Accoustic resonator having composite electrodes with integrated lateral features

Information

  • Patent Grant
  • 9425764
  • Patent Number
    9,425,764
  • Date Filed
    Thursday, October 25, 2012
    11 years ago
  • Date Issued
    Tuesday, August 23, 2016
    8 years ago
Abstract
A bulk acoustic wave (BAW) resonator device includes a bottom electrode on a substrate over one of a cavity and an acoustic reflector, a piezoelectric layer on the bottom electrode, and a top electrode on the piezoelectric layer. At one of the bottom electrode and the top electrode is a composite electrode having an integrated lateral feature, arranged between planar top and bottom surfaces of the composite electrode and configured to create a cut-off frequency mismatch.
Description
BACKGROUND

Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic signals (sound waves) and convert received acoustic waves to electrical signals via inverse and direct piezoelectric effect. Acoustic transducers generally include acoustic resonators, such as surface acoustic wave (SAW) resonators and bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, BAW resonators include thin film bulk acoustic resonators (FBARs), which may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may form a thin membrane.


FBAR devices, in particular, generate longitudinal acoustic waves and lateral acoustic waves when stimulated by an applied time-varying electric field, as well as higher order harmonic mixing products. The longitudinal acoustic wave, usually called a piston mode, is electrically excited by a vertical electric field between electrode plates and has a form of laterally uniform motion with the boundaries of motion determined by an overlap of top and bottom electrodes and the piezoelectric material. Lateral acoustic waves, usually called lateral modes, are excited at the edges of the piston mode motion and facilitate continuity of appropriate mechanical displacements and stresses between electrically excited and non-excited regions. In general, lateral modes are specific forms of motion supported by a mechanical stack and have both longitudinal and shear components. The lateral modes can either propagate freely (so called propagating modes) or exponentially decay (so called evanescent and complex modes) from the point of excitation. These modes can be excited both by a lateral mechanical discontinuity (for example, at an interface between a frame and a membrane, or at the edge of a top or bottom electrode) or by electrical discontinuity (for example, at an edge of a top electrode where the electric field is terminated abruptly). The lateral modes and the higher order harmonic mixing products generally have a deleterious impact on functionality.


In certain configurations, a frame may be provided along one or more sides of an FBAR to mitigate acoustic losses at the boundaries by minimizing scattering of electrically excited piston mode at the top electrode edges and by improving confinement of mechanical motion to the active region of the FBAR (the region of overlap of the top electrode, the piezoelectric layer, and the bottom electrode). In general, frames are made of added (or removed) thin layers of material along the perimeter of the resonator device with the purpose of lowering (increasing) the cutoff frequency in that region with respect to the main membrane. This in turn minimizes the amplitude of the electrically excited piston mode and the resulting scattering at top electrode edges above (or below) the cut-off frequency of a membrane. Frames also create an acoustic impedance mismatch that enables suppression of the amplitudes of propagating and/or evanescent modes (whichever exist in the frequency range of interest) mechanically excited at the membrane/frame boundary, thus further minimizing acoustic energy leakage to the outside of the active region. However, in addition to improved acoustic energy confinement, as well as further improvements in FBAR quality factor Q due to the better acoustic energy confinement, simplified design and implementation of frames are needed. In particular, in some applications, frames placed above the piezoelectric layer are not effective in suppressing modes confined to the bottom part of the stack. Thus, approaches allowing for construction of planarized frames below piezoelectric layers that would facilitate growth of good-quality planar layers above the frame regions are needed.


SUMMARY

In a representative embodiment, a bulk acoustic wave (BAW) resonator device includes a bottom electrode on a substrate over one of a cavity and an acoustic reflector, a piezoelectric layer on the bottom electrode, and a top electrode on the piezoelectric layer. At least one of the bottom electrode and the top electrode includes a composite electrode having an integrated lateral feature, arranged between planar top and bottom surfaces of the composite electrode and configured to create at least one of a cut-off frequency mismatch and an acoustic impedance mismatch.


In another representative embodiment, a thin film bulk acoustic resonator (FBAR) includes a bottom electrode on a substrate, a piezoelectric layer on the first electrode, and a top electrode on the piezoelectric layer. At least one of the bottom and the top electrode is formed of a first material and a second material, where the first material has a lower sound velocity than the second material. The FBAR further includes one of an integrated low velocity frame formed by the first material or an integrated high velocity frame formed by the second material within at least one of the bottom and the top electrode at an outer region of the FBAR.


In another representative embodiment, a BAW resonator device includes a bottom electrode formed on a substrate over one of a cavity and an acoustic reflector, a piezoelectric layer formed on the bottom electrode, and a composite top electrode formed on the piezoelectric layer, the composite top electrode comprising an integrated low velocity frame formed substantially around an outer perimeter of the composite top electrode, the integrated low velocity frame having a thickness less than a total thickness of the composite top electrode. The integrated low velocity frame is formed of a first material and a remainder of the composite top electrode is formed of a second material, the first material having a lower sound velocity than the second material.





BRIEF DESCRIPTION OF THE DRAWINGS

The example embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.



FIG. 1 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes and integrated frames, according to a representative embodiment.



FIG. 2 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes and integrated frames, a according to representative embodiment.



FIG. 3 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes and integrated frames, according to representative embodiments.



FIG. 4 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to a representative embodiment.



FIG. 5 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to a representative embodiment.



FIG. 6 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to a representative embodiment.



FIG. 7 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to a representative embodiment.



FIG. 8 is a graph illustrating parallel resistance Rp and coupling coefficient kt2 versus frame width of an integrated frame having various thicknesses, according to representative embodiments.





DETAILED DESCRIPTION

In the following detailed description, for purposes of explanation and not limitation, representative embodiments disclosing specific details are set forth in order to provide a thorough understanding of the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the representative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.


Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper,” “lower,” “left,” “right,” “vertical” and “horizontal,” are used to describe the various elements' relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be “below” that element. Likewise, if the device were rotated 90 degrees with respect to the view in the drawings, an element described as “vertical,” for example, would now be “horizontal.”


Further, as used in the specification and appended claims, the terms “a”, “an” and “the” include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, “a device” includes one device and plural devices.


As used in the specification and appended claims, and in addition to their ordinary meanings, the terms “substantial” or “substantially” mean to within acceptable limits or degree. For example, “substantially cancelled” means that one skilled in the art would consider the cancellation to be acceptable.


As used in the specification and the appended claims and in addition to its ordinary meaning, the term “approximately” means to within an acceptable limit or amount to one having ordinary skill in the art. For example, “approximately the same” means that one of ordinary skill in the art would consider the items being compared to be the same.


The present teachings are directed to integrated lateral features, such as integrated low velocity and high velocity frames, that are included within one or more composite electrodes of a BAW resonator, such as an FBAR. The integrated lateral features generally suppress electrically excited piston mode in the region defined by the feature, and reflect and otherwise resonantly suppress propagating eigenmodes in lateral directions, with both effects simultaneously improving operation of the BAW resonator. Introduction of integrated lateral features generally results in creating at least one of a cut-off frequency mismatch and an acoustic impedance mismatch. The composite electrodes are formed of at least two different conductive materials, such as metals, having different sound velocities and acoustic impedances. The term “integrated” means that the lateral feature is formed within a corresponding composite electrode, as opposed to being formed on or otherwise protruding from one of the surfaces of the composite electrode, such that the composite electrode maintains substantially planar top and bottom surfaces that are substantially parallel to one another. This simplifies fabrication of the FBAR with regard to application of layers on planar surfaces, yet provides the benefits of the lateral features.


For example, an integrated low velocity frame may be located along the outer edges of an FBAR, which generally increases parallel resistance Rp and quality factor Q above the cut-off frequency. Similarly, an integrated high velocity frame may be located along the outer edges of an FBAR, which generally decreases series resistance Rs and increases quality factor Q below the cut-off frequency. A typical integrated low velocity frame, for example, effectively provides a region with significantly lower cut-off frequency than the main membrane and therefore minimizes the amplitude of the electrically excited piston mode towards the edge of the top electrode in the frame region. Furthermore, it provides two interfaces (impedance miss-match planes), which increase reflection of (mechanically excited at membrane/frame interface) propagating eigenmodes in lateral directions. When the width of the frame is properly designed for a given eigenmode, it results in resonantly enhanced suppression of that particular eigenmode. Lastly, a sufficiently wide integrated low velocity frame provides a region for smooth decay of the evanescent and complex modes mechanically excited at the membrane/frame interface. The combination of these three effects yields better energy confinement and higher quality factor Q at parallel resonance frequency Fp.


Certain aspects of the present teachings build upon components of FBAR devices, FBAR-based filters, their materials and methods of fabrication. Many details of FBARs, materials thereof and their methods of fabrication may be found in one or more of the following U.S. patents and patent applications: U.S. Pat. No. 6,107,721 (Aug. 22, 2000) to Lakin; U.S. Pat. No. 5,587,620 (Dec. 24, 1996), U.S. Pat. No. 5,873,153 (Feb. 23, 1999) U.S. Pat. No. 6,507,983 (Jan. 21, 2003) and U.S. Pat. No. 7,388,454 (Jun. 17, 2008) to Ruby, et al.; U.S. Pat. No. 7,629,865 (Dec. 8, 2009) to Ruby; U.S. Pat. No. 7,714,684 (May 11, 2010) to Ruby et al.; U.S. Pat. No. 7,280,007 (Oct. 9, 2007) to Feng et al.; U.S. Pat. App. Pub. No. 2007/0205850, entitled “Piezoelectric Resonator Structures and Electrical Filters having Frame Elements” to Jamneala et al.; U.S. Pat. App. Pub. No. 2010/0327697, entitled “Acoustic Resonator Structure Comprising a Bridge” to Choy et al.; U.S. Pat. App. Pub. No. 2010/0327994, entitled “Acoustic Resonator Structure having an Electrode with a Cantilevered Portion” to Choy et al.; and U.S. patent application Ser. No. 13/036,489, entitled “Coupled Resonator Filter Comprising a Bridge” to Burak filed on Feb. 28, 2011. The disclosures of these patents and patent applications are hereby incorporated by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.


