Accommodating intraocular lens with outer support structure

Information

  • Patent Grant
  • 9504560
  • Patent Number
    9,504,560
  • Date Filed
    Friday, December 21, 2012
    11 years ago
  • Date Issued
    Tuesday, November 29, 2016
    7 years ago
Abstract
An intraocular lens for insertion into the capsular bag of an eye contains an optic, an outer periphery, and an outer support structure. The optic has a periphery and centered about an optical axis. The outer periphery is disposed about the optic and configured to engage an equatorial region of the capsular bag of an eye. The outer support structure is disposed along the periphery and spaced from the optic with voids outer support structure and the optic. The intraocular lens further comprises a first intermediate member and a weakened region disposed along the outer periphery between the outer support structure and the first intermediate member. The first intermediate member operably couples the optic and the outer support structure. The weakened region is attached to, and configured to provide relative motion between, the outer support structure and the first intermediate member in response to the ciliary muscle of the eye.
Description
BACKGROUND OF THE INVENTION

The present invention relates to intraocular lenses (IOLs). More particularly, the present invention relates to IOLs that provide accommodating movement in the eye.


The human visual system includes the eyes, the extraocular muscles which control eye position within the eye socket, the optic and other nerves that connect the eyes to the brain, and particular areas of the brain that are in neural communication with the eyes. Each eye forms an image upon a vast array of light sensitive photoreceptors of the retina. The cornea is the primary refracting surface which admits light through the anterior part of the outer surface of the eye. The iris contains muscles which alter the size of the entrance port of the eye, or pupil. The crystalline lens has a variable shape within the capsular bag, under the indirect control of the ciliary muscle. Having a refractive index higher than the surrounding media, the crystalline lens gives the eye a variable focal length, allowing accommodation to objects at varying distances from the eye.


Much of the remainder of the eye is filled with fluids and materials under pressure which help the eye maintain its shape. For example, the aqueous humor fills the anterior chamber between the cornea and the iris, and the vitreous humor fills the majority of the volume of the eye in the vitreous chamber behind the lens. The crystalline lens is contained within a third chamber of the eye, the posterior chamber, which is positioned between the anterior and vitreous chambers.


The human eye is susceptible to numerous disorders and diseases, a number of which attack the crystalline lens. For example, cataracts mar vision through cloudy or opaque discoloration of the lens of the eye. Cataracts often result in partial or complete blindness. If this is the case, the crystalline lens can be removed and replaced with an intraocular lens, or IOL.


While restoring vision, conventional IOLs have limited ability for accommodation (i.e., the focusing on near objects). This condition is known as presbyopia. To overcome presbyopia of an IOL, a patient may be prescribed eyeglasses. Alternative attempts in the art to overcome presbyopia focus on providing IOLs with accommodation ability. Accommodation may be accomplished by either changing the shape of at least one optic surface of the IOL, by moving the IOL along its optical axis, or some combination of the two. These and similar approaches for providing accommodation are disclosed, for example, in the following U.S. patents and patent applications, all of which are herein incorporated by reference: U.S. Pat. Nos. 4,373,218; 4,601,545; 4,816,031; 4,892,543; 4,994,083; 5,066,301; 5,108,429; 5,171,266; 5,203,788; 6,176,878; 6,406,494; 6,443,985; 6,599,317; 6,616,692; 6,638,305; 6,645,246; 2003/0060881; 2003/0158599; 2004/0034415; 2004/0082993; 2005/0131535; and U.S. patent application Ser. No. 09/656,661, filed in Sep. 7, 2000.


Despite these various devices and method of providing accommodation, there continues to be a need, to provide new IOLs with enhanced accommodative capabilities.


SUMMARY OF THE INVENTION

In one aspect of the invention, an intraocular lens for insertion into the capsular bag of an eye comprises an optic, an outer periphery, an outer support structure. The optic has a periphery and centered about an optical axis. The outer periphery is configured to engage an equatorial region of the capsular bag of an eye and the outer support structure is disposed along the outer periphery of the intraocular lens and is spaced from the optic with voids therebetween. The intraocular lens further comprises a first intermediate member operably coupled to the optic and the outer support structure. The intraocular lens also comprises first and second weakened regions disposed along the outer periphery. Each of the weakened regions may be disposed between the outer support structure and the first intermediate member. The weakened regions are configured to allow relative motion between the outer support structure and the first intermediate member in response to the ciliary muscle of the eye. In certain embodiments, the relative motion is an angular motion between the first intermediate member and the outer support structure.


In certain embodiments, the outer support structure surrounds or entirely surrounds the optic and/or the intermediate members. In other embodiments, the outer support structure is connected to distal ends of the first and second intermediate members. In such embodiments, the weakened regions are disposed along the outer periphery to either side of and/or proximal to the distal ends. The outer periphery may be circular or elliptical or some other shape that is suited for insertion into the eye, for example, into the capsular bag.


In another aspect of the invention, the intraocular lens further comprises a second, or even three or more, intermediate member(s) extending between and operably coupling the optic and the outer support structure. In such embodiments, the intraocular lens may comprise first weakened regions disposed along the outer periphery between the outer support structure and the intermediate members, as well as second weakened regions disposed along the outer periphery between the outer support structure and the intermediate members. The first and second weakened regions may be configured to allow angular motion between the outer support structure and the intermediate members in response to the ciliary muscle and/or capsular bag. In some embodiments, the outer support structure further comprises at least one intermediate weakened region circumferentially disposed between intermediate members. The intermediate weakened regions may be circumferentially disposed equidistant between intermediate members or otherwise disposed to provide a predetermined performance of the outer support structure or intraocular lens when the outer support structure is compressed or stretched.


The weakened regions may be configured or formed in various way to provide the predetermined performance of the outer support structure or intraocular lens. For example, one or more of the weakened regions may comprise a hinge. Also, one or more of the weakened regions may have a radial thickness that is less than a radial thickness of the outer support structure in a region proximal the at least one weakened region. Additionally or alternatively, the weakened regions may have a thickness along the optical axis that is less than a thickness along the optical axis of the outer support structure in a region proximal the at least one weakened region. In some embodiments, the outer support structure is made of a first material and at least one of the weakened regions is made of a second material that is more bendable than the first material.


In yet another aspect of the invention, the outer support structure comprises a first arm and the second arm with a void therebetween. In such embodiments, at least a portion of the first arm may be slidably disposed to at least a portion of the second arm.


Another aspect of the invention involves an intraocular lens for insertion into the capsular bag of an eye comprising an optic, an outer support structure having an outer periphery, a first intermediate member, and a weakened region disposed proximal to the first intermediate member and along the outer periphery of the intraocular lens. The optic has a periphery and is centered about an optical axis. The first intermediate member extends between and is operably coupled to the optic and the outer support structure. The outer support structure entirely and continuously surrounds the optic and is spaced from the optic and there are one or more voids between the outer support structure and the optic. The outer support structure is configured to engage an equatorial region of the capsular bag of an eye. The weakened region is configured to allow relative motion between the outer support structure and the first intermediate member in response to the ciliary muscle of the eye.


Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.





BRIEF DESCRIPTION OF THE DRAWINGS

Additional aspects, features, and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numbers.



FIG. 1 is a vertical cross-section of an eye illustrating an exemplary intraocular lens of the present invention positioned within the capsular bag;



FIG. 2 is a cross-section similar to FIG. 1 showing forward or anterior movement of an optic of the intraocular lens;



FIG. 3 is a plan view of the exemplary intraocular lens of the present invention having an oval outer ring and a pair of nonlinear intermediate members;



FIG. 4 is a plan view of an alternative intraocular lens of the present invention having two radially oriented intermediate members;



FIG. 5 is a plan view of an alternative intraocular lens of the present invention having three radially oriented intermediate members;



FIG. 6 is a perspective view of an alternative intraocular lens of the present invention having three radially oriented intermediate members;



FIG. 6A is an elevational view of one edge of the intraocular lens of FIG. 6;



FIG. 7A is a perspective posterior view of a still further alternative intraocular lens of the present invention having three radially oriented plate-like intermediate members and an optic that is bowed slightly out of the plane of a surrounding capsular bag support ring;



FIG. 7B is a perspective anterior view of the intraocular lens of FIG. 7A;



FIGS. 7C and 7D are plan and side elevational views, respectively, of the intraocular lens of FIG. 7A;



FIG. 7E is a sectional view taken through line 7E-7E of FIG. 7B;



FIG. 8A is a perspective view of a still further alternative intraocular lens of the present invention having two radially oriented plate-like intermediate members connecting a central optic to an oval surrounding capsular bag support ring;



FIG. 8B is another perspective view of the intraocular lens of FIG. 8A; and



FIGS. 8C and 8D are side elevational and plan views, respectively, of the intraocular lens of FIG. 8A.



FIG. 9 is a plan view of another alternate embodiment of the invention;



FIG. 10 is a plan view of still another alternate embodiment of the invention;



FIG. 11 is a plan view of an outer ring according to yet another embodiment of the invention;



FIG. 12 is a plan view of an outer ring according to another embodiment of the invention; and



FIG. 13 is a plan view of a outer ring according to still another embodiment of the invention;



FIG. 14 is a plan view of a outer ring according to still another embodiment of the invention;



FIG. 15 is a fragmentary perspective posterior view showing a portion of a support ring structured to bend in an anterior direction;



FIG. 16 is a fragmentary perspective anterior view showing a support ring structured to bend in a posterior direction;



FIG. 17 is a view similar to FIG. 7B, showing an embodiment of the invention having an alternate hinge configuration;



FIG. 18A is an anterior plan view showing yet another embodiment of an intraocular lens according to the present invention;



FIG. 18B is a sectional view taken through line B-B of FIG. 18A;



FIG. 18C is a sectional view taken through line C-C of FIG. 18A; and



FIG. 19 is a fragmentary perspective anterior view showing a support ring structured to bend both posteriorly and radially outwardly.



FIG. 20 is a plan view of an IOL having weakened portions according to embodiments of the present invention.



FIG. 21 is a plan view of another embodiment of an IOL having weakened portions.



FIG. 22 is a plan view of an IOL having weakened portions made of a different material than other portion of the IOL.



FIG. 23 is a plan view of an IOL having weakened portions and a void between arms of the IOL.



FIG. 24 is a plan view of another embodiment of an IOL having weakened portions and a void between arms of the IOL.



FIG. 25 is a plan view of an IOL having a circular outer support ring and weakened portions.



FIG. 26 is a side view of an optic from an IOL according to embodiments of the invention wherein the optic is not compressed.



FIG. 27 is a side view of an optic from an IOL according to embodiments of the invention wherein the optic is compressed.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring to the drawings in more detail, an intraocular lens (IOL) 20 according to an exemplary embodiment of the present invention is illustrated in FIGS. 1 and 2 after implantation in the capsular bag 22 of an eye. Exemplary IOL 20 includes an optic 24 and a movement assembly 26 coupled thereto. The optic 24, which has an optical axis OA, is adapted to focus light onto a retina of an eye. The movement assembly 26 of exemplary IOL 20 cooperates with the eye to effect accommodating movement of the optic 24 and, in particular, converts radial movement (i.e., movement perpendicular to the optical axis OA) of the capsular bag of an eye to axial movement (i.e., movement parallel to the optical axis OA) of the optic 24. In the exemplary embodiment, the movement assembly 26 biases the optic 24 in a posterior direction (to the right) against the posterior wall of the capsular bag 22.


With further reference to FIG. 3, which illustrates the exemplary IOL 20 in plan view, the optic 24 comprises a generally circular periphery or peripheral edge 42 that defines the radially outer extent of the optic 24 and separates a posterior face from an anterior face. The optic 24 is typically circular, but may exhibit a different shape as long as the optical correction character is centered about the optical axis OA. The optic 24 may be bi-convex, or the anterior and posterior faces can take other shapes, such as planar or concave. In any event, the posterior face and anterior face are spaced apart on opposite sides of an optic plane (not shown) that extends perpendicular to the optical axis OA. In other words, the optic 24 is centered on and oriented in the optic plane.


