. The fixation member is longer than previously available, and may have a length of at least about 6 mm.
In one embodiment, there are two of the fixation members symmetrically disposed about a plane through the optical axis. A meridian plane passes through the optical axis and divides the optic into leading and trailing halves. The meridian plane is perpendicular to the direction of insertion of the IOL. A leading one of the fixation members is at least partly located in the leading half of the IOL and attaches to the optic periphery on the meridian plane or in the trailing half.
In a preferred embodiment, the optic and fixation member are integrally formed as a single homogeneous piece. In one version, the fixation member extends outward from the optic periphery and diverges into two beams that are sized to contact the interior of the capsular bag of the eye and provide accommodating movement to the optic. Furthermore, the optic periphery desirably has a relatively sharp posterior edge to prevent epithelial cell growth onto the optic.
In accordance with another aspect of the present invention, an intraocular lens (IOL), comprises an optic having a circular periphery centered on an optical axis. The optic is adapted to focus light toward a retina of an eye and provide a vision correction. A meridian plane passes through the optical axis and divides the IOL into leading and trailing halves. Finally, a pair of fixation members attaches to the optic periphery; a leading fixation member is attached either on the meridian plane or in the trailing half of the IOL, and a trailing fixation member is attached either on the meridian plane or in the leading half of the IOL. Further, the fixation members are both sized to contact the interior of the capsular bag of the eye and adapted to provide accommodating movement to the optic.
The fixation members each preferably extend around at least three-quarters of the optic, and each have a length of at least about 6 mm. Desirably, the optic and fixation members are integrally formed as a single homogeneous piece.
Each fixation member preferably has an inner end adjacent the optic periphery and an outer end configured to contact the interior of the capsular bag of the eye. The outer end of the leading fixation member is in the leading half of the IOL and the outer end of the trailing fixation member is in the trailing half of the IOL.
Each fixation member may have an inner end adjacent the optic periphery and an outer end configured to contact the interior of the capsular bag of the eye, wherein the IOL further includes a transition section interposed between the inner ends of the fixation members and the optic periphery. Each transition section is angled with respect to the optical axis so as to offset the inner ends of each fixation member from an optic plane passing through the center of the optic and perpendicular to the optical axis.
In accordance with a still further aspect of the present invention, an intraocular lens is provided that comprises an optic, a fixation member, and a transition section therebetween. The optic has a circular periphery centered on an optical axis and focuses light toward a retina of an eye and provides a vision correction. The optic further has an anterior face and a posterior face spaced apart on opposite sides of an optic plane perpendicular to the optical axis. The fixation member has an inner end and an outer end. The transition section lies between the fixation member inner end and the optic periphery and has an inner portion connected to the optic periphery and an outer portion connected to the fixation member. The outer portion is displaced along the optical axis with respect to the inner portion in an anterior direction. Furthermore, the fixation member extends generally in a plane parallel to the optic plane but displaced therefrom along the optical axis in the anterior direction.
Preferably, the optic periphery has a relatively sharp posterior edge, and may also have a relatively sharp anterior edge. In one embodiment, there are two of the fixation members and transition sections diametrically opposed across the optic. Moreover, each of the fixation members may extend generally spirally about halfway around the optic.
Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.
Additional aspects, features, and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numbers.
Referring to the drawings in more detail, an intraocular lens (IOL) 20 according to an exemplary embodiment of the present invention is illustrated in
A brief description of the anatomy of the eye is appropriate in order to understand the invention. The capsular bag 22 resides in the posterior chamber of the eye and is in direct contact with the jelly-like vitreous humor 28 which fills the nearly spherical space between the capsular bag and the retina (not shown). In a healthy person, the capsular bag 22 contains the natural crystalline lens which transmits light passing through the orifice of the iris 30 to the retina. The capsular bag 22 is connected to an annular ciliary muscle 34 by suspensory ligaments or zonules 36. The ciliary muscle 34 is the chief agent in accommodation, i.e., in adjusting the eye to focus on near objects. The zonules 36 retain the lens in position and are relaxed by the contraction of the ciliary muscle 34, thereby allowing a natural crystalline lens to become more convex.