In various embodiments, a BAW resonator, such as an FBAR, includes one or more composite electrodes having a single layer containing different materials formed at the same level. For example, FIGS. 1 to 3 are cross-sectional diagrams illustrating acoustic resonators, including composite electrodes and integrated frames, in which each composite electrode includes different conductive materials at one level, segregated from one another in the horizontal direction (in the orientations depicted in FIGS. 1 to 3). The integrated frame is implemented by the conductive materials having, in general, different sound velocities and acoustic impedances from one another.



FIG. 1 is a cross-sectional diagram illustrating an acoustic resonator, according to a representative embodiment. In the example depicted in FIG. 1 (as well as the examples depicted in FIGS. 2-7, discussed below), the acoustic resonator is an FBAR, for convenience of explanation. However, it is understood that other types of acoustic resonators may be included, without departing from the scope of the present teachings.


Referring to FIG. 1, FBAR 100 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, a known acoustic reflector, such as a Bragg mirror (not shown) comprising alternating layers of high and low acoustic impedance may be provided in the substrate 110 to provide acoustic isolation, in place of the cavity 115, without departing from the scope of the present teachings. The substrate 110 may be formed of a material compatible with semiconductor processes, such as silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), glass, sapphire, alumina, or the like, for example. Various illustrative fabrication techniques of cavities in a substrate are described by U.S. Pat. No. 7,345,410 (Mar. 18, 2008) to Grannen et al., and various illustrative fabrication techniques of acoustic mirrors are described by in U.S. Pat. No. 7,358,831 (Apr. 15, 2008), to Larson III, et al., which are hereby incorporated by reference in their entireties.


The FBAR 100 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 120 and second or top electrode 140. The bottom electrode 120 is disposed over the substrate 110 and the cavity 115. A planarization layer 127 is also provided over the substrate 110 as shown in order to provide a planar top surface of the bottom electrode 120. In a representative embodiment, the planarization layer 127 includes non-etchable borosilicate glass (NEBSG), for example. In general, the planarization layer 127 does not need to be present in the structure (as it increases overall processing cost), but when present, it may improve quality of growth of subsequent layers and simplify their processing. The piezoelectric layer 130 is disposed over the bottom electrode 120, and the top electrode 140 is disposed over the piezoelectric layer 130. Together, the bottom electrode 120, the piezoelectric layer 130 and the top electrode 140 form the (thin) membrane of the FBAR 100.


As mentioned above, each of the bottom and top electrodes 120 and 140 are composite electrodes formed of multiple conductive materials. A composite electrode may be a bi-metal electrode, for example, formed of two electrically conductive metal materials, such as tungsten (W), molybdenum (Mo) or copper (Cu). Alternatively, a composite electrode may include one or more dielectric materials, such as silicon dioxide (SiO2), silicon nitride (SiN), silicon carbide (SiC), aluminum nitride (AlN), zinc oxide (ZnO) or lead zirconium titanate (PZT), for example, in place of one of the metal materials. The piezoelectric layer 130 is formed of a thin film of piezoelectric material, such as ZnO, AlN or PZT, for example. However, other materials may be incorporated in the FBAR 100 without departing from the scope of the present teachings. In various embodiments, the bottom and top electrodes 120 and 140 may be formed of the same or different materials from one another.


The FBAR 100 further includes integrated lateral features configured to minimize scattering of piston mode at the top electrode 140 edge at frequencies above the cut-off frequency of the membrane by three mechanisms described above: (1) minimization of piston mode amplitude excited by time-harmonic electric field in the integrated lateral feature region, (2) suppression of at least a portion of the thickness extensional (TE), thickness shear (TS) and flexural propagating lateral acoustic modes, and (3) facilitation of exponential decay of evanescent and higher-order complex TE modes. According to the depicted representative embodiment, the lateral features include integrated low velocity frame 121 surrounding inner portion 122 in the bottom electrode 120, and integrated low velocity frame 141 surrounding inner portion 142 in top electrode 140. In the bottom electrode 120, the integrated low velocity frame 121 is formed of a first material and the inner portion 122 is formed of a second material different from the first material, where the first material has lower sound velocity than the second material. Likewise, in the top electrode 140, the integrated low velocity frame 141 is also formed of the first material and the inner portion 142 is formed of the second material. For example, the integrated low velocity frames 121 and 141 may be formed of W and the inner portions 122 and 142 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings.


Generally, the integrated low velocity frames 121 and 141 present a substantial down-shift of cut-off frequency yielding substantially lower amplitude of electrically excited piston mode at the pass-band frequencies (above the series resonance frequency). Also, integrated low velocity frames 121 and 141 provide large acoustic impedance discontinuities to both propagating and evanescent modes mechanically excited at interfaces between integrated bottom and top low velocity frames 121 and 141 and bottom and top inner portions 122 and 142. Beneficially, impact of this discontinuity on the acoustic waves can be minimized by proper selection of integrated low velocity frame width, thus suppressing the propagating eigen-modes and exponentially decaying the evanescent and complex eigen-modes. As a result, total acoustic energy density at the edge of the top electrode 140 is minimized, which beneficially yields minimized scattering of acoustic energy and increased parallel resistance Rp and quality factor Q of the FBAR 100.


In the depicted embodiment, the integrated low velocity frame 121 is co-planar with the inner portion 122, meaning that both the integrated low velocity frame 121 and the inner portion 122 have substantially the same thickness (in the vertical direction according to the orientation shown in FIG. 1) within the bottom electrode 120. Stated differently, the integrated low velocity frame 121 may form a ring of equal thickness around the inner portion 122. The integrated low velocity frame 121 is generally located in an outer region of the FBAR 100, and may be formed around all or part of a perimeter of the bottom electrode 120. For example, the FBAR 100 (as well as the other FBARs discussed below) may be apodized or irregular in shape from a top perspective (not shown), and the integrated low velocity frame 121 may substantially follow along an outer perimeter of the bottom electrode 120. That is, the bottom electrode 120 may have five sides arranged in a substantially trapezoidal shape, for example, in which case the integrated low velocity frame 121 may be formed along all five sides, or fewer than all five sides of the FBAR 100.


Similarly, the integrated low velocity frame 141 is co-planar with the inner portion 142 of the top electrode 140, meaning that both the integrated low velocity frame 141 and the inner portion 142 have substantially the same thickness. That is, the integrated low velocity frame 141 may form a ring of equal thickness around the inner portion 142. The integrated low velocity frame 141 is located in the outer region of the FBAR 100, which may be apodized or irregular in shape, as discussed above, and may be formed around all or part of a perimeter of the top electrode 140. In general, an active region of the FBAR 100 is defined by overlap between the top electrode 140, the piezoelectric layer 130 and the bottom electrode 120. However, since both the bottom and top low velocity frames 121 and 141 facilitate significant down shift of cut-off frequency, an effective active region of the FBAR 100 in the pass-band frequency range is determined by overlap of the bottom and top inner portions 122 and 142, and the piezoelectric layer 130. Of course, the FBAR 100 may be formed in various alternative shapes, such as circular, square, rectangular, trapezoidal, etc., without departing from the scope of the present teachings. Also, in various embodiments, the integrated low velocity frames 121 and 141 may be shaped differently from the shape of the FBAR 100 and/or the integrated low velocity frames 121 and 141 may not be disposed along all of the edges of the bottom and top electrodes 120 and 140, respectively.


The outer region of the FBAR 100 generally includes portions of the FBAR 100 at and/or near an outer perimeter of bottom and top electrodes 120 and 140. The outer region may extend toward (but not include) a central region of the FBAR 100 by various amounts, depending on application specific design requirements of various implementations, for example. The central region generally includes a portion of each of the bottom and top electrodes 120 and 140 that incorporates the center of the active region of the FBAR 100. In FIG. 1, the inner portions 122 and 142 of the bottom and top electrodes 120 and 140 incorporate the central region of the FBAR 100.


Illustratively, each of the bottom electrode 120 and the top electrode 140 may be formed of W and Mo, as mentioned above, and have a thickness (vertical direction in the orientation depicted in FIG. 1) of approximately 1000 Å to approximately 20000 Å. In various embodiments, the bottom and top electrodes 120 and 140 may have the same or different thicknesses from one another. Because the integrated low velocity frames 121 and 141 are the same thicknesses as the bottom and top electrodes 120 and 140, respectively, these thicknesses may be varied only by varying the total thicknesses of the bottom and top electrodes 120 and 140. Each of the integrated low velocity frames 121 and 141 may have a width (horizontal direction in the orientation depicted in FIG. 1) of approximately 0.1 μm to approximately 10 μm, for example. In various embodiments, the integrated low velocity frames 121 and 141 may have the same or different widths from one another. The piezoelectric layer 130 may be formed of AlN and have a thickness of approximately 5000 Å to approximately 25000 Å, for example.


The respective dimensions of the bottom and top electrodes 120 and 140, and the integrated low velocity frames 121 and 141 (as well as the dimensions of the piezoelectric layer 130), may be varied to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations. Accordingly, when designed properly for maximum piston mode and eigenmode suppression at the edges of bottom and top electrodes 120 and 140, the integrated low velocity frames 121 and 141 improve the energy confinement inside the FBAR 100, which manifests itself by increased parallel resistance Rp and quality factor Q of the FBAR 100.