The movement assembly 26 may further comprise a pair of intermediate members 50a, 50b connected to and extending between the circular periphery 42 of the optic 24 and an outer ring 52. Each intermediate member 50a, 50b has an inner end 54 connected to the circular periphery 42, and an outer end 56 connected to the outer ring 52. As used herein in this context, the term “connected” means firmly attached to, for example, by using an adhesive or ultrasonic bond, by forming integrally, or by forming as a cohesive single piece. In the latter case, the lens is desirably molded. Each intermediate member 50a, 50b is desirably oriented in a plane that is in the optic plane. Indeed, the intermediate members 50a, 50b and outer ring 52 may have approximately the same thickness and be located in the same plane.


A brief description of the anatomy of the eye is appropriate in order to understand the invention. The capsular bag 22 resides in the posterior chamber of the eye and is in direct contact with the jelly-like vitreous humor 28 which fills the nearly spherical space between the capsular bag and the retina (not shown). In a healthy person, the capsular bag 22 contains the natural crystalline lens which transmits light passing through the orifice of the iris 30 to the retina. The capsular bag 22 is connected to an annular ciliary muscle 34 by suspensory ligaments or zonules 36. The ciliary muscle 34 is the chief agent in accommodation, i.e., in adjusting the eye to focus on near objects. The zonules 36 retain the lens in position and are relaxed by the contraction of the ciliary muscle 34, thereby allowing a natural crystalline lens to become more convex.


In certain embodiments, the optic 24 is monofocal optic. In such embodiments, the anterior and posterior surfaces of the optic 24 may have spherical profiles. Alternatively, at least one of the anterior and posterior surfaces of the optic 24 may have an aspheric profile, for example, as discussed in U.S. Pat. No. 6,609,793, which is herein incorporated by reference. In other embodiments, the optic 24 is a multifocal optic having a plurality of zones of varying optical powers, wherein the maximum add power of the near zones is reduced by an amount equivalent to the diopter shift obtained through axial movement of the optic 24. Thus, the net power correction in the near zones is equal to the patient's full add prescription only when optic 24 has moved to the near distance (i.e., anteriormost) position. Examples of suitable multifocal optics are disclosed in Lang et al. U.S. Pat. No. 6,231,603 and Lang et al. PCT International Application No. WO/01/82839 A1. The disclosures of both the U.S. patent and the PCT international application are incorporated in their entireties herein by reference.


Although controlled fibrosis (i.e., cellular growth) on the outer ring 52 may be desirable, the IOLs 20 of the invention inhibit cell growth, particularly epithelial cell growth, onto the optic 24. This is accomplished by configuring the periphery 42 of the optic 24 with mechanical barriers such as relatively sharp posterior and/or anterior edge corners, for example, as disclosed in U.S. Pat. Nos. 6,162,249, 6,468,306, and 6,884,262. The proliferation of unwanted epithelial cell growth may also be inhibited through the use of material properties.


The intermediate members 50a, 50b of the IOL 20 are substantially longer than previous intermediate members as they extend in a nonlinear fashion from the outer ring 52 to the circular optic periphery 42. More particularly, the inner end 54 and outer end 56 are angularly spaced about the optical axis OA by at least approximately 90 degrees. The mid-portion of each intermediate member 50 extends in a serpentine fashion between its inner and outer ends.


In certain embodiments, as seen in FIG. 3, the outer ring 52 is oval in shape and has a major axis 60 perpendicular to the optical axis OA. A minor axis 62 extends perpendicularly to the major axis 60 and to the optical axis OA. Desirably, the outer ends 56 of the intermediate members 50 connect to the oval ring 52 along the major axis 60. In this way, the length of the intermediate members 50 is maximized. In the illustrated embodiment, the inner ends 54 of the intermediate members 50 connect to the circular optic periphery 42 along the minor axis 62. Therefore, the inner and outer ends 54, 56 are angularly spaced apart by about 90 degrees.



FIG. 4 illustrates an alternative IOL 70 of the present invention having an optic 72, an oval outer ring 74, and a pair of intermediate members 76a, 76b extending radially therebetween. Again, the optic 72, outer ring 74 and intermediate members 76a, 76b are desirably formed as a single homogeneous (i.e., integral) piece. In certain embodiments, the oval outer ring 74 may move the optic 72 axially with greater effectiveness than a circular ring because of the orientation of the intermediate members 76a, b along the major axis.


The fixation members 76a, b are shown as plate-like, and desirably are greater in width (the dimension parallel to the minor axis) than axial thickness (the dimension parallel to the optical axis). Preferably, the ratio of width to axial thickness is about four. In absolute terms, the width of the fixation members 76a, 76b may be between about 0.8 mm and about 3.0 mm.



FIG. 5 illustrates a still further IOL 80 having an optic 82, an outer ring 84, and three evenly arranged and radially oriented intermediate members 86a, 86b and 86c. Because the intermediate members 86 are not symmetric about any plane through the optical axis OA, forces exerted by the surrounding capsular bag do not act in opposition to one another and thus may be translated more effectively into axial movement of the optic 82. The radial thickness tr of the outer ring 84 is indicated, and is desirably in the range of 0.2-0.6 mm. Moreover, the corners, or at least one corner, of the outer peripheral edge of the outer ring 84 are desirably relatively sharp to reduce the instance of epithelial cell growth thereon.



FIGS. 6 and 6A illustrate a still further IOL 90 of the present invention having an optic 92, a plurality of intermediate members 94 extending radially outward therefrom, and an outer ring 96. The edge surface 97 of the outer ring 96 may be contoured to conform to the inner wall of the capsular bag. Therefore, as seen in FIG. 6A, at least a portion 98 of the edge surface 97 is convexly outwardly curved. At the same time, at least one corner, in this case the posterior corner 99, is left sharp (i.e., unpolished) to form a barrier against posterior capsular opacification (PCO).


Furthermore, FIG. 6 illustrates the greater axial thickness ta of the outer ring 96 with respect to the axial thickness of the intermediate members 94 and optic 92. Specifically, the axial thickness ta of the outer ring 96 is desirably between about 0.4 mm and about 1.0 mm. Without wishing to limit the invention to any particular theory of operation, it is believed that a ring having an axial thickness in this range will place both the posterior and the anterior zonules of the eye under tension. Thus, both sets of zonules work in unison to change the diameter of the capsular bag in response to action of the ciliary muscle, resulting in axial movement of the optic. In some embodiments, a thinner ring would not interact as effectively with both sets of zonules, and thus, in all likelihood, would result in less axial movement.


In addition, an outer ring 96 having increased axial thickness will increase the pressure on the sharp corner 99 of the edge surface 97 to increase the barrier effect of the ring against PCO.



FIGS. 7A-7E show another IOL 100 of the present invention having a circular outer capsular bag support ring 102, an inner optic 104, and a movement system comprising a plurality of radially-oriented plate-like intermediate members 106 extending therebetween. Preferably, the optic 104, whether it be bi-convex or otherwise, is circumscribed by a circular rim 105 to which the fixation intermediate members 106 are directly attached. The rim 105 desirably has a constant axial dimension and helps to reduce glare while not increasing incision size.


Movement systems other than that shown may be suitable, such as a more solid interface rather than discrete intermediate members. However, separated intermediate members with voids therebetween and between the optic 104 and support ring 102 are preferred. The support ring 102, inner optic 104, and intermediate members 106 are firmly attached to each other with adhesive or ultrasonic bonding, or preferably formed integrally, i.e., molded or machined as one cohesive (homogeneous) piece of material. The IOL 100 is desirably liquid injection molded from silicone or machined from a hydrophilic material which fabrication process reduces cost and increases quality and/or consistency of the product.



FIG. 7A illustrates the IOL 100 from the posterior side, while FIG. 7B is an anterior view. These two views show the axial position at which the intermediate members 106 attach to the support ring 102. That is, the support ring 102 has an axial dimension and the intermediate members 106 attach to a posterior edge thereof. When implanted, the intermediate members 106 and connected optic 104 are therefore held in a posterior-most position with respect to the support ring 102.


As in the embodiment of FIG. 6, the edge surface of the outer ring 102 is contoured to facilitate implantation within the capsular bag of the patient. More particularly, the support ring 102 has an outer surface that is convexly curved to better mate with the concave inner wall portion of the capsular bag between the anterior and posterior zonules.


With reference to FIGS. 7C and 7E, the intermediate members 106 comprise a radially inner portion 108, a radially outer portion 110, and a hinge 112 therebetween. The inner and outer portions 108, 110 are generally plate-like having larger circumferential dimensions than axial dimensions. The hinge 112 may be formed in a number of ways, and as illustrated comprises a region wherein both the axial and the circumferential thickness are reduced by about 50% with respect to the inner and outer portions 108, 110. Alternatively, only one of the axial and the circumferential thicknesses are reduced as compared to the remaining portions of the intermediate member 106. The reduced material at the hinge 112 means that it is weaker than the remaining portions of the intermediate member and thus will more easily bend at that location. In other embodiments, the hinge 112 has the same axial and the circumferential thickness as the remaining portions of the intermediate member 106. In such embodiments, the hinge 112 may be made of a different material or from the same material that is processed differently from the remaining portions of the intermediate member 106 (e.g., with a differing amount of polymerization). The location of each hinge 112 is desirably the same for all of the fixation intermediate members 106, and preferably is closer to the support ring 102 than to the optic 104. For example, each hinge 112 may be located about 60% of the way from the optic 104 to the support ring 102. In some embodiments, the intermediate member 106 has no distinct hinge such as the hinge 112, for example, as illustrated in FIGS. 4 and 5 for the IOLs 70 and 80, respectively. In such embodiments, the entire intermediate member (e.g., intermediate members 76a or 86a) may bend to allow the optic of the IOL to translate anteriorly and posteriorly in response to the ciliary muscle 34.



FIG. 7D illustrates the IOL 100 in an elevational view wherein the support ring 102 lies substantially in a plane and the optic 104 projects in a posterior direction therefrom by virtue of the shape of the intermediate members 106. Specifically, the intermediate members 106 are bowed slightly in the posterior direction such that the optic 104 will tend to lie against or closely adjacent to the posterior wall of the capsular bag. Relaxation of the ciliary muscles 34 surrounding the capsular bag 22 either moves the optic 104 or changes the posterior bias imparted thereto by the intermediate members 106. As a result, the vitreous humor behind the capsular bag can move the optic 106 so as to allow a subject to focus both on distant and relatively near objects.


In one exemplary embodiment, the support ring 102 has a diameter of between about 9.0-10.5 mm, and an axial thickness of about 0.7 mm. Furthermore, the support ring 102 has a curvature that mimics the curvature of the natural capsular bag between the anterior and posterior zonules, which curvature is between about 0.3-1.0 mm. As mentioned above, at least one corner edge of the outer ring is left sharp to help prevent cell growth thereon. In other embodiments, the support ring 102 may be sized to have a diameter that provides a predetermined fit within the capsular bag 22, for example when the eye is in an accommodative state, a disaccommodative state, or a state somewhere between the accommodative and disaccommodative states. IOLs 100 may be configured to have a plurality of diameters to provide a predetermined fit within different size capsular bags 22 for different eyes. Preferably, the diameter of the support ring 102 is between about 8 mm and at least about 13 mm, more preferably between 8 mm and 12 mm, and even more preferably between 9 mm and 11 mm.


Although three radial intermediate members 106 are illustrated 120 degrees apart, the configuration of the intermediate members 106 may vary. However, two factors that are believed to facilitate axial movement, or accommodation, of the optic 104 are the tripod orientation and presence of the hinges 112. More specifically, inward radial forces from the surrounding ciliary muscle 34 and intermediary zonules 36 are transmitted from the support ring 102 through the intermediate members 106 to the optic 104. Because the intermediate members 106 are oriented so that none is diametrically opposed to another, there are no directly opposing forces and a larger component therefore translates into axial movement of the optic 104.