Applying this anatomy to the present invention, exemplary IOL 20 is configured to facilitate movement of the optic 24 in response to the action of the ciliary muscle 34 and the zonules 36. When the ciliary muscle 34 constricts inward the zonules 36 relax and reduce the equatorial diameter of the capsular bag 22, wherein the optic 24 translates in the posterior direction against the rear wall of the capsular bag 22. Conversely, when the ciliary muscle 34 relaxes, the zonules 36 tense and increase the equatorial diameter of the capsular bag 22, thereby moving the optic 24 in the anterior direction. In the illustrated embodiment, the optic 24 is biased against the rear wall of the capsular bag 22 at all times, and axial movement of the optic from the action of the ciliary muscle 34 is primarily governed by the position of the rear wall. That is, changes in pressure of the vitreous humor 28 act on the rear wall of the capsular bag 22 and cause it to translate in the axial direction. For example,
As best seen in
As seen in
Although controlled fibrosis (i.e., cellular growth) on the stabilizing arm 58 may be desirable, the IOLs 20 of the invention inhibit cell growth, particularly epithelial cell growth, onto the optic 24. This is accomplished by configuring the periphery 42 of the optic 24 with mechanical barriers such as relatively sharp posterior and anterior edges 64 shown in
The fixation members 50a, 50b of the IOL 20 are substantially longer than previous fixation members. When there are two fixation members, the surgeon typically identifies them as leading and trailing with reference to their orientation during the implant procedure. The accepted technique is to insert, through the incisions in the cornea and the capsular bag, a first or leading one of the fixation members, then the optic, then the other or trailing fixation member. With respect to
Referring to
The increased length of fixation members 50a, 50b may be obtained as illustrated in
The present invention provides long fixation members 50a, 50b by virtue of the leading fixation member 50a attaching to the optic periphery 42 along the meridian plane 70 or in the trailing half. Likewise, the trailing fixation member 50b attaches to the optic periphery 42 along the meridian plane 70 or in the leading half, and is thus longer than previous fixation members. In terms of absolute length, each of fixation members 50a, 50b is at least 6 mm long from its inner end 54 to its outer end 60.
A meridian plane 90 extending through the optical axis OA divides the IOL 80 into a leading half on the left, and a trailing half on the right. Again, the halves of the IOL are determined by the orientation of the fixation members 86a, 86b during implant, such that the surgeon inserts the fixation member 86a first through the incisions in the eye. As in the earlier embodiment, the fixation members are relatively long. More particularly, the leading fixation member 86a connects to the optic periphery 84 along the meridian plane 90 or in the trailing half. Likewise, the trailing fixation member 86b connects to the optic periphery 84 along the meridian plane 90 or in the leading half. As can be seen by comparing
An IOL 100 of
An IOL 110 of
An IOL 130 of
Although the illustrated embodiments show two fixation members, only one, or three or more, may also be used. In this context, each fixation member is separately connected to the optic. Therefore, if there are multiple strands but only one point of connection, there is only one fixation member.
An example of a single fixation member IOL 130 with multiple strands is seen in
For human implantation, the exemplary IOLs disclosed herein may be configured such that the amount of positive or near accommodation is preferably at least about 1 diopter and may range up to 3.5 diopters or more. Further, IOLs may be configured to provide at least about 2.0 mm of posterior axial movement in the eye with a reduction of about 2.0 mm in the equatorial diameter of the capsular bag 22 caused by the ciliary muscle 34 and the zonules 36.
The optics may be constructed of rigid biocompatible materials such as polymethyl methacrylate (PMMA) or deformable materials such as silicone polymeric materials, acrylic polymeric materials, hydrogel polymeric materials, and the like. The deformable materials allow the IOL to be rolled or folded for insertion through a small incision into the eye. Although the optic as shown is a refractive lens body, the present IOLs may include a diffractive lens body, and such embodiment is included within the scope of the present invention.
With reference to the first embodiment of
The IOL 20 may be inserted into the capsular bag 22 of a mammalian eye using conventional equipment and techniques, for example, after the natural crystalline lens is removed, using a phacoemulsification technique. The IOL 20 is preferably rolled or folded prior to insertion into the eye to be insertable through a small incision, for example, on the order of about 3.2 mm. After insertion, the IOL 20 may be positioned in the eye as shown in
If the IOL 20 is to be implanted in an adult human eye, the optic 24 preferably has a diameter in the range of about 3.5 mm to about 7 mm and, more preferably, in the range of about 5 mm to about 6 mm. Further, the IOL 20 may have an overall diameter, with the movement assembly 26 in an unstressed condition, of about 8 mm to about 11 mm or 12 mm. Additionally, the optic 24 preferably has a far-vision correction power for infinity in an un-accommodated state.