Generally, each of the bottom electrode 120 and the top electrode 140 may be formed using the same or similar techniques. For example, the integrated low velocity frame 121 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a spin-on, sputtering, evaporation or chemical vapor disposition (CVD) technique, for example, to the desired thickness. Then dry etch is used to define a desired pattern of the first material forming the low velocity frame 121. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115 and the integrated low velocity frame 121. The second material is deposited to a top surface of the substrate 110, the cavity 115, and the low velocity frame 121 and over the metal-etch stop layer using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the substrate 110 and from the low velocity frame 121, following application of a photoresist pattern (e.g., via photolithography), using sulfur hexafluoride (SF6)-based plasma etch, for example, forming the desired pattern of the bottom electrode 120. Finally, Chemical-Mechanical Planarization (CMP) using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar bottom electrode 120. A process to construct the integrated low velocity frame 141 is essentially the same as the process to construct the integrated low velocity frame 121. Of course, various other techniques may be incorporated to form the bottom and top electrodes 120 and 140, as would be apparent to one of ordinary skill in the art.


In alternative configurations, the FBAR 100 may include only one composite electrode (bottom electrode 120 or top electrode 140) having an integrated low velocity frame (integrated low velocity frame 121 or integrated low velocity frame 141), without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low velocity frame, the other electrode may be formed of a single material, or may also be a composite electrode, but with no integrated low velocity frame. For example, in a variation of the FBAR 100, the top electrode 140 may include integrated low velocity frame 141 and inner portion 142, as discussed above, while the bottom electrode 120 has no integrated low velocity frame. In this case, the bottom electrode 120 may still include two materials, applied in consecutive layers (e.g., the first material stacked on the second material) with no lateral features, or the bottom electrode 120 may be formed of a single material (e.g., the first material or the second material). Similarly, the bottom electrode 120 may include integrated low velocity frame 121 and inner portion 122, as discussed above, while the top electrode 140 has no integrated low velocity frame. Such approaches may be beneficial, as they would enable fine-tuning of the strength of the integrated low velocity frame 121, 141 deposited in the other electrode to facilitate specific device design needs.


As should be appreciated by one of ordinary skill in the art, the structure provided by the bottom electrode 120, the piezoelectric layer 130 and the top electrode 140 is a BAW resonator. When the BAW resonator is disposed over a cavity (e.g., the cavity 115), it is a so-called FBAR (e.g., FBAR 100), and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called solidly mounted resonator (SMR). The present teachings contemplate the use of either FBARs or SMRs in a variety of applications, including filters (e.g., ladder filters comprising a plurality of BAW resonators). However, the effects related to minimization of piston mode scattering at the edge of the top electrode 140 with the integrated low velocity frames 121 and 141 on parallel resistance Rp and on series resistance Rs of the FBAR 100 (as well as the other FBARs discussed herein) are generally the same as the effects on parallel resistance Rp and series resistance Rs of an SMR supporting a similar set of modes as the FBAR 100, as would be appreciated by one of ordinary skill in the art.



FIG. 2 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes and integrated frames, according to a representative embodiment.


Referring to FIG. 2, FBAR 200 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 200 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 220 and second or top electrode 240. In various embodiments, the bottom and top electrodes 220 and 240 may be formed of the same or different materials from one another. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 127 are substantially the same as discussed above with reference to FIG. 1, and therefore the description will not be repeated.


The FBAR 200 further includes integrated lateral features configured to minimize scattering of piston mode at the edge of the top electrode 240 at frequencies below the cut-off frequency of the membrane by the three mechanisms described above: (1) minimization of piston mode amplitude excited by time-harmonic electric field, (2) suppression of at least a portion of mechanically excited at a membrane/frame interface TE lateral acoustic mode with the negative group velocity dispersion (that is the mode which group velocity decreases with increasing frequency), and (3) facilitation of exponential decay of higher-order complex TE modes mechanically excited at a membrane/frame interface. The FBAR 200 further includes integrated high velocity frame 221 surrounding inner portion 222 in the bottom electrode 220, and integrated high velocity frame 241 surrounding inner portion 242 in top electrode 240. The integrated high velocity frames 221 and 241 are formed of the second material and the inner portions 222 and 242 are formed of the first material, where the second material has higher sound velocity than the first material. For example, the integrated high velocity frames 221 and 241 may be formed of Mo and the inner portions 222 and 242 may be formed of W, although other materials may be incorporated without departing from the scope of the present teachings.


In the depicted embodiment, the integrated high velocity frames 221 and 241 are co-planar with the inner portions 222 and 242, respectively, meaning that they have substantially the same layer thickness within the bottom electrode 220 and the top electrode 240. Stated differently, the integrated high velocity frame 221 may form a ring of equal thickness around the inner portion 222 in the bottom electrode 220, and the integrated high velocity frame 241 may form a ring of equal thickness around the inner portion 242 in the top electrode 240. Each the integrated high velocity frames 221 and 241 is generally located in an outer region of the FBAR 200, and may be formed around all or part of a perimeter of the bottom and top electrodes 220 and 240, respectively. Meanwhile, each the inner portions 222 and 242 is generally located in a central region of the FBAR 200. The central and outer regions are the same as discussed above with regard to FBAR 100, for example.


The FBAR 200 may be apodized or irregular in shape from a top perspective (not shown), and integrated high velocity frames 221 and 241 may substantially follow along an outer perimeter of the bottom and top electrodes 220 and 240, respectively, as discussed above with reference to FBAR 100. An active region of the FBAR 200 is defined by overlap between the top electrode 240, the piezoelectric layer 130 and the bottom electrode 220. However, since both the bottom and top integrated high velocity frames 221 and 241 facilitate significant up-shift of cut-off frequency, an effective active region of FBAR 200 in the pass-band frequency range is defined by overlap of the bottom and top inner portions 222 and 242, and the piezoelectric layer 130. Of course, the FBAR 200 may be formed in alternative shapes, such as circular, square, rectangular, trapezoidal, etc., without departing from the scope of the present teachings. Also, in various embodiments, the integrated high velocity frames 221 and 241 may be shaped differently from the shape of the FBAR 200.


Illustratively, each of the bottom electrode 220 and the top electrode 240 may be formed of W and Mo, as mentioned above, and have a thickness of approximately 1000 Å to approximately 20000 Å. In various embodiments, the bottom and top electrodes 220 and 240, and thus the integrated high velocity frames 221 and 241, may have the same or different thicknesses from one another. Each of the integrated high velocity frames 221 and 241 may have a width of approximately 0.1 μm to approximately 10 μm, for example. In various embodiments, the integrated high velocity frames 221 and 241 may have the same or different widths from one another. The respective dimensions of the bottom and top electrodes 220 and 240, and the integrated high velocity frames 221 and 241, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


Generally, each of the bottom electrode 220 and the top electrode 240 may be formed using similar or the same techniques. For example, the bottom integrated high velocity frame 221 may be formed by applying a layer of the second material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the second material forming the high velocity frame 221. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115, and the integrated high velocity frame 221. Then the first material is deposited to a top surface of the substrate 110, the cavity 115, and the high velocity frame 221 and over the metal-etch stop layer using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. The first material is then etched from the substrate 110 and from the high velocity frame 221, following application of a photoresist pattern (e.g., via photolithography), using sulfur hexafluoride (SF6)-based plasma etch, for example, forming the desired bottom electrode 220 pattern. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar bottom electrode 220. A process to construct the integrated high velocity frame 241 is essentially the same as the process to construct the integrated high velocity frame 221. Of course, various other techniques may be incorporated to form the bottom and top electrodes 220 and 240, as would be apparent to one of ordinary skill in the art.


As mentioned above with reference to FIG. 1, in alternative configurations, the FBAR 200 may include only one composite electrode (bottom electrode 220 or top electrode 240) having an integrated high velocity frame (integrated high velocity frame 221 or integrated high velocity frame 241), without departing from the scope of the present teachings. When only one of the electrodes includes an integrated high velocity frame, the other electrode may be formed of a single material or may also be a composite electrode (without a lateral feature or with a different type of lateral feature).


In various embodiments, FBARs may include different types of lateral features in different electrodes. For example, FIG. 3 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes and integrated frames, according to a representative embodiment, in which an integrated high velocity frame is included in the bottom composite electrode and an integrated low velocity frame is included in the top electrode. Of course, the arrangement may be reversed, such that an integrated low velocity frame is included in the bottom composite electrode and an integrated high velocity frame is included in the top electrode, without departing from the scope of the present teachings.


More particularly, referring to FIG. 3, FBAR 300 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 300 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 320 and second or top electrode 340. In various embodiments, the bottom and top electrodes 320 and 340 may be formed of the same or different materials from one another. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 127 are substantially the same as discussed above with reference to FIG. 1.


The FBAR 300 further includes integrated high-velocity frame 321 surrounding inner portion 322 in the bottom electrode 320, and integrated low velocity frame 341 surrounding inner portion 342 in top electrode 340. The integrated low velocity frame 341 and the inner portion 322 are formed of the first material and the integrated high velocity frame 321 and the inner portion 342 are formed of the second material, where the first material has lower sound velocity than the second material, as discussed above. For example, the integrated high velocity frame 321 and the inner portion 342 may be formed of Mo, and the integrated low velocity frame 341 and the inner portion 322 may be formed of W, although other materials may be incorporated without departing from the scope of the present teachings.