The intermediate members 106 are plate-like to increase stability of the lens in the eye. That is, the forces imparted by the surrounding ciliary muscle 34 may not be entirely uniform and may exert torsional forces on the lens. Plate-like intermediate members 106 help resist twisting of the lens and thus increase stability. The circumferential thickness, or width, of the intermediate members 106 may be between about 1.5-4.0 mm, and the axial thickness is desirably between about 0.2-0.5 mm.



FIG. 17 shows an alternate embodiment of an IOL 102′ substantially similar to the embodiment of FIGS. 7A-7E, except that the thickness of the hinge portion 112′ is reduced in the axial direction only. That is, the circumferential thickness, or width, of each plate-like intermediate member 106′ is uniform throughout its length. This hinge configuration has been found to be less susceptible to fibrosis than a hinge configuration having reduced thickness in the circumferential direction.


Another alternative IOL 120 of the present invention is seen in FIGS. 8A-8D. As in an earlier embodiment, there are only two intermediate members 122 extending between an oval shaped outer capsular bag support ring 124 and an inner circular optic 126. In the illustrated embodiment, the outer ring 124 comprises a band having a generally rectangular cross-section with a longer axial than radial dimension. Preferably, at least one corner of the outer ring 124 is sharp to prevent epithelial cell growth thereon. The support ring 124, inner optic 126, and intermediate members 122 are firmly attached to each other with adhesive or ultrasonic bonding, or preferably formed integrally, i.e., molded or machined as a cohesive single piece. The IOL 120 is desirably liquid injection molded from silicone or machined from a hydrophilic material which, again, reduces cost and increases quality and/or consistency of the product.


As seen best in FIG. 8D, the oval outer ring 124 has a major axis 121 and a minor axis 123, and the two intermediate members 122 are diametrically opposed across the optic 126 along the major axis 123. In one exemplary embodiment, the support ring 124 has a major diameter of between about 115-135% of the minor diameter.


The intermediate members 122 are plate-like, each having a relatively larger circumferential than axial dimension. In contrast to the IOL 100 of FIGS. 7A-7D, the intermediate members 122 lie in a plane defined by the oval-shaped outer ring 124, and thus the optic 126 is not bowed either way. Furthermore, the intermediate members 122 are joined to the inner surface of the outer ring 124 at approximately the axial midpoint thereof. Therefore, in contrast to the earlier embodiment, the optic 126 is not positioned or biased to favor movement in one direction or the other.


With reference to FIG. 8A, each intermediate member 122 has a hinge 128 therein located closer to the outer ring 124 than to the optic 126. The location of each hinge 128 is desirably the same for all of the intermediate members 122, and preferably is located about 75% or more of the way from the optic 126 to the support ring 124. Empirical determination of hinge 128 location optimizes the design such that less radial and axial compression force is required to axially translate the optic 126, while at the same time the ability of the lens to resist twisting is not adversely affected. In the illustrated embodiment, these hinges 128 are formed by reduced axial thickness portions along each intermediate member 122. For example, curved troughs on both sides of intermediate members 122 as shown may form the hinges. Alternatively, or in addition, the circumferential dimension of each intermediate member 122 may be reduced.


As with the earlier embodiment, the optic 126, whether it be biconvex or otherwise, is recessed from a circular rim 130 to which the intermediate members 122 are directly attached. The rim 130 is slightly tapered downward toward the optic and helps reduce glare on the lens. Desirably, the maximum axial dimension of the rim 130 is greater than the center thickness of the optic 126. Advantageously, a reduced center thickness permits a reduction in incision size.



FIGS. 18A-18C show an alternate embodiment of an IOL 120′ similar to the embodiment of FIGS. 8A-8D, except that the optic 126′ is multifocal, and oval support ring 124′ has a non-uniform cross-sectional area. Alternatively, the optic 126′ may be a monofocal optic, as discussed elsewhere herein. In the illustrated embodiment, the radial thickness of the support ring 124′ increases from a minimum value tr1, for instance about 0.2 mm, at diametrically opposed locations 125a and 125b along the minor axis 121′, to a maximum value tt2, for instance about 0.6 mm, at diametrically opposed locations along the major axis 123′, where the intermediate members 122′ are secured to the ring 124′. In addition, the axial thickness ta of the ring 124′ is constant throughout the entire circumference of the ring 124′ and has a value greater than the maximum radial thickness tr2.


The circumferential thickness, or width, of each intermediate member 122′ is also non-uniform throughout its length, for instance decreasing in a non-linear fashion from a maximum width where the intermediate member 122′ joins the circular rim 130′ of the optic 126′ to a minimum width at the hinge 128′, and remaining substantially constant between the hinge 128′ and the outer ring 124′. This particular configuration of the oval outer ring 124′ and intermediate members 122′ has been found to be particularly stable, with minimal “flopping”, twisting, or other unwanted movement, of the thinnest portions 125a and 125b of the outer ring 124′.



FIGS. 9-16 and 19-25 show alternate embodiments of the invention wherein the support ring includes weakened portions configured to allow the ring to allow consistent and repeatable deformation during compression.



FIG. 9 shows an IOL 131 having an optic 132, an outer ring 134, and a pair of plate-like intermediate members 136a and 136b. The intermediate members 136a and 136b are shown without hinges, similar to the intermediate members 76a and 76b of FIG. 4, although hinged intermediate members could also be used. The outer ring 134 is generally oval, with two generally arcuate ends 138, 140 that merge with the distal ends of the intermediate members 136a and 136b, respectively, and two elongated leg portions 142, 144 that extend parallel to a major axis 146 of the outer ring 134 along opposite sides of the optic 132


A weakened portion 146a, b is formed in each leg portion 142, 144 at a location along the minor axis 147 of the support ring 134, such that each weakened portion 146a, b is 180 degrees away from the other weakened portion 146a, b and equidistant from the arcuate ends 138, 140 of the outer ring 134. Each weakened portion 146a, b is in the form of a thinned area in one of the legs 142, 144, the thinned area being created, in this embodiment, by providing a generally C-shaped indentation 148a, b on each side of the leg. This configuration ensures that any bending or buckling of the outer ring 134 as a result of compressive forces on the distal ends 138, 140 of the outer ring 134 will occur at the weakened portions rather than elsewhere along the outer ring 134. In some embodiments, the outer ring 134 comprises only one of indentations 148a, b. In yet other embodiments, the outer ring 134 comprises two or more weakened portions 146a and two or more weakened portions 146b in order cause the outer ring 134 to deform in a predetermined manner in response to the ciliary muscle 34. In such embodiments, the shape of each of at least some of the weakened portions 146a, b may be different from the shape of others of the weakened portions 146a, b in order to produce the desired response to the ciliary muscle 34.



FIG. 10 shows an IOL 150, generally similar to IOL 80 of FIG. 5, comprising an optic 152, a circular outer ring 154 and three evenly arranged and radially oriented intermediate members 156a, 156b, and 156c, which may be hingeless as shown, or hinged, for example, as in the embodiment of FIGS. 7A-7D. The support ring 154 includes three weakened areas 158a, b, c provided 120 degrees from one another and radially equidistant from the intermediate members 156a, 156b, and 156. Again, the weakened areas 158a, b, and c, which are shown here as C-shaped indentations on each side of the outer ring 154, are configured to ensure that any bending or buckling of the outer ring 154 occurs at the three weakened area only, rather than at other locations along the ring. In some embodiments, there may be two or more weaken areas 158a, b, and c between each of the intermediate members 156a, 156b, and 156c in order to the outer ring 154 to deform in a predetermined manner in response to the ciliary muscle 34.



FIG. 11 shows an outer ring 160 according to an alternate embodiment of the invention wherein the weakened areas 162a and 162b are in the form of V-shaped indentations or grooves in the outer circumferential surface 163 of the outer ring 160. An outer ring 160 having this configuration will tend to bend or buckle in a radially inward direction at the two weakened areas 162a and 162b when the outer ring 170 is subjected to compressive forces.



FIG. 12 shows an outer ring 164 according to another embodiment of the invention wherein the weakened areas 166a and 166b are in the form of U-shaped indentations or grooves formed in the inner circumferential surface 168 of the outer ring 164. An outer ring 164 having this configuration will tend to bend or buckle in a radially outward direction at the two weakened areas 166a and 166b when the outer ring 164 is subjected to radially compressive forces.


In still another embodiment of the invention, shown in FIG. 13, the outer ring 170 is provided with four symmetrically arranged weakened areas 172a, b, c, and d, each in the form of a slit or notch in the outer circumferential surface 174 of the outer ring 170. An outer ring 170 having this configuration will tend to bend or buckle in a radially inward direction at the four weakened areas when the outer ring 170 is subjected to radially compressive forces.


In yet another embodiment, shown in FIG. 14, a circular outer ring 176 is provided with two thinned areas 178a and 178b on diametrically opposite locations on the ring. Each thinned area is formed by providing a pair of U-shaped grooves or indentations in the ring 176, each pair consisting of a first indentation 180a in the outer circumferential surface 182 of the outer ring 176 and a second indentation 180b in the inner circumferential surface 184 of the outer ring 176.



FIG. 15 is an enlarged fragmentary perspective view showing a weakened portion 186 according to still another embodiment of the invention. In this embodiment, the weakened portion 186 comprises a thinned area, notch, indentation or groove formed in the posterior face 188 of the outer ring 190. An outer ring 190 having a plurality of weakened portions 186 configured in this way will tend to bend in an anterior direction (towards the cornea) at each of the weakened portions when subjected to radially compressive forces.


Alternatively, a weakened portion 192 according to another embodiment of the invention may comprise a thinned area, notch, indentation or groove formed in the anterior face 194 of the outer ring 196, as shown in FIG. 16. An outer ring 196 having a plurality of weakened portions 192 configured in this way will tend to bend in an posterior direction (away from the cornea) at each of the weakened portions when subjected to radially compressive forces.



FIG. 19 shows yet another embodiment of the invention wherein a weakened portion 198 is configured to cause bending in both a posterior and a radially outward direction. Although the weakened portion 198 is shown as a single notch formed at the corner 200 between the anterior surface 202 and the inner circumferential surface 204, it could also be formed as a pair of intersecting notches, grooves or indentations, one extending entirely across the anterior surface 202 and the other extending entirely across the inner circumferential surface 204, or any other equivalent configuration.


A weakened portion or portions could also be formed on any other combination or intersection of surfaces, for instance at a corner between a posterior surface and an outer circumferential surface to cause bending in anterior and radially inward directions, or at a corner between an anterior surface and an outer circumferential surface to cause bending in posterior and radially inward directions. Various other combinations of weakened portions will be readily apparent to the skilled practitioner, but for reasons of brevity will not be illustrated here.



FIG. 20 illustrates still another embodiment of the invention wherein an IOL 300 comprises an optic 302 having a periphery 303 and centered about an optical axis OA, an outer support structure 304 disposed about the optic 302 and spaced therefrom, and first and second intermediate members 308a, 308b extending between and operably coupling (and/or directly connected to) the optic 302 and the outer support structure 304. The outer support structure 304 is disposed along an outer periphery 305 of the IOL 300 and is configured to engage an equatorial region of the capsular bag 22. The outer support structure 304 may entirely and continuously surround the optic 302. That is, the outer support structure 304 may form a closed or unbroken ring or loop completely around the optic 302. In some embodiments, the outer support structure 304 is coupled or attached to the first and/or second intermediate members 308a, b. For example, the outer support structure 304 may be connected to distal ends 311 of the first and second intermediate members 308a, b. In such embodiments, the weakened regions 310a, b may be disposed along the outer periphery 305 to either side of and/or proximal to the distal ends 311.