While the present invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.
This application claims the benefit of provisional application Ser. No. 60/348,708, filed Jan. 14, 2002. The disclosure of which is incorporated in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1483509 | Bugbee | Feb 1924 | A |
2129305 | Feinbloom | Sep 1938 | A |
2274142 | Houchin | Feb 1942 | A |
2405989 | Beach | Jun 1946 | A |
2511517 | Spiegel | Jun 1950 | A |
3004470 | Ruhle | Oct 1961 | A |
3031927 | Wesley | May 1962 | A |
3034403 | Neefe | May 1962 | A |
RE25286 | Decarle | Nov 1962 | E |
3210894 | Bentley et al. | Oct 1965 | A |
3227507 | Feinbloom | Jan 1966 | A |
3339997 | Wesley | Sep 1967 | A |
3420006 | Barnett | Jan 1969 | A |
3431327 | Tsuetaki | Mar 1969 | A |
3482906 | Volk | Dec 1969 | A |
3542461 | Girard et al. | Nov 1970 | A |
3693301 | Lemaltre | Sep 1972 | A |
3794414 | Wesley | Feb 1974 | A |
3922728 | Krasnov | Dec 1975 | A |
3932148 | Krewalk, Sr. | Jan 1976 | A |
4055378 | Feneberg et al. | Oct 1977 | A |
4062629 | Winthrop | Dec 1977 | A |
4073579 | Deeg et al. | Feb 1978 | A |
4162122 | Cohen | Jul 1979 | A |
4195919 | Shelton | Apr 1980 | A |
4199231 | Evans | Apr 1980 | A |
4210391 | Cohen | Jul 1980 | A |
4240719 | Gullino et al. | Dec 1980 | A |
4253199 | Banko | Mar 1981 | A |
4254509 | Tennant | Mar 1981 | A |
4261065 | Tennant | Apr 1981 | A |
4274717 | Davenport | Jun 1981 | A |
4307945 | Kitchen et al. | Dec 1981 | A |
4315336 | Poler | Feb 1982 | A |
4315673 | Guilino et al. | Feb 1982 | A |
4316293 | Bayers | Feb 1982 | A |
4338005 | Cohen | Jul 1982 | A |
4340283 | Cohen | Jul 1982 | A |
4340979 | Kelman | Jul 1982 | A |
4361913 | Streck | Dec 1982 | A |
4363143 | Callahan | Dec 1982 | A |
4370760 | Kelman | Feb 1983 | A |
4377329 | Poler | Mar 1983 | A |
4377873 | Reichert, Jr. | Mar 1983 | A |
4402579 | Poler | Sep 1983 | A |
4404694 | Kelman | Sep 1983 | A |
4409691 | Levy | Oct 1983 | A |
4418991 | Breger | Dec 1983 | A |
4442553 | Hessburg | Apr 1984 | A |
4463458 | Seidner | Aug 1984 | A |
4476591 | Arnott | Oct 1984 | A |
4504981 | Walman | Mar 1985 | A |
4504982 | Burk | Mar 1985 | A |
4512040 | McClure | Apr 1985 | A |
4551864 | Akhavi | Nov 1985 | A |
4560383 | Leiske | Dec 1985 | A |
4573775 | Bayshore | Mar 1986 | A |
4575878 | Dubroff | Mar 1986 | A |
4580882 | Nuchman et al. | Apr 1986 | A |
4581033 | Callahan | Apr 1986 | A |
4596578 | Kelman | Jun 1986 | A |
4617023 | Peyman | Oct 1986 | A |
4618228 | Baron et al. | Oct 1986 | A |
4618229 | Jacobstein et al. | Oct 1986 | A |
4629460 | Dyer | Dec 1986 | A |
4636049 | Blaker | Jan 1987 | A |
4636211 | Nielsen et al. | Jan 1987 | A |
4637697 | Freeman | Jan 1987 | A |
4641934 | Freeman | Feb 1987 | A |
4676792 | Praeger | Jun 1987 | A |
4676793 | Bechert, II | Jun 1987 | A |