In the depicted embodiment, the integrated high velocity and low velocity frames 321 and 341 are co-planar with the inner portions 322 and 342, respectively, meaning that they have substantially the same thickness within the bottom electrode 320 and the top electrode 340. Stated differently, the integrated high velocity and low velocity frames 321 and 341 may form rings of equal thickness around the inner portions 322 and 342 in the bottom and top electrodes 320 and 340, respectively. As discussed above, the integrated high velocity and low velocity frames 321 and 341 in an outer region of the FBAR 300, while the inner portions 322 and 342 are generally located in an inner region of the FBAR 300.


In the depicted embodiment, the inner edge of integrated low velocity frame 341 is vertically aligned with the outer edge of integrated high velocity frame 321. Such vertical alignment facilitates sharp transition between a region of lower cut-off frequency in the integrated low velocity frame 341 and higher cut-off frequency in the integrated high velocity frame 321. Thus the performance of the FBAR 300 is expected to be improved both in the spectral region below and above cut-off frequency of a main membrane. However, in some applications it may be beneficial to misalign the integrated low velocity and high velocity frames 341 and 321. Such misalignment may minimize overlaps between propagating modes in various regions for the FBAR 300, thus further minimizing acoustic energy density at the edge of the top electrode 340 and therefore improving quality factor Q across the whole passband.


Illustratively, each of the bottom electrode 320 and the top electrode 340 may be formed of W and Mo, as mentioned above, and have a thickness of approximately 1000 Å to approximately 20000 Å. In various embodiments, the bottom and top electrodes 320 and 340, and thus the integrated high velocity frame 321 and the integrated low velocity frame 341, may have the same or different thicknesses from one another. The integrated low velocity frame 341 may have a width (horizontal direction in the orientation depicted in FIG. 3) of approximately 0.1 μm to 10 μm, for example. The integrated high velocity frame 321 may have a width of approximately 0.1 μm to approximately 10 μm, for example. The respective dimensions of the bottom and top electrodes 320 and 340, and the integrated high velocity and low velocity frames 321 and 341, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


In various embodiments, a BAW resonator, such as an FBAR, for example, includes one or more composite electrodes having multiple electrode layers formed of different materials. For example, FIGS. 4 to 7 are cross-sectional diagrams illustrating acoustic resonators, including composite electrodes and integrated frames, in which each composite electrode has a multilayer portion comprising at least two electrode layers of different conductive materials stacked in the vertical direction (in the illustrative orientations depicted in FIGS. 4 to 7). For purposes of discussion, the electrode layer adjacent the piezoelectric layer may be referred to as an inside electrode layer, and the electrode layer adjacent the inside electrode layer may be referred to as an outside electrode layer (where at least a portion of the outside electrode layer is separated from the piezoelectric layer by the inside electrode layer). The integrated frame may be implemented by the conductive material having the higher or lower sound velocity.


More particularly, FIG. 4 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to a representative embodiment. Referring to FIG. 4, FBAR 400 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 400 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 420 and second or top electrode 440. In various embodiments, the bottom and top electrodes 420 and 440 may be formed of the same or different materials from one another. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 127 are substantially the same as discussed above with reference to FIG. 1.


In the depicted embodiment, the composite bottom electrode 420 has multiple electrode layers, including an inside electrode layer 425 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 426 formed adjacent the inside electrode layer 425. The inside electrode layer 425 is formed of the first material and the outside electrode layer 426 is formed of the first and second materials, where the first material has a lower sound velocity than the second material. Because the bottom electrode 420 is formed beneath the piezoelectric layer 130 in the orientation depicted in FIG. 4, the outside electrode layer 426 is formed first on the substrate 110, and the inside electrode layer 425 is then formed on the outside electrode layer 426 to provide the bottom electrode 420. The piezoelectric layer 130 is then formed on the inside electrode layer 425. For example, the integrated low velocity frame 421 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the low velocity frame 421. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115, and the integrated low velocity frame 421. The second material is deposited on a top surface of the substrate 110, the cavity 115, and the low velocity frame 421 and over the metal-etch stop layer using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the substrate 110 and from the low velocity frame 421, following application of a photoresist pattern (e.g., via photolithography), using sulfur hexafluoride (SF6)-based plasma etch, for example, forming the desired outside bottom electrode 426 pattern. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside bottom electrode 426. A layer of the first material is applied to the etched layer of the second material using a spin-on, sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 425. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


The integrated outer frame 421 in the outside electrode layer 426 effectively extends from the inside electrode layer 425 vertically through the outside electrode layer 426 in a direction away from the piezoelectric layer 130, such that the inner portion 422 of the outside electrode layer 426 is effectively embedded in the extended portion of the inside electrode layer 425. The integrated low velocity frame 421 at least partially surrounds the inner portion 422 of the outside layer 426. The integrated low velocity frame 421 is therefore located at an outer region of the bottom electrode 420 and the inner portion 422 of the outside layer 426 is located at a center region of the bottom electrode 420.


Similarly, the composite top electrode 440 has multiple electrode layers, including an inside electrode layer 445 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 446 formed adjacent the inside electrode layer 445. Because the top electrode 440 is formed above the piezoelectric layer 130 in the orientation depicted in FIG. 4, the inside electrode layer 445 is formed first on the piezoelectric layer 130, and the outside electrode layer 446 is formed on the inside electrode layer 445. As discussed above, the inside electrode layer 445 is formed of the first material and the outside electrode layer 446 is formed of the first and second materials. For example, the inside electrode layer 445 may be formed by applying a layer of the first material to a top surface of the piezoelectric layer 130 using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. A thin metal-stop etch layer (300 Å layer of AlN, for example)(not shown) and a layer of the first material is applied to the etched layer of the first material using a spin-on, sputtering, evaporation or CVD technique, for example. The formation of the outside electrode layer 446, including inner portion 442 and integrated low velocity frame 441 may be performed in a similar way as formation of the integrated low velocity frame 421 described above. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art. The top electrode 440 is then etched, following application of a photoresist pattern (e.g., via photolithography), using sulfur hexafluoride (SF6) based plasma etch, for example.


As a result, the integrated low velocity frame 441 of the outside electrode layer 446 effectively extends vertically from the inside electrode layer 445 through the outside electrode layer 446 in a direction away from the piezoelectric layer 130. The integrated low velocity frame 441 at least partially surrounds an inner portion 442 of the outside electrode layer 446, such that the inner portion 442 of the outside electrode layer 426 is effectively embedded in the extended portion of the inside electrode layer 425. The integrated low velocity frame 441 is therefore located at an outer region of the top electrode 440 and the inner portion 442 of the outside electrode layer 446 is located at a center region of the bottom electrode 420.


The operating characteristics of the integrated low velocity frames 421 and 441 may be controlled by adjusting one or more of the widths of the integrated low velocity frames 421 and 441, the thicknesses of the inside electrode layers 425, 445 and the outside electrode layers 426, 446 (which affects the thicknesses of the integrated low velocity frames 421 and 441), and the types of material used to form the inside electrode layers 425, 445 and the outside electrode layers 426, 446. For example, each of the bottom electrode 420 and the top electrode 440 may have a total thickness of approximately 1000 Å to approximately 20000 Å, with each of the inside electrode layers 425, 445 and outside electrode layer 426, 446 being approximately 10 percent to 90 percent fraction of the total thickness of the corresponding bottom or top electrode 420, 440 at the center region. In various embodiments, the bottom and top electrodes 420 and 440 and corresponding inside electrode layers 425, 445 and outside electrode layers 426, 446 may have the same or different thicknesses from one another. Each of the integrated low velocity frames 421 and 441 may have a width of approximately 0.1 μm to approximately 10 μm, for example. The thicknesses of the integrated low velocity frames 421 and 441 are determined by the relative thicknesses of the outside electrode layers 426 and 446, respectively. In various embodiments, the integrated low velocity frames 421 and 441 may have the same or different widths and thicknesses from one another. In other embodiments the integrated low velocity frames 421 and 441 may be misaligned with respect to each other, as well as may have different widths. The respective dimensions of the bottom and top electrodes 420 and 440, inside electrode layers 425 and 445, the outside electrode layers 426 and 446, and the integrated low velocity frames 421 and 441, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


As mentioned above with reference to FIG. 1, in alternative configurations, the FBAR 400 may include only one composite electrode (bottom electrode 420 or top electrode 440) having an integrated low velocity frame (integrated low velocity frame 421 or integrated low velocity frame 441), without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low velocity frame, the other electrode may be formed of a single material or may also be a composite electrode (without a lateral feature or with a different type of lateral feature).



FIG. 5 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to another representative embodiment. Referring to FIG. 5, FBAR 500 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 500 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 520 and second or top electrode 540. In various embodiments, the bottom and top electrodes 520 and 540 may be formed of the same or different materials from one another. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 127 are substantially the same as discussed above with reference to FIG. 1.


In the depicted embodiment, the composite bottom electrode 520 has multiple electrode layers, including an inside electrode layer 525 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 526 formed adjacent the inside electrode layer 525. The outside electrode layer 526 is formed of the first material and the inside electrode layer 525 is formed of the first and second materials, where the first material has a lower sound velocity than the second material. Because the bottom electrode 520 is formed beneath the piezoelectric layer 130 in the orientation depicted in FIG. 5, the outside electrode layer 526 is formed first on the substrate 110, the inside electrode layer 525 is then formed on the outside electrode layer 526, and the piezoelectric layer 130 is formed on the inside electrode layer 525. For example, the outside electrode layer 526 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. A thin metal-stop etch layer (300 Å of AlN, for example) (not shown) is deposited over the outside electrode layer 526 and the formation of integrated low velocity frame 521 may be then performed in a similar manner as described above with regard to formation of the integrated low velocity frame 421. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


The arrangement of the inside and outside electrode layers 525 and 526 is essentially the opposite of the arrangement of the inside and outside electrode layers 425 and 426, discussed above, with regard to formation of integrated frames. That is, the integrated low velocity frame 521 of the inside electrode layer 525 effectively extends vertically from the outside electrode layer 526 through the inside electrode layer 525 in a direction toward the piezoelectric layer 130, such that the inner portion 522 of the inside electrode layer 525 is effectively embedded in the extended portion of the outside electrode layer 526. The integrated low velocity frame 521 at least partially surrounds inner portion 522 of the inside layer 525. The integrated low velocity frame 521 is therefore located at an outer region of the bottom electrode 520 and the inner portion 522 of the inside layer 525 is located at a center region of the bottom electrode 520.