The IOL 300 further comprises one or more weakened regions, for example, the first and second weakened regions 310a, b shown in FIG. 20, disposed along the outer periphery 305 between the outer support structure 304 and the first and second intermediate members 308a, b. The first and second weakened regions 310a, b are attached to the outer support structure 304 and the first and second intermediate members 308a, b. The first and second weakened regions 310a, b are also configured to provide relative motion between the outer support structure 304 and the first and second intermediate members 308a, b in response to the ciliary muscle 34.


The weakened regions 310a, b are generally configured to allow angular motion between the first intermediate member 308a and the outer support structure 304 in response to the ciliary muscle 34. Depending upon the structure of the weakened regions 310a, b and the nature and direction of the forces applied to the IOL 300 by the ciliary muscle 34 and/or the capsular bag 22, the weakened regions 310a, b may additionally or alternatively allow relative linear motion between the between the first intermediate member 308a and the outer support structure 304 in response to the ciliary muscle 34.


With additional reference to FIG. 21, the outer support structure 304 may further comprise one or more intermediate weakened regions 312 that are circumferentially disposed between first and/or second intermediate members 308a, b. The intermediate weakened regions 312 may be disposed at locations on the outer support structure 304 that will allow the outer support structure 304 to bend, buckle, or otherwise deform in a predetermined and/or desirable manner when the IOL 300 is compress by the capsular bag 22 or is otherwise affected by force produced in response to the ciliary muscle 34. The weakened regions 310a, b and 312 may also be disposed so as to prevent or reduce unwanted deformation and/or twisting of either the optic 302 and/or the first and second intermediate members 308a, b.


The weakened regions 310a, b and intermediate weakened regions 312 may comprise various structures and/or material so as to provide a predetermined performance, bending, compression, and/or motion of the outer support structure 304 and the intermediate members 308a, b in response to the ciliary muscle 34 and/or the capsular bag 22. For example, any of the configurations or arrangements shown in FIGS. 9-16 may be used in conjunction with the IOL 300. Referring to the embodiments illustrated in FIGS. 20 and 21, one or more of the weakened regions 310a, b and 312 may have a radial thickness that is less than a radial thickness of the outer support structure in a region proximal the one or more weakened regions 310a, b and 312. Additionally or alternatively, one or more of the weakened regions 310a, b and 312 are disposed on a top or bottom surface of the outer support structure 304 and have a thickness along the optical axis OA that is less than a thickness along the optical axis OA of the outer support structure 304 in a region proximal the one or more weakened regions 310a, b and 312. Also, one or more of the weakened regions 310a, b and 312 may be disposed along a corner edge of the outer support structure 304 similar to the configuration illustrated in FIG. 19. In the illustrated embodiments of FIGS. 20 and 21, the weakened regions 310a, b and 312 are disposed along an outer perimeter of the outer support structure 304; however, some or all of the weakened regions 310a, b and 312 may be disposed along an inner perimeter, a top or bottom surface, or along a corner edge of the outer support structure 304.


Referring to FIG. 22, in certain embodiments, the outer support structure 304 is made of a first material and one or more of the weakened regions 310a, b and 312 are made of a second material that is more bendable than the first material. For example, the first material may be relatively stiff or hard (e.g., having a relatively high modulus of elasticity or tensile strength), while the second material is a relatively pliable or soft (e.g., having a relatively low modulus of elasticity or tensile strength). In certain embodiments, outer support structure 304 and one or more of the weakened regions 310a, b and 312 are made of the same material or substantially the same material, but the material in the one or more of the weakened regions 310a, b and 312 is processed in a different way from the material in the outer support structure 304. For example, the degree of polymerization may be different in the one or more of the weakened regions 310a, b and 312 than in the outer support structure 304. It will be understood that while the weakened regions 310a, b and 312 are shown as distinct regions in FIG. 22, these regions may be indistinguishable or essentially indistinguishable by visual inspection in an actual IOL. Also, the boundary between the weakened regions 310a, b and 312 and the outer support structure may be extended, gradual, or non-existent. For example, the boundary may be defined, in certain embodiments, by a gradual transition from the first material to the second material or by a gradual change in the degree of polymerization between the weakened regions 310a, b and 312 than in the outer support structure 304.


Any or all of the weakened regions 310a, b and 312 may be configured to form a hinge or to perform the function of a hinge, for example by extending about the optical axis OA by a relatively small circumferential distance, for example less than about 2 mm, preferably less than 1 mm, and more preferably less than 0.5 mm. Alternatively, any or all of the weakened regions 310a, b and 312 may be configured to form an elongated region in which the weakened regions 310a, b and/or 312 deform by varying amount along the region in response to the ciliary muscle 34 and/or the capsular bag 22. Such an elongate regions is preferably greater than about 2 mm and may be, for example, between about 2 mm to about 3 mm or between about 3 mm to about 5 mm or even greater than 5 mm.


Referring again to FIG. 20, for example, the intermediate weakened regions 312 may be circumferentially disposed equidistant or approximately equidistant between first and the second intermediate members 308a, b. In some embodiments, the outer support structure 304 comprises a first arm 314 and a second arm 318 separate and distinct from the first arm, the first arm 314 being connected or coupled to the first weakened region 308a located near the first intermediate region 308a and second arm 318 being connected or coupled to the first weakened region 308a located near the second intermediate region 308b.


Referring to FIGS. 23 and 24, in certain embodiments, the first and second arms 314, 318 are separate and distinct and the IOL 300 further comprises a void 320 between the first arm 314 and the second arm 318. Such separation between the first and second arms 314, 318 may be useful in providing a predetermined performance of the outer support structure 304 and/or the first and second intermediate members 308a, b in response the ciliary muscle 34 and/or capsular bag 22. For example, referring to FIG. 23, the void 320 between the first and second arms 314, 318 may be configured so that the arms slide toward one another, but do not twist or buckle, as the outer support structure 304 is compressed in response to contraction of the ciliary muscle 34. In such embodiments the first and second arms 314, 318 may also rotate relative to the first and second intermediate members 308a, b. Preferably, the void is sufficiently large that the distal ends of the first and second arms 314, 318 adjacent the voids 320 do not touch when the outer support structure is in its most compressed configuration within the eye. As shown in FIG. 23, a distance between a first distal end of first arm 314 and a first distal end of second arm 318 is less than a diameter of the optic 302 along a major axis of the IOL 300. The optic 302 is positioned between the first distal end of the first arm 314 and a second distal end of the first arm 314 along a minor axis of the IOL 300, and is positioned between the first distal end of the second arm 318 and a second distal end of the second arm 318 along the minor axis of the IOL 300. A maximum width of the IOL 300 along the minor axis is greater than a maximum width of the optic 302 along the minor axis.


Referring to FIG. 24, at least a portion of the first arm 314 may be slidably disposed to at least a portion of the second arm 318. For example, the first and second arms 314, 318 may be configured to press against one another at their distal end and to slide as the capsular bag 22 changes shape during accommodation. Alternatively, the distal ends of the first and second arms 314, 318 may be kept in close contact with one another by using clamp or other appropriate device (not shown) for maintaining the distal end in contact with one another as the outer support structure is compressed and/or expanded during accommodation. In some embodiments, the first and second arms 314, 318 is configured so that the distal ends are in close proximity to one another, but are not necessarily or always in contact with one another as the outer support structure 304 is compress and/or expanded.


Referring to FIG. 25, the IOL 300 may comprise a third intermediate member 324 extending between and connecting the optic 302 and the outer support structure 304. Additionally or alternatively, the outer support member may be configured to be circular, as illustrated in FIG. 25, rather that oval shaped, as illustrated in FIGS. 20-24. In the illustrated embodiment shown in FIG. 25, the IOL 300 may further comprise the intermediate weakened regions 310 shown in FIGS. 20-22 (not shown). Also, the weakened regions 310a, b and/or 312 for the embodiment illustrated in FIG. 25 may have any of the structures or configurations discussed with regard to the embodiments discussed for FIGS. 20-24, where appropriate.


Referring again to FIG. 20, the intraocular lens 300 may comprise the optic 302 and the outer support structure 304, wherein the outer support structure 304 completely surrounds or encircles the optic 302 and the intermediate members 308. In such embodiments, the intermediate members 308 extend between and couple or connect the optic 302 and the outer support structure 304. Also, the outer support structure 304 comprises a first weakened region 310a disposed proximal the first intermediate member 308a and a second weakened region 310b disposed proximal the first intermediate member 308a. The first and second weakened regions 310a, b are configured to allow angular motion between the first intermediate member 308a and the outer support structure 304 in response to the ciliary muscle 34 of the eye.


The configuration, number and location of the weakened areas or portions or of the hinges in each of the illustrated embodiments are intended merely to be illustrative and, in practice, will depend on various factors such as the number and configuration of the intermediate members, the materials used, and the mode of deformation desired.


Furthermore, the outer support structures and outer rings and intermediate members in the IOLs of the embodiments in each of the FIGS. 1-25 are not intended to be limited to use with optics of any particular structure or type of material. For instance, the optics may be formed of rigid biocompatible materials such as polymethyl methacrylate (PMMA) or deformable materials such as silicone polymeric materials, acrylic polymeric materials, hydrogel polymeric materials, and the like. In addition, the optic bodies may be either refractive or diffractive.


In the most preferred embodiments, the optic body has a diameter in the range of about 3.5 to about 7 mm and, optimally, in the range of about 5 mm to about 6 mm. The overall diameter of the IOL, including the intermediate members and outer ring in unstressed conditions, is preferably about 8 mm to about 13 mm. Additionally, the optic has a far-vision correction power for infinity in an unaccommodated state.


A series of tests were run on a prototype IOL in order to evaluate the performance of the IOL under compression. The prototype IOL had the configuration of IOL 120′ shown in FIG. 18A and was formed entirely of a unitary, reinforced cross-linked silicone polymeric material of the type described in Christ U.S. Pat. Nos. 5,236,970, 5,376,694, 5,494,946, 5,661,195, 5,869,549, and 6,277,147. The disclosures of each of these U.S. patents are incorporated in their entirety herein by reference.


During the tests, it was observed that, when the IOL 120′ was compressed an amount in the range of about 0.3 mm to about 1 mm, the image quality in the far zone 132 improved slightly, while the image quality in the near zone (add power=2D), decreased slightly.


Referring to FIGS. 26 and 27, in certain embodiments, an equiconvex optic 304 comprises surfaces 306, 308. Those of skill in the art will recognize that the optic 304 may be characterized by a focal length f (e.g., f1 in FIG. 26 and f2 in FIG. 27) produced as light 310 is refracted by the surfaces 306, 308. It will also be recognized by those of skill in the art that the diopter power D of the equiconvex optic 304 is equal to 1/f, when f is in units of meters. For isotropic compression (e.g., d1, d2 in FIGS. 26 and 27, respectively) or deformation (e.g., deformation of the surfaces 306, 308 illustrated in FIGS. 26 and 27) of the equiconvex optic 304, there exists a relationship between the amount of diametric compression d (i.e. decrease in refractive zone size; for example d1−d2) and the increase in diopter power (for example D2−D1). With an increase in diopter power (e.g., from D1 to D2), at least some improvement in near vision can be expected. Referring again to FIG. 18A, by combining the increased diopter power obtained through deformation of the optic 126′ with that obtained through axial movement, it is believed that enhanced accommodation can be achieved. In other words, a patient's presbyopia can be effectively reduced. Still better accommodation, or further reduction of presbyopia, can be obtained from the add power in the near zone 134 of a multifocal optic 126′, or from the maximum add power of an aspheric optic.


Although the aforementioned tests were performed on an IOL 120′ formed of a reinforced cross-linked silicone polymeric material, the principles of the invention will apply equally well to accommodating IOLs formed of any ophthalmically acceptable, deformable material or combination of materials. For instance, one or more of the optic 126′, intermediate members 122′, and outer ring 124′ may be formed of an acrylic polymeric material. Particularly useful materials and combinations of materials are disclosed in U.S. patent application Ser. No. 10/314,069, filed Dec. 5, 2002.