4687484 | Kaplan | Aug 1987 | A |
4693572 | Tsnetaki et al. | Sep 1987 | A |
RE32525 | Pannu | Oct 1987 | E |
4702244 | Mazzocco | Oct 1987 | A |
4704016 | deCarle | Nov 1987 | A |
4711638 | Lindstrom | Dec 1987 | A |
4720286 | Bailey et al. | Jan 1988 | A |
4725278 | Shearing | Feb 1988 | A |
4752123 | Blaker | Jun 1988 | A |
4759762 | Grendahl | Jul 1988 | A |
4769033 | Nordan | Sep 1988 | A |
4787903 | Grendahl | Nov 1988 | A |
4790847 | Woods | Dec 1988 | A |
4813955 | Achatz et al. | Mar 1989 | A |
4816032 | Hetland | Mar 1989 | A |
4830481 | Futhey et al. | May 1989 | A |
4840627 | Blumenthal | Jun 1989 | A |
4842601 | Smith | Jun 1989 | A |
4881804 | Cohen | Nov 1989 | A |
4888012 | Horn et al. | Dec 1989 | A |
4888014 | Nguyen | Dec 1989 | A |
4888015 | Domino | Dec 1989 | A |
4888016 | Langerman | Dec 1989 | A |
4890912 | Visser | Jan 1990 | A |
4890913 | DeCarle | Jan 1990 | A |
4892543 | Turley | Jan 1990 | A |
4898461 | Portney | Feb 1990 | A |
4906246 | Grendahl | Mar 1990 | A |
4917681 | Nordan | Apr 1990 | A |
4919663 | Grendahl | Apr 1990 | A |
4921496 | Grendahl | May 1990 | A |
4923296 | Erickson | May 1990 | A |
4932966 | Christie et al. | Jun 1990 | A |
4932968 | Caldwell et al. | Jun 1990 | A |
4938583 | Miller | Jul 1990 | A |
4955902 | Kelman | Sep 1990 | A |
4976534 | Milge et al. | Dec 1990 | A |
4976732 | Vorosmarthy | Dec 1990 | A |
4990159 | Kraff | Feb 1991 | A |
4994082 | Richards et al. | Feb 1991 | A |
5000559 | Takahashi et al. | Mar 1991 | A |
5002382 | Seidner | Mar 1991 | A |
5019098 | Mercier | May 1991 | A |
5019099 | Nordan | May 1991 | A |
5047052 | Dubroff | Sep 1991 | A |
5071432 | Baikoff | Dec 1991 | A |
5089024 | Christie et al. | Feb 1992 | A |
5096285 | Silberman | Mar 1992 | A |
5112351 | Christie et al. | May 1992 | A |
5129718 | Futhey et al. | Jul 1992 | A |
5147397 | Christ et al. | Sep 1992 | A |
5158572 | Nielsen | Oct 1992 | A |
5166711 | Portney | Nov 1992 | A |
5166712 | Portney | Nov 1992 | A |
5171266 | Wiley et al. | Dec 1992 | A |
5173723 | Volk | Dec 1992 | A |
5192317 | Kalb | Mar 1993 | A |
5192318 | Schneider | Mar 1993 | A |
5197981 | Southard | Mar 1993 | A |
5201762 | Hauber | Apr 1993 | A |
5225858 | Portney | Jul 1993 | A |
5258025 | Fedorov et al. | Nov 1993 | A |
5260727 | Oksman et al. | Nov 1993 | A |
5270744 | Portney | Dec 1993 | A |
5275623 | Sarfarazi | Jan 1994 | A |
5354335 | Lipshitz et al. | Oct 1994 | A |
RE34998 | Langerman | Jul 1995 | E |
5443506 | Garabet | Aug 1995 | A |
5476514 | Cumming | Dec 1995 | A |
5480428 | Fedorov et al. | Jan 1996 | A |
5489302 | Skottun | Feb 1996 | A |
5496366 | Cumming | Mar 1996 | A |
5521656 | Portney | May 1996 | A |
5562731 | Cumming | Oct 1996 | A |
5574518 | Mercure | Nov 1996 | A |
5578081 | McDonald | Nov 1996 | A |