Similarly, the composite top electrode 540 has multiple electrode layers, including an inside electrode layer 545 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 546 formed adjacent the inside electrode layer 545. Because the top electrode 540 is formed above the piezoelectric layer 130 in the orientation depicted in FIG. 5, the inside electrode layer 525 is formed first on the piezoelectric layer 130, and the outside electrode layer 526 is formed on the inside electrode layer 525. As discussed above, the outside electrode layer 546 is formed of the first material and the inside electrode layer 545 is formed of the first and second materials. For example, the inside electrode layer 545 with the integrated low velocity frame 541 may be formed in a similar manner as discussed above with regard to the outside electrode layer 426 with the integrated low velocity frame 426. A layer of the first material is applied to the inside electrode layer 545 using a spin-on, sputtering, evaporation or CVD technique, for example, resulting in formation of the outside electrode layer 546. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


The integrated low velocity frame 541 of the inside electrode layer 525 effectively extends vertically from the outside electrode layer 546 through the inside electrode layer 545 in a direction toward the piezoelectric layer 130, such that inner portion 542 of the inside electrode layer 545 is effectively embedded in the extended portion of the outside electrode layer 546. The integrated low velocity frame 541 at least partially surrounds inner portion 542 of the inside electrode layer 545. The integrated low velocity frame 541 is therefore located at an outer region of the top electrode 540 and the inner portion 542 of the inside electrode layer 546 is located at a center region of the bottom electrode 520.


The operating characteristics of the integrated low velocity frames 521 and 541 may be controlled by adjusting one or more of the widths of the integrated low velocity frames 521 and 541, the thicknesses of the inside electrode layers 525, 545 and the outside electrode layers 526, 546 (which affect the heights of the integrated low velocity frames 521 and 541), and the types of material used to form the inside electrode layers 525, 545 and the outside electrode layers 526, 546. For example, each of the bottom electrode 520 and the top electrode 540 may have a total thickness of approximately 1000 Å to approximately 20000 Å, with each of the inside electrode layers 525, 545 and outside electrode layers 526, 546 being approximately 10 percent to 90 percent fraction of the total thickness of the corresponding bottom or top electrode 520, 540 in the center region. In various embodiments, the bottom and top electrodes 520 and 540 and corresponding inside electrode layers 525, 545 and the outside electrode layers 526, 546 may have the same or different thicknesses from one another. Each of the integrated low velocity frames 521 and 541 may have a width of approximately 0.1 μm to approximately 10 μm, for example. In various embodiments, the integrated low velocity frames 521 and 541 may have the same or different widths and thicknesses from one another. In other embodiments, the integrated low velocity frames 521 and 541 may be misaligned with respect to each other, as well as may have different widths and thicknesses. The respective dimensions of the bottom and top electrodes 520 and 540, inside electrode layers 525 and 545, the outside electrode layers 526 and 546, and the integrated low velocity frames 521 and 541, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


As mentioned above with reference to FIG. 1, in alternative configurations, the FBAR 500 may include only one composite electrode (bottom electrode 520 or top electrode 540) having an integrated inner frame (integrated low velocity frame 521 or integrated low velocity frame 541), without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low velocity frame, the other electrode may be formed of a single material or may also be a composite electrode (without a lateral feature or with a different type of lateral feature).


It should be pointed out that selection of metal for the first and second materials described in regard to FIGS. 4 and 5 allows for more precise tuning of low (and high) velocity frame properties than the embodiment described in FIG. 1 (and FIG. 2). Further, in various alternative configurations, FBARs 400 and 500 may be formed to include integrated high velocity frames, as first described in regard to FIG. 2, in place of the integrated low velocity frames, without departing from the scope of the present teachings. This may be accomplished by replacing the low velocity material (the first material) with the high velocity material (the second material), and vice versa. For example, the first material of the integrated low velocity frames (421, 441, 521 and 541) may be replaced with the second material, and the second material of the inner portions (422, 442, 522 and 542) may be replaced with the first material, in order to provide integrated high velocity frames in place of the integrated low velocity frames. Likewise, combinations of integrated low velocity and high velocity frames, first described with regard to FIG. 3, may be provided based on the configurations described in FIGS. 4 and 5 by replacing the low velocity material with the high velocity metal, and vice versa, in either of top electrode 440, 540 or the bottom electrode 420, 520, and by properly aligning the integrated high velocity frame with respect to the integrated low velocity frame. Lastly, illustratively the above descriptions consider only two metals with different sound velocities and acoustic impedances. In general, any of the integrated frames 421, 441, 521 and 541 may be formed of a third material (and additional materials, if needed), which may be yet another metal (aluminum or copper or gold, for example) or a dielectric (SiC, SiO, AlN, ZnO, for example) providing desired shift in cutoff frequency of the frame region, without departing from a scope of present teachings.



FIG. 6 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to another representative embodiment. Referring to FIG. 6, FBAR 600 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 600 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 620 and second or top electrode 640. In various embodiments, the bottom and top electrodes 620 and 640 may be formed of the same or different materials from one another. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 127 are substantially the same as discussed above with reference to FIG. 1.


In the depicted embodiment, the composite bottom electrode 620 has multiple electrode layers, including an inside electrode layer 625 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 626 formed adjacent the inside electrode layer 625. In the depicted example, the outside electrode layer 626 is formed of the first and second materials and the inside electrode layer 625 is formed of the second material, where the first material has a lower sound velocity than the second material. Because the bottom electrode 620 is formed beneath the piezoelectric layer 130 in the orientation depicted in FIG. 6, the outside electrode layer 626 is formed first on the substrate 110, the inside electrode layer 625 is then formed on the outside electrode layer 626, and the piezoelectric layer 130 is formed on the inside electrode layer 625. For example, with regard to the outside electrode layer 626, the integrated low velocity frame 621 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the integrated low velocity frame 621. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115, and the integrated low velocity frame 621. The second material is then deposited on a top surface of the substrate 110, the cavity 115, and the low velocity frame 621 and over the metal-etch stop layer using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the substrate 110 and from the low velocity frame 621, following application of a photoresist pattern (e.g., via photolithography), using sulfur hexafluoride (SF6)-based plasma etch, for example, forming the desired outside electrode layer 626 pattern. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 626. A layer of the second material is applied to the outside electrode layer 626 using a spin-on, sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 625 Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


As a result, the integrated low velocity frame 621 is separated from the piezoelectric layer 130 by the inside electrode layer 625, effectively embedding the integrated low velocity frame 621 in the bottom electrode 620. The inner portion 622 of the outside electrode layer 626 is at least partially surrounded by the integrated low velocity frame 621 of the outside electrode layer 626. The integrated low velocity frame 621 is therefore located at an outer region of the bottom electrode 620 and the inner portion 622 is located at a center region of the bottom electrode 620. Notably, the integrated low velocity frame 621 is similar to the integrated low velocity frame 121 in FBAR 100, discussed above with reference to FIG. 1, except that the integrated low velocity frame 621 does not pass through the entire thickness of the bottom electrode 620. Therefore, the thickness of the integrated low velocity frame 621 may be varied (by varying the thickness of the outside electrode layer 626) without varying the total thickness of the bottom electrode 620.


Similarly, the composite top electrode 640 has multiple electrode layers, including an inside electrode layer 645 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 646 formed adjacent the inside electrode layer 645. Because the top electrode 640 is formed above the piezoelectric layer 130 in the orientation depicted in FIG. 6, the inside electrode layer 645 is formed first on the piezoelectric layer 130, and the outside electrode layer 646 is formed on the inside electrode layer 645. As discussed above, the outside electrode layer 646 is formed of the first and second materials and the inside electrode layer 645 is formed of the second material. For example, the inside electrode layer 645 may be formed by applying a layer of the second material to a top surface of the piezoelectric layer 130 using a spin-on, sputtering, evaporation or CVD technique, for example, to the desired thickness. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) may be then deposited. The formation of the integrated low velocity frame 641 as part of the outside layer 646 may be then performed in a similar manner as formation of the integrated low velocity frame 621, discussed above. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


As a result, the integrated low velocity frame 641 is effectively embedded in the top electrode 640. The integrated low velocity frame 641 at least partially surrounds inner portion 642 of the outside electrode layer 646. The integrated low velocity frame 641 is therefore located at an outer region of the top electrode 640 and the inner portion 642 is located at a center region of the top electrode 640. As discussed above in regard to the integrated low velocity frame 621, the integrated low velocity frame 641 is similar to the integrated low velocity frame 141 in FBAR 100, except that the integrated low velocity frame 641 does not pass through the entire thickness of the top electrode 640. Therefore, the thickness of the integrated low velocity frame 641 may be varied (by varying the thickness of the outside electrode layer 646) without varying the total thickness of the top electrode 640.