Furthermore, while each of the accommodation assemblies illustrated herein comprises an outer ring surrounding and spaced from the optic with voids therebetween, and a plurality of intermediate members extending between and connecting the optic and the outer ring, these assemblies are merely exemplary. Other assembly configurations capable of effecting both axial movement and accommodating deformation of the optic are also included within the scope of the invention. For instance, accommodation and/or force transfer assemblies of the type shown in the aforementioned co-pending, commonly assigned U.S. patent application Ser. Nos. 09/656,661, 09/657,251, and 09/657,325, may also be suitable.


While the present invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.

Claims
  • 1. An accommodating intraocular lens for implantation within a capsular bag of an eye, comprising: an optic having an outer periphery and centered about an optical axis;an outer support structure configured to be positioned within the capsular bag of the eye and having a first arcuate arm and a second arcuate arm disposed about the optic and along an outer periphery of the intraocular lens and spaced apart from the optic, the outer periphery of the intraocular lens having a generally oval shape with a major axis and a minor axis, the first arcuate arm having a first proximal end terminating in a first distal end and a second proximal end terminating in a second distal end, the second arcuate arm having a third proximal end terminating in a third distal end and a fourth proximal end terminating in a fourth distal end, the outer support structure including a first void located on the minor axis and between the first distal end of the first arcuate arm and the third distal end of the second arcuate arm such that the first distal end and the third distal end are not in contact with each other and a distance between the first distal end and the third distal end is less than a diameter of the optic along the major axis, the outer support structure including a second void diametrically opposed to the first void across the optic located on the minor axis between the second distal end of the first arcuate arm and the fourth distal end of the second arcuate arm such that the second distal end and the fourth distal end are not in contact with each other and a distance between the second distal end and the fourth distal end is less than a diameter of the optic along the major axis;a first plate-like intermediate member having a proximal end attached to the optic at a portion of the outer periphery of the optic that is positioned on the major axis, and a distal end attached to first and second proximal ends of the first arcuate arm; anda second plate-like intermediate member diametrically opposed to the first plate-like intermediate member, the second plate-like intermediate member having a proximal end attached to the optic at a portion of the outer periphery of the optic that is positioned on the major axis, and a distal end attached to third and fourth proximal ends of the second arcuate arm;wherein the optic is positioned between the first distal end of the first arcuate arm and the second distal end of the first arcuate arm along the minor axis, and the optic is positioned between the third distal end of the second arcuate arm and the fourth distal end of the second arcuate arm along the minor axis, andwherein the intraocular lens further comprises weakened regions disposed along the first arcuate arm and the second arcuate arm, the weakened regions positioned in proximity to the first and second proximal ends of the first arcuate arm and the third and fourth proximal ends of the second arcuate arm, and wherein the weakened regions are configured to provide for relative motion between the first and second distal ends of the first arcuate arm and the third and fourth distal ends of the second arcuate arm during accommodation.
  • 2. The intraocular lens of claim 1, wherein the weakened regions are configured to provide for motion of the first arm and second arm relative to the optic during accommodation.
  • 3. The intraocular lens of claim 2, wherein each of the weakened regions comprises a hinge.
  • 4. The intraocular lens of claim 2, wherein each of the weakened regions has a radial thickness that is less than a radial thickness of the outer support structure in a region proximal to the weakened region.
  • 5. The intraocular lens of claim 2, wherein each of the weakened regions has a thickness along the optical axis that is less than a thickness along the optical axis of the outer support structure in a region proximal to the weakened region.
  • 6. The intraocular lens of claim 2, wherein the outer support structure is made of a first material and the weakened regions are made of a second material that is more bendable than the first material.
  • 7. The intraocular lens of claim 2, wherein the weakened regions are circumferentially disposed between the distal end of the first intermediate member and the first arm.
  • 8. The intraocular lens of claim 7, wherein the weakened regions have a radial thickness that is less than a radial thickness of the outer support structure in a region proximal to the weakened regions.
  • 9. The intraocular lens of claim 1, wherein the first arm and the second arm are configured so that the first arm and the second arm move toward each other during accommodation such that the distance between the first distal end of the first arm and the first distal end of the second arm decreases.
  • 10. The intraocular lens of claim 9, wherein the first void is sized such that the first distal end of the first arm and the first distal end of the second arm do not touch each other when the outer support structure is in its most compressed configuration within the eye, and the second void is sized such that the second distal end of the first arm and the second distal end of the second arm do not touch each other when the outer support structure is in its most compressed configuration within the eye.
  • 11. The intraocular lens of claim 1, wherein a maximum width of the intraocular lens along the minor axis is greater than a maximum width of the optic along the minor axis.
RELATED APPLICATIONS

This application in a Divisional of U.S. patent application Ser. No. 12/840,843, titled “Accommodating Intraocular Lens with Outer Support Structure,” filed on Jul. 21, 2010 which is a Continuation of U.S. patent application Ser. No. 11/322,068, titled “Accommodating Intraocular Lens with Outer Support Structure,” filed on Dec. 28, 2005 which is a Continuation-In-Part of U.S. patent application Ser. No. 10/661,401, titled “Multi-Mechanistic Accommodating Intraocular Lens,” filed Sep. 12, 2003, no U.S. Pat. No. 7,150,759, which is a Continuation-In Part of U.S. patent application Ser. No. 10/341,701, titled “Accommodating Intraocular Lens with Integral Capsular Bag Ring,” filed Jan. 14, 2003, now U.S. Pat. No. 7,025,783, which claimed the benefit of provisional application Ser. No. 60/348,705, filed Jan. 14, 2002, and provisional application Ser. No. 60/372,309, filed Apr. 12, 2002. The disclosures of all of the above are incorporated herein by reference in their entirety.