5593436 | Langerman | Jan 1997 | A |
5607472 | Thompson | Mar 1997 | A |
5628795 | Langerman | May 1997 | A |
5628796 | Suzuki | May 1997 | A |
5628797 | Richer | May 1997 | A |
5652014 | Galin et al. | Jul 1997 | A |
5652638 | Roffman et al. | Jul 1997 | A |
5657108 | Portney | Aug 1997 | A |
5674282 | Cumming | Oct 1997 | A |
5682223 | Menezes et al. | Oct 1997 | A |
5684560 | Roffman et al. | Nov 1997 | A |
5713958 | Weiser | Feb 1998 | A |
5716403 | Tran et al. | Feb 1998 | A |
5766244 | Binder | Jun 1998 | A |
5769890 | McDonald | Jun 1998 | A |
5776191 | Mazzocco | Jul 1998 | A |
5814103 | Lipshitz et al. | Sep 1998 | A |
5824074 | Koch | Oct 1998 | A |
5843188 | McDonald | Dec 1998 | A |
5847802 | Meneles et al. | Dec 1998 | A |
5876442 | Lipshitz et al. | Mar 1999 | A |
5898473 | Seidner et al. | Apr 1999 | A |
6013101 | Israel | Jan 2000 | A |
6051024 | Cumming | Apr 2000 | A |
6096078 | McDonald | Aug 2000 | A |
6110202 | Barraquer et al. | Aug 2000 | A |
6162249 | Deacon et al. | Dec 2000 | A |
6176878 | Gwon et al. | Jan 2001 | B1 |
6197058 | Portney | Mar 2001 | B1 |
6217612 | Woods | Apr 2001 | B1 |
6231603 | Lang et al. | May 2001 | B1 |
6322589 | Cumming | Nov 2001 | B1 |
6342073 | Cumming et al. | Jan 2002 | B1 |
6387126 | Cumming | May 2002 | B1 |
6406494 | Laguette et al. | Jun 2002 | B1 |
6468306 | Paul et al. | Oct 2002 | B1 |
6475240 | Paul | Nov 2002 | B1 |
6494911 | Cumming | Dec 2002 | B2 |
6517577 | Callahan et al. | Feb 2003 | B1 |
6533814 | Jansen | Mar 2003 | B1 |
20050246019 | Blake et al. | Nov 2005 | A1 |
20060178741 | Zadno-Azizi et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
3225789 | Oct 1989 | AU |
2702117 | Jul 1978 | DE |
3246306 | Jun 1984 | DE |
4038088 | Jun 1992 | DE |
0064812 | Nov 1982 | EP |
0246216 | Nov 1987 | EP |
0329981 | Aug 1989 | EP |
0337390 | Oct 1989 | EP |
0342895 | Nov 1989 | EP |
0351471 | Jan 1990 | EP |
0488835 | Jun 1992 | EP |
0507292 | Oct 1992 | EP |
0566170 | Oct 1993 | EP |
0601845 | Jun 1994 | EP |
0691109 | Jan 1996 | EP |
0897702 | Feb 1999 | EP |
2058391 | Apr 1981 | GB |
2124500 | Feb 1984 | GB |
2129155 | May 1984 | GB |
2146791 | Apr 1985 | GB |
2192291 | Jan 1988 | GB |
2215076 | Sep 1989 | GB |
8603961 | Jul 1986 | WO |
8700299 | Jan 1987 | WO |
8707496 | Dec 1987 | WO |
8902251 | Mar 1989 | WO |
8911672 | Nov 1989 | WO |
9000889 | Feb 1990 | WO |
9416648 | Aug 1994 | WO |
9503783 | Feb 1995 | WO |
9610968 | Apr 1996 | WO |
9615734 | May 1996 | WO |
9625126 | Aug 1996 | WO |
9712272 | Apr 1997 | WO |
9727825 | Aug 1997 | WO |
9743984 | Nov 1997 | WO |
9856315 | Dec 1998 | WO |
0066039 | Nov 2000 | WO |
0134067 | May 2001 | WO |
888414 | Nov 1988 | ZA |
Number | Date | Country | |
---|---|---|---|
20030158599 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
60348708 | Jan 2002 | US |