The operating characteristics of the integrated low velocity frames 621 and 641 may be controlled by adjusting one or more of the widths of the integrated low velocity frames 621 and 641, the thicknesses of the inside electrode layers 625, 645 and the outside electrode layers 626, 646 (which affect the thicknesses of the integrated low velocity frames 621 and 641), and the types of material used to form the inside electrode layers 625, 645 and the outside electrode layers 626, 646. For example, each of the bottom electrode 620 and the top electrode 640 may have a total thickness of approximately 1000 Å to approximately 20000 Å. The outside electrode layers 626 and 646 (corresponding in thickness to the integrated low velocity frames 621 and 641, respectively) may be approximately 10 percent to 90 percent fraction of the total thickness of the corresponding bottom or top electrode 620 and 640. In various embodiments, the bottom and top electrodes 620 and 640 and corresponding inside electrode layers 625, 645 and the outside electrode layers 626 and 646 may have the same or different thicknesses from one another, respectively. In other embodiments, the integrated low velocity frames 621 and 641 may be misaligned with respect to each other. Each of the integrated low velocity frames 621 and 641 may have a width of approximately 0.1 μm to approximately 10 μm, for example. In various embodiments, the integrated low velocity frames 621 and 641 may have the same or different widths and thicknesses from one another. The respective dimensions of the bottom and top electrodes 620 and 640, the inside electrode layers 625 and 645, the outside electrode layers 626 and 646, and the integrated low velocity frames 621 and 641, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


As mentioned above with reference to FIG. 1, in alternative configurations, the FBAR 600 may include only one composite electrode (bottom electrode 620 or top electrode 640) having an integrated low velocity frame (integrated low velocity frame 621 or integrated low velocity frame 641), without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low velocity frame, the other electrode may be formed of a single material or may also be a composite electrode (without a lateral feature or with a different type of lateral feature).



FIG. 7 is a cross-sectional diagram illustrating an acoustic resonator, including composite electrodes having multiple layers and integrated frames, according to another representative embodiment. Referring to FIG. 7, FBAR 700 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 700 further includes piezoelectric layer 130 sandwiched between two composite electrodes: A first or bottom electrode 720 and second or top electrode 740. In various embodiments, the bottom and top electrodes 720 and 740 may be formed of the same or different materials from one another. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 127 are substantially the same as discussed above with reference to FIG. 1.


In the depicted embodiment, the composite bottom electrode 720 has multiple electrode layers, including an inside electrode layer 725 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 726 formed adjacent the inside electrode layer 725. The outside electrode layer 726 is formed of the first and second materials and the inside electrode layer 725 is formed of the second material, where the first material has a lower sound velocity than the second material. Because the bottom electrode 720 is formed beneath the piezoelectric layer 130 in the orientation depicted in FIG. 7, the outside electrode layer 726 is formed first on the substrate 110, the inside electrode layer 725 is then formed on the outside electrode layer 726, and the piezoelectric layer 130 is formed on the inside electrode layer 725. More particularly, the outside electrode layer 726 includes integrated low velocity frame 721, which at least partially surrounds inner portion 722 of the outside layer 726. The integrated low velocity frame 721 is therefore located at an outer region of the bottom electrode 720 and the inner portion 722 is located at a center region of the bottom electrode 720. The inside electrode layer 725 is formed on the outside electrode layer 726, separating the integrated low velocity frame 721 from the piezoelectric layer 130, and thus effectively burying the integrated low velocity frame 721 in the lower electrode 720. The bottom electrode 720 is essentially the same and formed in the same manner as bottom electrode 620 described above.


The composite top electrode 740 also has multiple electrode layers, including an inside electrode layer 745 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 746 formed adjacent the inside electrode layer 745. Because the top electrode 740 is formed above the piezoelectric layer 130 in the orientation depicted in FIG. 7, the inside electrode layer 745 is formed first on the piezoelectric layer 130, and the outside electrode layer 746 is formed on the inside electrode layer 745. The outside electrode layer 746 is formed of the second material and the inside electrode layer 745 is formed of the first and second material. The top electrode 740 is essentially the same and formed in the same manner as bottom electrode 720 described above. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


Notably, in FIG. 7, the arrangement of the inside and outside electrode layers 745 and 746 is reversed as compared to the inside and outside electrode layers 725 and 726, in that the integrated low velocity frame 741 is formed as part of the inside electrode layer 745, and not the outside electrode layer 746. Accordingly, the integrated low velocity frame 741 is adjacent the piezoelectric layer 130 and effectively embedded in the top electrode 740. The integrated low velocity frame 741 at least partially surrounds the inner portion 742 of the inside electrode layer 745. The integrated low velocity frame 741 is therefore located at an outer region of the top electrode 740, and the inner portion 742 is located at a center region of the top electrode 740. As discussed above in regard to the integrated low velocity frame 721, the integrated low velocity frame 741 is similar to the integrated low velocity frame 141 in FBAR 100, except that the integrated low velocity frame 741 does not pass through the entire thickness of the top electrode 740.


The operating characteristics of the integrated low velocity frames 721 and 741 may be controlled by adjusting one or more of the widths of the integrated low velocity frames 721 and 741, the thicknesses of the outside electrode layer 726 and the inside electrode layer 745 (which affect the thicknesses of the integrated low velocity frames 721 and 741), and the types of material used to form the inside electrode layers 725 and 745 and the outside electrode layers 726 and 746. For example, each of the bottom electrode 720 and the top electrode 740 may have a total thickness of approximately 1000 Å to approximately 20000 Å. Each of the outside electrode layer 726 (corresponding in thickness to the integrated low velocity frame 721) and the inside electrode layer 745 (corresponding in thickness to the integrated low velocity frame 741) may be approximately 10 percent to 90 percent fraction of the total thickness of the corresponding bottom or top electrode 720 and 740. In various embodiments, the bottom and top electrodes 720 and 740 and corresponding inside electrode layers 725, 745 and the outside electrode layers 726 and 746 may have the same or different thicknesses from one another, respectively. In other embodiments, as mentioned above, the integrated low velocity frames 721 and 741 may be misaligned with respect to each other. Each of the integrated low velocity frames 721 and 741 may have a width of approximately 0.1 μm to approximately 10 μm, for example. In various embodiments, the integrated low velocity frames 721 and 741 may have the same or different widths and thicknesses from one another. The respective dimensions of the bottom and top electrodes 720 and 740, the inside electrode layers 725 and 745, the outside electrode layers 726 and 746, and the integrated low velocity frames 721 and 741, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


As mentioned above with reference to FIG. 1, in alternative configurations, the FBAR 700 may include only one composite electrode (bottom electrode 720 or top electrode 740) having an integrated low velocity frame (integrated low velocity frame 721 or integrated low velocity frame 741), without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low velocity frame, the other electrode may be formed of a single material or may also be a composite electrode (without a lateral feature or with a different type of lateral feature). Also, in an alternative embodiment, the configuration of the bottom electrode 720 may be the mirror image of the top electrode 740, without departing from the scope of the present teachings. In other words, the integrated low velocity frame 721 would be included in the inside electrode layer 725, and the outside electrode layer 726 would be formed entirely of the second material. The integrated low velocity frame 721 would at least partially surround the inner portion 722 of the inside electrode layer 725. Accordingly, the integrated low velocity frame 721 would be adjacent the piezoelectric layer 130 and effectively embedded in the bottom electrode 720.


It should be pointed out that selection of metal for the first and second materials described in regard to FIGS. 6 and 7 allows for more precise tuning of low (and high) velocity frame properties than the one described in FIG. 1 (and FIG. 2). Further, in various alternative configurations, FBARs 600 and 700 may be formed to include integrated high velocity frames, as first described in regard to FIG. 2, in place of the integrated low velocity frames, without departing from the scope of the present teachings. This may be accomplished by replacing the low velocity material (the first material) with the high velocity material (the second material), and vice versa. For example, the first material of the integrated low velocity frames (621, 641, 721 and 741) may be replaced with the second material, and the second material of the inner portions (622, 642, 722 and 742) may be replaced with the first material, in order to provide integrated high velocity frames in place of the integrated low velocity frames. Likewise, combinations of integrated low velocity and high velocity frames, first described with regard to FIG. 3, may be provided based on the configurations described in FIGS. 6 and 7 by replacing the low velocity material with the high velocity metal, and vice versa, in either of top electrode 640, 740 or the bottom electrode 620, 720, and by properly aligning the integrated high velocity frame with respect to the integrated low velocity frame. Lastly, illustratively the above descriptions consider only two metals with different sound velocities and acoustic impedances. In general, any of the integrated frames 621, 641, 721 and 741 may be formed of a third material (and additional materials, if needed), which may be yet another metal (aluminum or copper or gold, for example) or a dielectric (SiC, SiO, AlN, ZnO, for example) providing desired shift in cutoff frequency of the frame region, without departing from a scope of present teachings.



FIG. 8 is a graph illustrating parallel resistance Rp (in ohms) and coupling coefficient Kt2 (as percentage of cut-off frequency) versus frame width (in μm) of integrated frames having various thicknesses, according to representative embodiments. For purposes of illustration, FIG. 8 was determined using an acoustic resonator configured substantially the same as FBAR 700, discussed above with reference to FIG. 7. For example, the representative FBAR 700 included a bottom electrode 720 having a thickness of approximately 3800 Å (with no lateral features), a piezoelectric layer 130 having a thickness of approximately 9300 Å, and a top electrode 740 having a thickness of approximately 3250 Å. The top electrode included an integrated low velocity frame 741 having varying thicknesses, as discussed below. The representative FBAR 700 also included an optional passivation layer formed of AlN, for example, having a thickness of approximately 2000Å. The various traces of FIG. 8 reflect different thicknesses (in the vertical direction) of the integrated low velocity frame 741, as discussed below.