US Referenced Citations (615)
Number Name Date Kind
1483509 Bugbee May 1921 A
2129305 William Sep 1938 A
2274142 Houchin Feb 1942 A
2405989 Beach Aug 1946 A
2511517 Spiegel Jun 1950 A
2834023 Lieb May 1958 A
3004470 Hans Oct 1961 A
3031927 Wesley May 1962 A
3034403 Neefe May 1962 A
RE25286 DeCarle Nov 1962 E
3210894 Bentley et al. Oct 1965 A
3222432 Grandperret Dec 1965 A
3227507 William Jan 1966 A
3305294 Alvarez Feb 1967 A
3339997 Wesley Sep 1967 A
3415597 Willard Dec 1968 A
3420006 Howard Jan 1969 A
3431327 George Mar 1969 A
3482906 David Dec 1969 A
3507565 Luis et al. Apr 1970 A
3542461 Louis et al. Nov 1970 A
3583790 Baker Jun 1971 A
3617116 Jones Nov 1971 A
3632696 Jones Jan 1972 A
3673616 Fedorov et al. Jul 1972 A
3673816 Kuszaj Jul 1972 A
3693301 Lemaitre Sep 1972 A
3711870 Deitrick Jan 1973 A
3718870 Keller Feb 1973 A
3751138 Humphrey Aug 1973 A
3760045 Thiele et al. Sep 1973 A
3794414 Wesley Feb 1974 A
3827798 Alvarez Aug 1974 A
3866249 Flom Feb 1975 A
3906551 Otter Sep 1975 A
3913148 Potthast Oct 1975 A
3922728 Krasnov Dec 1975 A
3925825 Richards et al. Dec 1975 A
3932148 Krewalk, Sr. Jan 1976 A
3996626 Richards et al. Dec 1976 A
4010496 Neefe Mar 1977 A
4014049 Richards et al. Mar 1977 A
4038088 White et al. Jul 1977 A
4041552 Ganias Aug 1977 A
4053953 Flom et al. Oct 1977 A
4055378 Feneberg et al. Oct 1977 A
4056855 Kelman Nov 1977 A
4062629 Winthrop Dec 1977 A
4073579 Deeg et al. Feb 1978 A
4074368 Levy, Jr. et al. Feb 1978 A
4087866 Choyce et al. May 1978 A
4102567 Cuffe et al. Jul 1978 A
4110848 Jensen Sep 1978 A
4118808 Poler Oct 1978 A
4159546 Shearing Jul 1979 A
4162122 Cohen Jul 1979 A
4195919 Shelton Apr 1980 A
4199231 Evans Apr 1980 A
4210391 Cohen Jul 1980 A
4240163 Galin Dec 1980 A
4240719 Guilino et al. Dec 1980 A
4244060 Hoffer Jan 1981 A
4244597 Dandl Jan 1981 A
4251887 Anis Feb 1981 A
4253199 Banko Mar 1981 A
4254509 Tennant Mar 1981 A
4261065 Tennant Apr 1981 A
4274717 Davenport Jun 1981 A
4285072 Morcher et al. Aug 1981 A
4298994 Clayman Nov 1981 A
4304012 Richard Dec 1981 A
4307945 Kitchen et al. Dec 1981 A
4315336 Poler Feb 1982 A
4315673 Guilino et al. Feb 1982 A
4316293 Bayers Feb 1982 A
4338005 Cohen Jul 1982 A
4340283 Cohen Jul 1982 A
4340979 Kelman Jul 1982 A
4361913 Streck Dec 1982 A
4363143 Callahan Dec 1982 A
4366582 Faulkner Jan 1983 A
4370760 Kelman Feb 1983 A
4373218 Schachar Feb 1983 A
4377329 Poler Mar 1983 A
4377873 Reichert, Jr. Mar 1983 A
4402579 Poler Sep 1983 A
4404694 Kelman Sep 1983 A
4409691 Levy Oct 1983 A
4418991 Breger Dec 1983 A
4424597 Schlegel Jan 1984 A
4426741 Bittner Jan 1984 A
4435856 L'Esperance Mar 1984 A
4442553 Hessburg Apr 1984 A
4457592 Baker Jul 1984 A
4463458 Seidner Aug 1984 A
4474751 Haslam et al. Oct 1984 A
4474752 Haslam et al. Oct 1984 A
4474753 Haslam et al. Oct 1984 A
4476591 Arnott Oct 1984 A
4478822 Haslam et al. Oct 1984 A
4503953 Majewski Mar 1985 A
4504981 Walman Mar 1985 A
4504982 Burk Mar 1985 A
4512040 McClure Apr 1985 A
4542542 Wright Sep 1985 A
4551864 Akhavi Nov 1985 A
4560383 Leiske Dec 1985 A
4562600 Ginsberg et al. Jan 1986 A
4573775 Bayshore Mar 1986 A
4573998 Mazzocco Mar 1986 A
4575877 Herrick Mar 1986 A
4575878 Dubroff Mar 1986 A
4576607 Kelman Mar 1986 A
4580882 Nuchman et al. Apr 1986 A
4581033 Callahan Apr 1986 A
4596578 Kelman Jun 1986 A
4601545 Kern Jul 1986 A
4608050 Wright et al. Aug 1986 A
4615701 Woods Oct 1986 A
4617023 Peyman Oct 1986 A
4618228 Baron et al. Oct 1986 A
4618229 Jacobstein et al. Oct 1986 A
4624669 Grendahl Nov 1986 A
4629460 Dyer Dec 1986 A
4636049 Blaker Jan 1987 A
4636210 Hoffer Jan 1987 A
4636211 Nielsen et al. Jan 1987 A
4637697 Freeman Jan 1987 A
4641934 Freeman Feb 1987 A
4642112 Freeman Feb 1987 A
4642114 Rosa Feb 1987 A
4646720 Peyman et al. Mar 1987 A
4648878 Kelman Mar 1987 A
4650292 Baker et al. Mar 1987 A
4655770 Gupta et al. Apr 1987 A
4661108 Grendahl et al. Apr 1987 A
4662882 Hoffer May 1987 A
4664666 Barrett May 1987 A
4666444 Pannu May 1987 A
4666445 Tillay May 1987 A
4676792 Praeger Jun 1987 A
4676793 Bechert, II Jun 1987 A
4687484 Kaplan Aug 1987 A
4693572 Tsuetaki et al. Sep 1987 A
4693716 MacKool Sep 1987 A
RE32525 Pannu Oct 1987 E
4702244 Mazzocco Oct 1987 A
4704016 De Carle Nov 1987 A
4710193 Volk Dec 1987 A
4710194 Kelman Dec 1987 A
4711638 Lindstrom Dec 1987 A
4720286 Bailey et al. Jan 1988 A
4725278 Shearing Feb 1988 A
4731078 Stoy et al. Mar 1988 A
4737322 Bruns et al. Apr 1988 A
4752123 Blaker Jun 1988 A
4759762 Grendahl Jul 1988 A
4769033 Nordan Sep 1988 A
4769035 Kelman Sep 1988 A
4780154 Mori et al. Oct 1988 A
4781718 Lindstrom Nov 1988 A
4787903 Grendahl Nov 1988 A
4790847 Woods Dec 1988 A
4808170 Thornton et al. Feb 1989 A
4813955 Achatz et al. Mar 1989 A
4816030 Robinson Mar 1989 A
4816031 Pfoff Mar 1989 A
4816032 Hetland Mar 1989 A
4822360 Deacon Apr 1989 A
4828558 Kelman May 1989 A
4830481 Futhey et al. May 1989 A
4834749 Orlosky May 1989 A
4840627 Blumenthal Jun 1989 A
4842601 Smith Jun 1989 A
4865601 Caldwell et al. Sep 1989 A
4878910 Koziol et al. Nov 1989 A
4878911 Anis Nov 1989 A
4880427 Anis Nov 1989 A
4881804 Cohen Nov 1989 A
4883485 Patel Nov 1989 A
4888012 Horn et al. Dec 1989 A
4888014 Nguyen Dec 1989 A
4888015 Domino Dec 1989 A
4888016 Langerman Dec 1989 A
4890912 Visser Jan 1990 A
4890913 De Carle Jan 1990 A
4892543 Turley Jan 1990 A
4898416 Hubbard et al. Feb 1990 A
4898461 Portney Feb 1990 A
4902293 Feaster Feb 1990 A
4906246 Grendahl Mar 1990 A
4917681 Nordan Apr 1990 A
4919663 Grendahl Apr 1990 A
4921496 Grendahl May 1990 A
4923296 Erickson May 1990 A
4929289 Moriya et al. May 1990 A
4932966 Christie et al. Jun 1990 A
4932968 Caldwell et al. Jun 1990 A
4932971 Kelman Jun 1990 A
4938583 Miller Jul 1990 A
4946469 Sarfarazi Aug 1990 A
4955902 Kelman Sep 1990 A
4961746 Lim et al. Oct 1990 A
4963148 Sulc et al. Oct 1990 A
4976534 Miege et al. Dec 1990 A
4976732 Vorosmarthy Dec 1990 A
4990159 Kraff Feb 1991 A
4994058 Raven et al. Feb 1991 A
4994080 Shepard Feb 1991 A
4994082 Richards et al. Feb 1991 A
4994083 Sulc et al. Feb 1991 A
4995880 Galib Feb 1991 A
4997442 Barrett Mar 1991 A
5000559 Takahashi et al. Mar 1991 A
5002382 Seidner Mar 1991 A
5002571 O'Donnell et al. Mar 1991 A
5018504 Terbrugge et al. May 1991 A
5019098 Mercier May 1991 A
5019099 Nordan May 1991 A
5026396 Darin Jun 1991 A
5044742 Cohen Sep 1991 A
5047051 Cumming Sep 1991 A
5047052 Dubroff Sep 1991 A
5054905 Cohen Oct 1991 A
5056908 Cohen Oct 1991 A
5066301 Wiley Nov 1991 A
5071432 Baikoff Dec 1991 A
5074877 Nordan Dec 1991 A
5074942 Kearns et al. Dec 1991 A
5078740 Walman Jan 1992 A
5089024 Christie et al. Feb 1992 A
5096285 Silberman Mar 1992 A
5108429 Wiley Apr 1992 A
5112351 Christie et al. May 1992 A
5117306 Cohen May 1992 A
5123921 Werblin et al. Jun 1992 A
5129718 Futhey et al. Jul 1992 A
5133748 Feaster Jul 1992 A
5133749 Nordan Jul 1992 A
5141507 Parekh Aug 1992 A
5147397 Christ et al. Sep 1992 A
5152788 Isaacson et al. Oct 1992 A
5152789 Willis Oct 1992 A
5158572 Nielsen Oct 1992 A
5166711 Portney Nov 1992 A
5166712 Portney Nov 1992 A
5166719 Chinzei et al. Nov 1992 A
5171266 Wiley et al. Dec 1992 A
5171267 Ratner et al. Dec 1992 A
5171320 Nishi Dec 1992 A
5172723 Sturgis Dec 1992 A
5173723 Volk Dec 1992 A
5180390 Drews Jan 1993 A
5192317 Kalb Mar 1993 A
5192318 Schneider et al. Mar 1993 A
5196026 Barrett et al. Mar 1993 A
5197981 Southard Mar 1993 A
5201762 Hauber Apr 1993 A
5203788 Wiley Apr 1993 A
5213579 Yamada et al. May 1993 A
5217491 Vanderbilt Jun 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5236452 Nordan Aug 1993 A
5236970 Christ et al. Aug 1993 A
5258025 Fedorov et al. Nov 1993 A
5260727 Oksman et al. Nov 1993 A
5270744 Portney Dec 1993 A
5275623 Sarfarazi Jan 1994 A
5275624 Hara et al. Jan 1994 A
5296881 Freeman Mar 1994 A
5326347 Cumming Jul 1994 A
5336261 Barrett et al. Aug 1994 A
5344448 Schneider et al. Sep 1994 A
5349394 Freeman et al. Sep 1994 A
5354335 Lipshitz et al. Oct 1994 A
5358520 Patel Oct 1994 A
5366499 Py Nov 1994 A
5366502 Patel Nov 1994 A
5376694 Christ et al. Dec 1994 A
5391202 Lipshitz et al. Feb 1995 A
5405386 Rheinish et al. Apr 1995 A
5408281 Zhang Apr 1995 A
5423929 Doyle et al. Jun 1995 A
RE34988 Yang et al. Jul 1995 E
RE34998 Langerman Jul 1995 E
5443506 Garabet Aug 1995 A
5476445 Baerveldt et al. Dec 1995 A
5476514 Cumming Dec 1995 A
5480428 Fedorov et al. Jan 1996 A
5489301 Barber Feb 1996 A
5489302 Skottun Feb 1996 A
5494946 Christ et al. Feb 1996 A
5496366 Cumming Mar 1996 A
5503165 Schachar Apr 1996 A
5521656 Portney May 1996 A
5522891 Klaas Jun 1996 A
5549760 Becker Aug 1996 A
5562731 Cumming Oct 1996 A
5574518 Mercure Nov 1996 A
5578081 McDonald Nov 1996 A
5593436 Langerman Jan 1997 A
5607472 Thompson Mar 1997 A
5608471 Miller Mar 1997 A
5609630 Crozafon Mar 1997 A
5628795 Langerman May 1997 A
5628796 Suzuki May 1997 A
5628797 Richer May 1997 A
5650837 Roffman et al. Jul 1997 A
5652014 Galin et al. Jul 1997 A
5652638 Roffman et al. Jul 1997 A
5653754 Nakajima et al. Aug 1997 A
5657108 Portney Aug 1997 A
5661195 Christ et al. Aug 1997 A
5674282 Cumming Oct 1997 A
5682223 Menezes et al. Oct 1997 A
5684560 Roffman et al. Nov 1997 A
5695509 El Hage Dec 1997 A
5702440 Portney Dec 1997 A
5713958 Weiser Feb 1998 A
5716403 Tran et al. Feb 1998 A
5725576 Fedorov et al. Mar 1998 A
5728155 Anello et al. Mar 1998 A
5760871 Kosoburd et al. Jun 1998 A
5766244 Binder Jun 1998 A
5769890 McDonald Jun 1998 A
5770125 O'Connor et al. Jun 1998 A
5776191 Mazzocco Jul 1998 A
5776192 McDonald Jul 1998 A
5800533 Eggleston et al. Sep 1998 A
5814103 Lipshitz et al. Sep 1998 A
5824074 Koch Oct 1998 A
5843188 McDonald Dec 1998 A
5847802 Menezes et al. Dec 1998 A
5864378 Portney Jan 1999 A
5869549 Christ et al. Feb 1999 A
RE36150 Gupta Mar 1999 E
5876441 Shibuya Mar 1999 A
5876442 Lipshitz et al. Mar 1999 A
5885279 Bretton Mar 1999 A
5895422 Hauber Apr 1999 A
5898473 Seidner et al. Apr 1999 A
5928283 Gross et al. Jul 1999 A
5929969 Roffman Jul 1999 A
5968094 Werblin et al. Oct 1999 A
5984962 Anello et al. Nov 1999 A
6013101 Israel Jan 2000 A
6015435 Valunin et al. Jan 2000 A
6050970 Baerveldt Apr 2000 A
6051024 Cumming Apr 2000 A
6063118 Nagamoto May 2000 A
6083261 Callahan et al. Jul 2000 A
6090141 Lindstrom Jul 2000 A
6096078 McDonald Aug 2000 A
6102946 Nigam Aug 2000 A
6106553 Feingold Aug 2000 A
6106554 Bretton Aug 2000 A
6110202 Barraquer et al. Aug 2000 A
6113633 Portney Sep 2000 A
6117171 Skottun Sep 2000 A
6120538 Rizzo, III et al. Sep 2000 A
6136026 Israel Oct 2000 A
6139576 Doyle et al. Oct 2000 A
6152958 Nordan Nov 2000 A
6162249 Deacon et al. Dec 2000 A
6176878 Gwon et al. Jan 2001 B1
6186148 Okada Feb 2001 B1
6197058 Portney Mar 2001 B1
6197059 Cumming Mar 2001 B1
6200342 Tassignon Mar 2001 B1
6210005 Portney Apr 2001 B1
6217612 Woods Apr 2001 B1
6221105 Portney Apr 2001 B1
6224628 Callahan et al. May 2001 B1
6228115 Hoffmann et al. May 2001 B1
6231603 Lang et al. May 2001 B1
6238433 Portney May 2001 B1
6241777 Kellan Jun 2001 B1
6251312 Phan et al. Jun 2001 B1
6258123 Young et al. Jul 2001 B1
6261321 Kellan Jul 2001 B1
6277146 Peyman et al. Aug 2001 B1
6277147 Christ et al. Aug 2001 B1
6280471 Peyman et al. Aug 2001 B1
6299641 Woods Oct 2001 B1
6302911 Hanna Oct 2001 B1
6322213 Altieri et al. Nov 2001 B1
6322589 Cumming Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6342073 Cumming et al. Jan 2002 B1
6358280 Herrick Mar 2002 B1
6364906 Baikoff et al. Apr 2002 B1
6387126 Cumming May 2002 B1
6399734 Hodd et al. Jun 2002 B1
6406494 Laguette et al. Jun 2002 B1
6423094 Sarfarazi Jul 2002 B1
6425917 Blake Jul 2002 B1
6443985 Woods Sep 2002 B1
6450642 Jethmalani et al. Sep 2002 B1
6454802 Bretton et al. Sep 2002 B1
6457826 Lett Oct 2002 B1
6464725 Skotton Oct 2002 B2
6468306 Paul et al. Oct 2002 B1
6474814 Griffin Nov 2002 B1
6475240 Paul Nov 2002 B1
6478821 Laguette et al. Nov 2002 B1
6485516 Boehm Nov 2002 B2
6488708 Sarfarazi Dec 2002 B2
6494911 Cumming Dec 2002 B2
6503276 Lang et al. Jan 2003 B2
6517577 Callahan et al. Feb 2003 B1
6524340 Israel Feb 2003 B2
6533813 Lin et al. Mar 2003 B1
6533814 Jansen Mar 2003 B1
6536899 Fiala Mar 2003 B1
6547822 Lang Apr 2003 B1
6551354 Ghazizadeh et al. Apr 2003 B1
6554859 Lang et al. Apr 2003 B1
6558420 Green May 2003 B2
6559317 Hupperts et al. May 2003 B2
6589550 Hodd et al. Jul 2003 B1
6592621 Domino Jul 2003 B1
6598606 Terwee et al. Jul 2003 B2
6599317 Weinschenk, III et al. Jul 2003 B1
6616691 Tran Sep 2003 B1
6616692 Glick et al. Sep 2003 B1
6616693 Nguyen Sep 2003 B1
6638305 Laguette Oct 2003 B2
6638306 Cumming Oct 2003 B2
6645246 Weinschenk, III et al. Nov 2003 B1
6660035 Lang et al. Dec 2003 B1
6685315 De Carle Feb 2004 B1
6695881 Peng et al. Feb 2004 B2
6721104 Schachar et al. Apr 2004 B2
6730123 Klopotek May 2004 B1
6749633 Lorenzo et al. Jun 2004 B1
6749634 Hanna Jun 2004 B2
6761737 Zadno-Azizi et al. Jul 2004 B2
6764511 Zadno-Azizi et al. Jul 2004 B2
6767363 Bandhauer et al. Jul 2004 B1
6786934 Zadno-Azizi et al. Sep 2004 B2
6818017 Shu Nov 2004 B1
6818158 Pham et al. Nov 2004 B2
6827738 Willis et al. Dec 2004 B2
6846326 Zadno-Azizi et al. Jan 2005 B2
6855164 Glazier Feb 2005 B2
6858040 Nguyen et al. Feb 2005 B2
6884261 Zadno-Azizi et al. Apr 2005 B2
6884262 Brady et al. Apr 2005 B2
6884263 Valyunin et al. Apr 2005 B2
6899732 Zadno-Azizi et al. May 2005 B2
6926736 Peng et al. Aug 2005 B2
6930838 Schachar Aug 2005 B2
6932839 Kamerling et al. Aug 2005 B1
6942695 Chapoy et al. Sep 2005 B1
7018409 Glick et al. Mar 2006 B2
7021760 Newman Apr 2006 B2
7025783 Brady et al. Apr 2006 B2
7041134 Nguyen et al. May 2006 B2
7073906 Portney Jul 2006 B1
7087080 Zadno-Azizi et al. Aug 2006 B2
7097660 Portney Aug 2006 B2
7118596 Zadno-Azizi et al. Oct 2006 B2
7118597 Miller et al. Oct 2006 B2
7122053 Esch Oct 2006 B2
7125422 Woods et al. Oct 2006 B2
7150759 Paul et al. Dec 2006 B2
7179292 Worst et al. Feb 2007 B2
7182780 Terwee et al. Feb 2007 B2
7186266 Peyman Mar 2007 B2
7188949 Bandhauer et al. Mar 2007 B2
7198640 Nguyen Apr 2007 B2
7217288 Esch et al. May 2007 B2
7220279 Nun May 2007 B2
7223288 Zhang et al. May 2007 B2
7226478 Ting et al. Jun 2007 B2
7238201 Portney et al. Jul 2007 B2
7247168 Esch et al. Jul 2007 B2
7261737 Esch et al. Aug 2007 B2
7452362 Zadno-Azizi et al. Nov 2008 B2
7452378 Zadno-Azizi et al. Nov 2008 B2
7503938 Phillips Mar 2009 B2
7615056 Ayton et al. Nov 2009 B2
7645300 Tsai Jan 2010 B2
7662180 Paul et al. Feb 2010 B2
7744603 Zadno-Azizi et al. Jun 2010 B2
7744646 Zadno-Azizi et al. Jun 2010 B2
7815678 Ben Nun Oct 2010 B2
8052752 Woods et al. Nov 2011 B2
20010001836 Cumming May 2001 A1
20010004708 Nagai Jun 2001 A1
20010018612 Carson et al. Aug 2001 A1
20010039451 Barnett Nov 2001 A1
20010044657 Kellan Nov 2001 A1
20020004682 Zhou et al. Jan 2002 A1
20020011167 Figov et al. Jan 2002 A1
20020072796 Hoffmann et al. Jun 2002 A1
20020095212 Boehm Jul 2002 A1
20020103536 Landreville et al. Aug 2002 A1
20020107568 Zadno-Azizi et al. Aug 2002 A1
20020111678 Zadno-Azizi et al. Aug 2002 A1
20020116058 Zadno-Azizi et al. Aug 2002 A1
20020116060 Nguyen et al. Aug 2002 A1
20020120329 Lang et al. Aug 2002 A1
20020151973 Arita et al. Oct 2002 A1
20020161434 Laguette et al. Oct 2002 A1
20020188351 Laguette Dec 2002 A1
20020193876 Lang et al. Dec 2002 A1
20030002404 Maekawa Jan 2003 A1
20030004569 Haefliger Jan 2003 A1
20030013073 Duncan et al. Jan 2003 A1
20030020425 Ricotti Jan 2003 A1
20030033013 Callahan et al. Feb 2003 A1
20030045933 Brady Mar 2003 A1
20030050696 Cumming Mar 2003 A1
20030050697 Paul Mar 2003 A1
20030060878 Shadduck Mar 2003 A1
20030060881 Glick et al. Mar 2003 A1
20030078657 Zadno-Azizi et al. Apr 2003 A1
20030078658 Zadno-Azizi Apr 2003 A1
20030083744 Khoury May 2003 A1
20030086057 Cleveland May 2003 A1
20030105522 Glazier Jun 2003 A1
20030109925 Ghazizadeh et al. Jun 2003 A1
20030109926 Portney Jun 2003 A1
20030114927 Nagamoto Jun 2003 A1
20030130732 Sarfarazi Jul 2003 A1
20030135272 Brady et al. Jul 2003 A1
20030149480 Shadduck Aug 2003 A1
20030158599 Brady et al. Aug 2003 A1
20030187504 Weinschenk et al. Oct 2003 A1
20030187505 Liao Oct 2003 A1
20030204254 Peng et al. Oct 2003 A1
20030204255 Peng et al. Oct 2003 A1
20040002757 Lai et al. Jan 2004 A1
20040010496 Behrendt et al. Jan 2004 A1
20040014049 Cowsert et al. Jan 2004 A1
20040015236 Sarfarazi Jan 2004 A1
20040034415 Terwee et al. Feb 2004 A1
20040039446 McNicholas Feb 2004 A1
20040054408 Glick et al. Mar 2004 A1
20040082993 Woods Apr 2004 A1
20040082994 Woods et al. Apr 2004 A1
20040082995 Woods Apr 2004 A1
20040106992 Lang et al. Jun 2004 A1
20040111151 Paul et al. Jun 2004 A1
20040111153 Woods et al. Jun 2004 A1
20040117013 Schachar Jun 2004 A1
20040148023 Shu Jul 2004 A1
20040156014 Piers et al. Aug 2004 A1
20040158322 Shen Aug 2004 A1
20040162612 Portney et al. Aug 2004 A1
20040167621 Peyman Aug 2004 A1
20040181279 Nun Sep 2004 A1
20040215340 Messner et al. Oct 2004 A1
20040230299 Simpson et al. Nov 2004 A1
20040230300 Bandhauer et al. Nov 2004 A1
20040236422 Zhang et al. Nov 2004 A1
20040236423 Zhang et al. Nov 2004 A1
20040249456 Cumming Dec 2004 A1
20050018504 Marinelli et al. Jan 2005 A1
20050021139 Shadduck Jan 2005 A1
20050021140 Liao Jan 2005 A1
20050027354 Brady et al. Feb 2005 A1
20050038510 Portney et al. Feb 2005 A1
20050060032 Magnante et al. Mar 2005 A1
20050085906 Hanna Apr 2005 A1
20050085907 Hanna Apr 2005 A1
20050099597 Sandstedt et al. May 2005 A1
20050113914 Miller et al. May 2005 A1
20050125056 Deacon et al. Jun 2005 A1
20050125057 Cumming Jun 2005 A1
20050125058 Cumming et al. Jun 2005 A1
20050125059 Pinchuk et al. Jun 2005 A1
20050131535 Woods Jun 2005 A1
20050137703 Chen Jun 2005 A1
20050234547 Nguyen et al. Oct 2005 A1
20050246019 Blake et al. Nov 2005 A1
20050267575 Nguyen et al. Dec 2005 A1
20050288785 Portney et al. Dec 2005 A1
20060030938 Altmann Feb 2006 A1
20060064162 Klima Mar 2006 A1
20060095127 Feingold et al. May 2006 A1
20060098162 Bandhauer et al. May 2006 A1
20060100703 Evans et al. May 2006 A1
20060111776 Glick et al. May 2006 A1
20060116764 Simpson Jun 2006 A1
20060116765 Blake et al. Jun 2006 A1
20060178741 Zadno-Azizi et al. Aug 2006 A1
20060184244 Nguyen et al. Aug 2006 A1
20060209430 Spivey Sep 2006 A1
20060235513 Price, Jr. Oct 2006 A1
20060238702 Glick et al. Oct 2006 A1
20060259139 Zadno-Azizi et al. Nov 2006 A1
20060271187 Zadno-Azizi et al. Nov 2006 A1
20070050025 Nguyen et al. Mar 2007 A1
20070067872 Mittendorf et al. Mar 2007 A1
20070078515 Brady Apr 2007 A1
20070088433 Esch et al. Apr 2007 A1
20070100444 Brady et al. May 2007 A1
20070106381 Blake May 2007 A1
20070108643 Zadno-Azizi et al. May 2007 A1
20070123591 Kuppuswamy et al. May 2007 A1
20070129798 Chawdhary Jun 2007 A1
20070135915 Klima Jun 2007 A1
20070213817 Esch et al. Sep 2007 A1
20070260309 Richardson Nov 2007 A1
20070299487 Shadduck Dec 2007 A1
20080004699 Ben Nun Jan 2008 A1
20080046076 Rombach Feb 2008 A1
20080125790 Tsai et al. May 2008 A1
20080161913 Brady et al. Jul 2008 A1
20080161914 Brady et al. Jul 2008 A1
20090012609 Geraghty et al. Jan 2009 A1
20100057203 Glick et al. Mar 2010 A1
Foreign Referenced Citations (163)
Number Date Country