Referring to FIG. 8, traces 851, 861 and 871 show parallel resistance Rp associated with different thicknesses of the integrated low velocity frame 741, and traces 852, 862 and 872 show coupling coefficient kt2 associated with the different thicknesses of the integrated low velocity frame 741. More particularly, traces 851 and 852 correspond to an integrated low velocity frame 741 thickness of about 500 Å, traces 861 and 862 correspond to an integrated low velocity frame 741 thickness of about 1000 Å, and traces 861 and 862 correspond to an integrated low velocity frame 741 thickness of about 2000 Å.


In the depicted example, the thicker the integrated low velocity frame 741, the higher the parallel resistance Rp at any given width of the integrated low velocity frame 741. Also, generally, the thicker the integrated low velocity frame 741, the lower the coupling coefficient kt2 at any given width of the integrated low velocity frame 741. In some applications requiring high band-width, the most favorable width of the integrated low velocity frame 741 (indicated on the horizontal axis) may correspond to the peak of the parallel resistance Rp with the highest corresponding coupling coefficient kt2. So, for example, the most favorable width of an integrated low velocity frame 741 having a thickness of about 2000 Å is about 0.75 μm, indicated by the first peak of trace 871, since this peak has the highest corresponding coupling coefficient kt2 indicated by trace 872. Notably, though, the optimal width of an integrated frame may be relatively small compared to manufacturing tolerances, thus a wider frame width is generally preferable. Therefore, as the results shown by FIG. 8 indicate, a similar performance with respect to the parallel resistance Rp and the coupling coefficient kt2 may be selected using a 500 Å thick and 2.75 μm wide integrated low velocity frame, where the parallel resistance Rp is indicated by the second peak of trace 851 and the corresponding coupling coefficient kt2 is indicated by trace 852 at the same width. This example indicates the importance of having frame thickness as a design degree of freedom, even if the total thickness in the frame region is fixed by the top electrode 740 thickness.


It is understood that the specific configurations of the FBARs 100 to 700, discussed above, are illustrative, and that the various parameters and characteristics described herein may vary to provide unique benefits for any particular situation or to meet application specific design requirements. Further, various alternative combinations of integrated low velocity and high velocity frames may be incorporated, without departing from the scope of the present teachings.


In addition, although each of the representative integrated low velocity and high velocity frames discussed above has a rectangular cross-sectional shape, it is understood that they may include other cross-section shapes and/or may include multiple lateral interfaces within the composite electrode, such as stepped structures. Examples of frames having multiple lateral interfaces are included in U.S. patent application Ser. No. 13/232,334, to Burak et al., filed Sep. 14, 2011, which is hereby incorporated by reference in its entirety. The multiple lateral interfaces may provide improved selected mode confinement and/or suppression.


Notably, the teachings of the incorporated patents and patent applications are intended to be illustrative of methods, materials and structures useful to the present teachings, but in no way limiting to the present teachings. The various components, materials, structures and parameters are included by way of illustration and example only and not in any limiting sense. In view of this disclosure, those skilled in the art can implement the present teachings in determining their own applications and needed components, materials, structures and equipment to implement these applications, while remaining within the scope of the appended claims.