3225789 Oct 1989 AU
681687 May 1993 CH
2702117 Jul 1978 DE
3246306 Jun 1984 DE
4038088 Jun 1992 DE
19501444 Jul 1996 DE
19951148 Apr 2001 DE
20109306 Aug 2001 DE
10059482 Jun 2002 DE
10125829 Nov 2002 DE
64812 Nov 1982 EP
162573 Nov 1985 EP
212616 Mar 1987 EP
246216 Nov 1987 EP
328117 Aug 1989 EP
329981 Aug 1989 EP
331457 Sep 1989 EP
336877 Oct 1989 EP
0337390 Oct 1989 EP
0342895 Nov 1989 EP
351471 Jan 1990 EP
356050 Feb 1990 EP
337390 May 1990 EP
402825 Dec 1990 EP
420549 Apr 1991 EP
470811 Feb 1992 EP
478929 Apr 1992 EP
480748 Apr 1992 EP
488835 Jun 1992 EP
492126 Jul 1992 EP
507292 Oct 1992 EP
566170 Oct 1993 EP
601845 Jun 1994 EP
605841 Jul 1994 EP
691109 Jan 1996 EP
766540 Apr 1997 EP
779063 Jun 1997 EP
780718 Jun 1997 EP
897702 Feb 1999 EP
766540 Aug 1999 EP
1108402 Jun 2001 EP
1321112 Jun 2003 EP
1647241 Apr 2006 EP
1424049 Jun 2009 EP
488835 Nov 1918 FR
2666504 Mar 1992 FR
2666735 Mar 1992 FR
2681524 Mar 1993 FR
2745711 Sep 1997 FR
2778093 Nov 1999 FR
2784575 Apr 2000 FR
939016 Oct 1963 GB
2058391 Apr 1981 GB
2124500 Feb 1984 GB
2129155 May 1984 GB
2146791 Apr 1985 GB
2192291 Jan 1988 GB
2215076 Sep 1989 GB
0211134 Jan 1990 JP
2126847 May 1990 JP
H06508279 Sep 1994 JP
7005399 Jan 1995 JP
7222760 Aug 1995 JP
9501856 Feb 1997 JP
H09502542 Mar 1997 JP
10000211 Jan 1998 JP
H11500030 Jan 1999 JP
11047168 Feb 1999 JP
2000508588 Jul 2000 JP
2003513704 Apr 2003 JP
2003190193 Jul 2003 JP
2003522592 Jul 2003 JP
2003525694 Sep 2003 JP
2014038 Jun 1994 RU
2014039 Jun 1994 RU
8404449 Nov 1984 WO
8603961 Jul 1986 WO
8700299 Jan 1987 WO
8707496 Dec 1987 WO
8803961 Jun 1988 WO
8902251 Mar 1989 WO
8911672 Nov 1989 WO
8911872 Dec 1989 WO
9000889 Feb 1990 WO
9109336 Jun 1991 WO
9302639 Feb 1993 WO
9305733 Apr 1993 WO
9416648 Aug 1994 WO
9503783 Feb 1995 WO
9610968 Apr 1996 WO
9615734 May 1996 WO
9625126 Aug 1996 WO
9635398 Nov 1996 WO
9712272 Apr 1997 WO
9727825 Aug 1997 WO
9743984 Nov 1997 WO
9805273 Feb 1998 WO
9821621 May 1998 WO
9849594 Nov 1998 WO
9856315 Dec 1998 WO
9903427 Jan 1999 WO
9907309 Feb 1999 WO
9920206 Apr 1999 WO
9921491 May 1999 WO
9929266 Jun 1999 WO
0021467 Apr 2000 WO
0027315 May 2000 WO
0035379 Jun 2000 WO
0046629 Aug 2000 WO
0059407 Oct 2000 WO
0061036 Oct 2000 WO
0066037 Nov 2000 WO
0066039 Nov 2000 WO
0066040 Nov 2000 WO
0066041 Nov 2000 WO
0108605 Feb 2001 WO
0119288 Mar 2001 WO
0119289 Mar 2001 WO
0128144 Apr 2001 WO
0134061 May 2001 WO
0134066 May 2001 WO
0134067 May 2001 WO
0156510 Aug 2001 WO
0160286 Aug 2001 WO
0164135 Sep 2001 WO
0164136 Sep 2001 WO
0166042 Sep 2001 WO
0182839 Nov 2001 WO
0189816 Nov 2001 WO
0209620 Feb 2002 WO
0212523 Feb 2002 WO
0219949 Mar 2002 WO
02058391 Jul 2002 WO
02071983 Sep 2002 WO
02098328 Dec 2002 WO
03009051 Jan 2003 WO
03015657 Feb 2003 WO
03015669 Feb 2003 WO
03034949 May 2003 WO
03049646 Jun 2003 WO
03057081 Jul 2003 WO
03059196 Jul 2003 WO
03059208 Jul 2003 WO
03075810 Sep 2003 WO
03084441 Oct 2003 WO
03092552 Nov 2003 WO
04000171 Dec 2003 WO
2004020549 Mar 2004 WO
2004037127 May 2004 WO
2004073559 Sep 2004 WO
2005011531 Feb 2005 WO
2005018504 Mar 2005 WO
2005019871 Mar 2005 WO
03082147 Aug 2005 WO
2005084587 Sep 2005 WO
2005115278 Dec 2005 WO
2006025726 Mar 2006 WO
2006118452 Nov 2006 WO
2007040964 Apr 2007 WO
2007067872 Jun 2007 WO
2008077795 Jul 2008 WO
2008079671 Jul 2008 WO
0888414 Nov 1988 ZA
Non-Patent Literature Citations (55)
Entry
Amo Specs Model AC-21B, 1992.
Chiron Vision, Nuvita Mar. 20, 1997 (Chiron Vision Corp. 1997), 6 pages.
DVD New Elliptical Accommodating IOL for Cataract Surgery shown at ASCRS Symposium on Apr. 1, 1999.
“DVD titled “New elliptical accommodative IOL for cataract surgery” shown at ASCRS Symposium on Apr. 10, 1999.”
English translation of WO93/05733A1.
Fechner P.U., et al., “Iris-Claw Lens in Phakic Eyes to Correct Hyperopia: Preliminary Study,” Journal of Cataract and Refractive Surgery , 1998, vol. 24 (1), pp. 48-56.
Hara T., et al., “Accommodative Intraocular Lens with Spring Action Part 1 Design and Placement in an Excised Animal Eye,” Ophthalmic Surgery, 1990, vol. 21 (2), pp. 128-133.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2004/29704, mailed on Mar. 13, 2006, 8 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2006/61671, mailed on Jul. 1, 2008, 7 pages.
International Search Report for Application No. PCT/US2003/01270, mailed on Jun. 25, 2003, 5 pages.
International Search Report for Application No. PCT/US2004/29704, mailed on Jan. 25, 2005, 3 pages.
International Search Report for Application No. PCT/US2006/61671, mailed on Apr. 5, 2007, 3 pages.
Mandell R.B. “Contact Lens Practice”, 4th Edition, Charles C. Thomas Publishers.
Mandell R.B., et al., “Mathematical Model of the Corneal Contour,” School of Optometry, University of California, Berkeley, pp. 183-197.
Menezo J.L., et al., “Endothelial Study of Iris-Claw Phakic Lens: Four Year Follow-Up,” Journal of Cataract Refractive Surgery, 1998, vol. 24 (8), pp. 1039-1049.
Office Action mailed Jul. 19, 2011 for Japanese Application No. 2006526344 filed Sep. 10, 2004.
Partial Program Re: ASCRS Symposium, Showing Video Tape Shown Between Apr. 10-14, 1999.
“Program from ASCRS Symposium showing video tape between Apr. 10-14, 1999, 2 pages.”
Simonov A.N., et al., “Cubic Optical Elements for an Accommodative Intraocular Lens,” Optics Express, 2006, vol. 14 (17), pp. 7757-7775.
Study Design of Nuvita, Mar. 20, 1997, 5 pages.
Thornton S., “Accommodation in Pseudophakia,” 1991, pp. 159-162.
U.S. Appl. No. 10/280,918, filed Aug. 5, 2003.
U.S. Appl. No. 10/280,937, filed Oct. 25, 2005.
Adler-Grinberg D., “Questioning Our Classical Understanding of Accommodation and Presbyopia,” American Journal of Optometry & Physiological Optics, 1986, vol. 63 (7), pp. 571-580.
Altan-Yaycioglu R., et al., “Pseudo-accommodation with Intraocular Lenses Implanted in the Bag,” Journal of Refractive Surgery, 2002, vol. 18 (3), pp. 271-275.
Chauvin-Opsia, Azurite ACL (0459).
Chiron, Clemente Opfit Model SP525, Brochure Translation, Jul. 12, 1998.
Cohen A. L., “Diffractive Bifocal Lens Design,” Optometry and Vision Science, 1993, vol. 70 (6), pp. 461-468.
Cohen A.L., “Practical Design of a Bifocal Hologram Contact Lens or Intraocular Lens,” Applied Optics, 1992, vol. 31 (19), pp. 3750-3754.
Co-pending U.S. Appl. No. 09/656,661, filed Sep. 7, 2000.
Foldable Intraocular Lens Implants and Small Incision Cataract Surgery, Ohio Valley Eye Physicians, 2004.
Hanita Lenses, Source Ocular Surgery News International, 1 page.
Hecht E., et al., “Optics”, 4th Edition, Addison-Wesley Publishing Company, 1979, pp. 188-190.
Holladay J.T., et al., “A Three-Part System for Refining Intraocular Lens Power Calculations,” Journal of Cataract and Refractive Surgery, 1988, vol. 14 (1), pp. 17-24.
Holladay J.T., et al., “Analysis of Edge Glare Phenomena in Intraocular Lens Edge Designs,” Journal of Cataract and Refractive Surgery, 1999, vol. 25 (6), pp. 748-752.
Iolab Corp., Source Ophthalmology Times, Mar. 15, 1995, 1 page.
Jacobi F.K., et al., “Bilateral Implantation of Asymmetrical Diffractive Multifocal Intraocular Lenses,” Archives of Ophthalmology, 1999, vol. 117 (1), pp. 17-23.
Klien S.A., “Understanding the Diffractive Bifocal Contact Lens,” Optometry and Vision Science, 1993, vol. 70 (6), pp. 439-460.
Kuchle M., et al., “Implantation of a New Accommodative Posterior Chamber Intraocular Lens,” Journal of Refractive Surgery, 2002, vol. 18 (3), pp. 208-216.
Lane S.S., et al., “Polysulfone Intracorneal Lenses,” International Ophthalmology Clinics, 1991, vol. 31 (1), pp. 37-46.
Marron J.C., et al., “Higher-order Kinoforms,” Computer and Optically Formed Holographic Optics, 1990, vol. 1211, pp. 62-66.
McCarey B.E, et al., “Modeling Glucose Distribution in the Cornea,” Current Eye Research, 1990, vol. 9 (11), pp. 1025-1039.
Mediphacos Ltda, Ocular Surgery News International.
Opthalmed Inc., OMAC-260.
Prosecution History for U.S. Appl. No. 10/958,871, filed on Oct. 5, 2004.
Prosecution History for U.S. Appl. No. 11/057,705, filed on Feb. 14, 2005.
Prosecution History for U.S. Appl. No. 11/195,422, filed on Aug. 1, 2005.
Ramocki J.M., et al., “Foldable Posterior Chamber Intraocular Lens Implantation in the Absence of Capsular and Zonular Support,” American Journal of Ophthalmology, 1999, vol. 127 (2), pp. 213-216.
Randall Woods D.O., “The Woods Concept for Capsular Bag Placement,” Copeland Intra Lenses, Inc.
Storz Opthalmics Inc., Model L122UV ACL.
Taylor B.N., ed., The International System of Units (SI), 1991, NIST Special Publication 330, 4 pages.
Tetz M., et al., “Evaluating and Defining the Sharpness of Intraocular Lenses: Part 1: Influence of Optic Design on the Growth of the Lens Epithelial Cells in Vitro,” Journal of Cataract and Refractive Surgery, 2005, vol. 31 (11), pp. 2172-2179.
Universe IOL Center, Ocular Surgery News International.
VIDEO presented by ASCRS Symposium of Cataracts IOL and Refractive Surgery at the ASOA Congress on Ophthalmic Practice Management. Clinical & Surgical Staff Program on Apr. 10-14, 1999 (VHS Tape).
World Optics Inc., Ophthalmology Times, Mar. 15, 1995.
Related Publications (1)
Number Date Country
20140012375 A1 Jan 2014 US
Provisional Applications (2)
Number Date Country
60348705 Jan 2002 US
60372309 Apr 2002 US
Divisions (1)
Number Date Country
Parent 12840843 Jul 2010 US
Child 13723557 US
Continuations (1)
Number Date Country
Parent 11322068 Dec 2005 US
Child 12840843 US
Continuation in Parts (2)
Number Date Country
Parent 10661410 Sep 2003 US
Child 11322068 US
Parent 10341701 Jan 2003 US
Child 10661410 US