Claims
  • 1. A bulk acoustic wave (BAW) resonator device, comprising: a bottom composite electrode on a substrate over one of a cavity and an acoustic reflector, the bottom composite electrode including a bottom inner portion and a bottom integrated frame, the bottom integrated frame being arranged between planar top and bottom surfaces of the bottom composite electrode and configured to create at least one of a cut-off frequency mismatch and an acoustic impedance mismatch, wherein the bottom integrated frame and the bottom inner portion have substantially the same thickness;a piezoelectric layer on the bottom electrode; anda top composite electrode on the piezoelectric layer, the top composite electrode including a top inner portion and a top integrated frame, the top integrated frame being arranged between planar top and bottom surfaces of the top composite electrode and configured to create at least one of a cut-off frequency mismatch and an acoustic impedance mismatch, wherein the top integrated frame and the top inner portion have substantially the same thickness;wherein the bottom and top integrated frames are positioned adjacent the piezoelectric layer at outer regions of the bottom and top composite electrodes, respectively, and substantially surround the bottom and top inner portions located at center regions of the bottom and top composite electrodes, respectively, andwherein an inner edge of the bottom integrated frame, adjacent the bottom inner portion, is not vertically aligned with an inner edge of the top integrated frame, adjacent the top inner portion.
  • 2. The BAW resonator device of claim 1, wherein the top integrated frame comprises an integrated low velocity frame, and the bottom integrated frame comprises an integrated high velocity frame.
  • 3. The BAW resonator device of claim 2, wherein the integrated low velocity frame is formed of a first material and the integrated high velocity frame is formed of a second material, the first material having a lower sound velocity than the second material.
  • 4. The BAW resonator device of claim 1, wherein the top integrated frame comprises an integrated high velocity frame, and the bottom integrated frame comprises an integrated low velocity frame.
  • 5. The BAW resonator device of claim 1, wherein the inner edge of the top integrated frame is vertically aligned with an outer edge of bottom integrated frame.
  • 6. A thin film bulk acoustic resonator (FBAR), comprising: a bottom electrode on a substrate, the bottom electrode being formed of a first material and a second material, wherein the first material has a lower sound velocity than the second material;a piezoelectric layer on the bottom electrode;a top electrode on the piezoelectric layer, the top electrode being formed of the first material and the second material;one of an integrated low velocity frame formed by the first material or an integrated high velocity frame formed by the second material within the bottom electrode at an outer region of the FBAR; andone of an integrated low velocity frame formed by the first material or an integrated high velocity frame formed by the second material within the top electrode at an outer region of the FBAR.
  • 7. The FBAR of claim 6, wherein a thickness of the integrated low velocity frame is the same as a thickness of the top electrode.
  • 8. The FBAR of claim 6, wherein a thickness of the integrated low velocity frame is less than a thickness of the top electrode.
  • 9. A bulk acoustic wave (BAW) resonator device, comprising: a bottom electrode on a substrate over one of a cavity and an acoustic reflector;a piezoelectric layer on the bottom electrode; anda top electrode on the piezoelectric layer;wherein at least one of the bottom electrode and the top electrode comprises a composite electrode having an integrated frame, arranged between planar top and bottom surfaces of the composite electrode and configured to create at least one of a cut-off frequency mismatch and an acoustic impedance mismatch, andwherein the composite electrode comprises an inside layer adjacent the piezoelectric layer and an outside layer adjacent the inside layer, and the integrated frame is located at an outer region of the composite electrode, and extending from the inside layer through the outside layer away from the piezoelectric layer or extending from the outside layer through the inside layer toward the piezoelectric layer.
  • 10. The BAW resonator device of claim 9, wherein the integrated frame comprises an integrated low velocity frame located at the outer region of the composite electrode and extending from the inside layer through the outside layer away from the piezoelectric layer.
  • 11. The BAW resonator device of claim 10, wherein the inside layer is formed of a first material and the outside layer is formed of a second material, the first material having a lower sound velocity than the second material.
  • 12. The BAW resonator device of claim 9, wherein the integrated frame comprises an integrated low velocity frame located at the outer region of the composite electrode and extending from the outside layer through the inside layer toward the piezoelectric layer.
  • 13. The BAW resonator device of claim 12, wherein the outside layer is formed of a first material and the inside layer is formed of a second material, the first material having a lower sound velocity than the second material.
  • 14. The BAW resonator device of claim 9, wherein the integrated frame comprises an integrated high velocity frame located at the outer region of the composite electrode and extending from the inside layer through the outside layer away from the piezoelectric layer.
  • 15. The BAW resonator device of claim 14, wherein the inside layer is formed of a second material and the outside layer is formed of a first material, the first material having a lower sound velocity than the second material.
  • 16. The BAW resonator device of claim 9, wherein the integrated frame comprises an integrated high velocity frame located at the outer region of the composite electrode and extending from the outside layer through the inside layer toward the piezoelectric layer.
  • 17. The BAW resonator device of claim 16, wherein the outside layer is formed of a second material and the inside layer is formed of a first material, the first material having a lower sound velocity than the second material.
US Referenced Citations (545)
Number Name Date Kind
3174122 Fowler et al. Mar 1965 A
3189851 Fowler Jun 1965 A
3321648 Kolm May 1967 A
3422371 Poirier et al. Jan 1969 A
3568108 Poirier et al. Mar 1971 A
3582839 Pim et al. Jun 1971 A
3590287 Berlincourt et al. Jun 1971 A
3610969 Clawson et al. Oct 1971 A
3826931 Hammond Jul 1974 A
3845402 Nupp Oct 1974 A
4084217 Brandli et al. Apr 1978 A
4172277 Pinson Oct 1979 A
4272742 Lewis Jun 1981 A
4281299 Newbold Jul 1981 A
4320365 Black et al. Mar 1982 A
4344004 Okubo Aug 1982 A
4355408 Scarrott Oct 1982 A
4456850 Inoue et al. Jun 1984 A
4529904 Hattersley Jul 1985 A
4608541 Moriwaki et al. Aug 1986 A
4625138 Ballato Nov 1986 A
4640756 Wang et al. Feb 1987 A
4719383 Wang et al. Jan 1988 A
4769272 Byrne et al. Sep 1988 A
4798990 Henoch Jan 1989 A
4819215 Yokoyama et al. Apr 1989 A
4836882 Ballato Jun 1989 A
4841429 McClanahan et al. Jun 1989 A
4906840 Zdeblick et al. Mar 1990 A
4975892 Defranould et al. Dec 1990 A
5048036 Scifres et al. Sep 1991 A
5048038 Brennan et al. Sep 1991 A
5066925 Freitag Nov 1991 A
5075641 Weber et al. Dec 1991 A
5111157 Komiak May 1992 A
5118982 Inoue et al. Jun 1992 A
5129132 Zdeblick et al. Jul 1992 A
5162691 Mariani et al. Nov 1992 A
5166646 Avanic et al. Nov 1992 A
5185589 Krishnaswamy et al. Feb 1993 A
5214392 Kobayashi et al. May 1993 A
5233259 Krishnaswamy et al. Aug 1993 A
5241209 Sasaki Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5262347 Sands Nov 1993 A
5270492 Fukui Dec 1993 A
5294898 Dworsky et al. Mar 1994 A
5361077 Weber Nov 1994 A
5382930 Stokes et al. Jan 1995 A
5384808 Van Brunt et al. Jan 1995 A
5448014 Kong et al. Sep 1995 A
5465725 Seyed-Bolorforosh Nov 1995 A
5475351 Uematsu et al. Dec 1995 A
5548189 Williams Aug 1996 A
5567334 Baker et al. Oct 1996 A
5587620 Ruby et al. Dec 1996 A
5589858 Kadowaki et al. Dec 1996 A
5594705 Connor et al. Jan 1997 A
5603324 Oppelt et al. Feb 1997 A
5633574 Sage May 1997 A
5671242 Takiguchi et al. Sep 1997 A
5692279 Mang et al. Dec 1997 A
5704037 Chen Dec 1997 A
5705877 Shimada Jan 1998 A
5714917 Ella Feb 1998 A
5729008 Blalock et al. Mar 1998 A
5789845 Wadaka et al. Aug 1998 A
5815054 Vojak et al. Sep 1998 A
5835142 Nakamura et al. Nov 1998 A
5853601 Krishaswamy et al. Dec 1998 A
5864261 Weber Jan 1999 A
5866969 Shimada et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873153 Ruby et al. Feb 1999 A
5873154 Ylilammi et al. Feb 1999 A
5894184 Furuhashi et al. Apr 1999 A
5894647 Lakin Apr 1999 A
5910756 Ella Jun 1999 A
5932953 Drees et al. Aug 1999 A
5936150 Kobrin et al. Aug 1999 A
5953479 Zhou et al. Sep 1999 A
5955926 Uda et al. Sep 1999 A
5962787 Okada et al. Oct 1999 A
5969463 Tomita et al. Oct 1999 A
5982297 Welle Nov 1999 A
6001664 Swirhun et al. Dec 1999 A
6016052 Vaughn Jan 2000 A
6040962 Kanazawa et al. Mar 2000 A
6051907 Ylilammi Apr 2000 A
6060818 Ruby et al. May 2000 A
6087198 Panasik Jul 2000 A
6090687 Merchant et al. Jul 2000 A
6107721 Lakin Aug 2000 A
6111341 Hirama Aug 2000 A
6111480 Iyama et al. Aug 2000 A
6114795 Tajima et al. Sep 2000 A
6118181 Merchant et al. Sep 2000 A
6124678 Bishop et al. Sep 2000 A
6124756 Yaklin et al. Sep 2000 A
6131256 Dydyk Oct 2000 A
6150703 Cushman et al. Nov 2000 A
6187513 Katakura Feb 2001 B1
6198208 Yano et al. Mar 2001 B1
6215375 Larson et al. Apr 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6219263 Wuidart Apr 2001 B1
6228675 Ruby et al. May 2001 B1
6229247 Bishop May 2001 B1
6252229 Hays et al. Jun 2001 B1
6262600 Haigh et al. Jul 2001 B1
6262637 Bradley et al. Jul 2001 B1
6263735 Nakatani et al. Jul 2001 B1
6265246 Ruby et al. Jul 2001 B1
6278342 Ella Aug 2001 B1
6284121 Reid Sep 2001 B1
6291931 Lakin Sep 2001 B1
6292336 Horng et al. Sep 2001 B1
6306755 Zheng Oct 2001 B1
6307447 Barber et al. Oct 2001 B1
6307761 Nakagawa Oct 2001 B1
6335548 Roberts et al. Jan 2002 B1
6355498 Chan et al. Mar 2002 B1
6366006 Boyd Apr 2002 B1
6376280 Ruby et al. Apr 2002 B1
6377137 Ruby Apr 2002 B1
6384679 Lorenz May 2002 B1
6384697 Ruby May 2002 B1
6396200 Misu et al. May 2002 B2
6407649 Tikka et al. Jun 2002 B1
6414569 Nakafuku Jul 2002 B1
6420820 Larson, III Jul 2002 B1
6424237 Ruby et al. Jul 2002 B1
6429511 Ruby et al. Aug 2002 B2
6434030 Rehm et al. Aug 2002 B1
6437482 Shibata Aug 2002 B1
6441539 Kitamura et al. Aug 2002 B1
6441702 Ella et al. Aug 2002 B1
6462631 Bradley et al. Oct 2002 B2
6466105 Lobl et al. Oct 2002 B1
6466418 Horng et al. Oct 2002 B1
6469597 Ruby et al. Oct 2002 B2
6469909 Simmons Oct 2002 B2
6472954 Ruby et al. Oct 2002 B1
6476536 Pensala Nov 2002 B1
6479320 Gooch Nov 2002 B1
6483229 Larson et al. Nov 2002 B2
6486751 Barber et al. Nov 2002 B1
6489688 Baumann et al. Dec 2002 B1
6492883 Liang et al. Dec 2002 B2
6496085 Ella et al. Dec 2002 B2
6498604 Jensen Dec 2002 B1
6507983 Ruby et al. Jan 2003 B1
6515558 Ylilammi Feb 2003 B1
6518860 Ella et al. Feb 2003 B2
6525996 Miyazawa Feb 2003 B1
6528344 Kang Mar 2003 B2
6530515 Glenn et al. Mar 2003 B1
6534900 Aigner et al. Mar 2003 B2
6542054 Aigner et al. Apr 2003 B2
6542055 Frank et al. Apr 2003 B1
6548942 Panasik Apr 2003 B1
6548943 Kaitila et al. Apr 2003 B2
6549394 Williams Apr 2003 B1
6550664 Bradley et al. Apr 2003 B2
6559487 Kang et al. May 2003 B1
6559530 Hinzel et al. May 2003 B2
6564448 Oura et al. May 2003 B1
6566956 Ohnishi et al. May 2003 B2
6566979 Larson et al. May 2003 B2
6580159 Fusaro et al. Jun 2003 B1
6583374 Knieser et al. Jun 2003 B2
6583688 Klee et al. Jun 2003 B2
6593870 Dummermuth et al. Jul 2003 B2
6594165 Duerbaum et al. Jul 2003 B2
6600390 Frank Jul 2003 B2
6601276 Barber Aug 2003 B2
6603182 Low et al. Aug 2003 B1
6617249 Ruby et al. Sep 2003 B2
6617750 Dummermuth et al. Sep 2003 B2
6617751 Sunwoo et al. Sep 2003 B2
6621137 Ma et al. Sep 2003 B1
6630753 Malik et al. Oct 2003 B2
6635509 Ouellet Oct 2003 B1
6639872 Rein Oct 2003 B1
6650205 Goetz et al. Nov 2003 B2
6651488 Larson et al. Nov 2003 B2
6657363 Aigner Dec 2003 B1
6668618 Larson et al. Dec 2003 B2
6670866 Ella et al. Dec 2003 B2
6677929 Gordon et al. Jan 2004 B2
6693500 Yang et al. Feb 2004 B2
6709776 Noguchi et al. Mar 2004 B2
6710508 Ruby et al. Mar 2004 B2
6710681 Figueredo et al. Mar 2004 B2
6713314 Wong et al. Mar 2004 B2
6714102 Ruby et al. Mar 2004 B2
6720844 Lakin Apr 2004 B1
6720846 Iwashita et al. Apr 2004 B2
6724266 Plazza et al. Apr 2004 B2
6738267 Navas Sabater et al. May 2004 B1
6750593 Iwata Jun 2004 B2
6774746 Whatmore et al. Aug 2004 B2
6777263 Gan et al. Aug 2004 B1
6787048 Bradley et al. Sep 2004 B2
6787897 Geefay et al. Sep 2004 B2
6788170 Kaitila et al. Sep 2004 B1
6803835 Frank Oct 2004 B2
6812619 Kaitila et al. Nov 2004 B1
6820469 Adkins et al. Nov 2004 B1
6828713 Bradley et al. Dec 2004 B2
6842088 Yamada et al. Jan 2005 B2
6842089 Lee Jan 2005 B2
6849475 Kim Feb 2005 B2
6853534 Williams Feb 2005 B2
6861920 Ishikawa et al. Mar 2005 B2
6864619 Aigner et al. Mar 2005 B2
6872931 Liess et al. Mar 2005 B2
6873065 Haigh et al. Mar 2005 B2
6873529 Ikuta Mar 2005 B2
6874211 Bradley et al. Apr 2005 B2
6874212 Larson Apr 2005 B2
6888424 Takeuchi et al. May 2005 B2
6894588 Detlefsen May 2005 B2
6900705 Nakamura et al. May 2005 B2
6903452 Ma et al. Jun 2005 B2
6906451 Yamada et al. Jun 2005 B2
6911708 Park Jun 2005 B2
6917261 Unterberger Jul 2005 B2
6919222 Geefay Jul 2005 B2
6924583 Lin et al. Aug 2005 B2
6924717 Ginsburg et al. Aug 2005 B2
6927651 Larson et al. Aug 2005 B2
6933809 Kyoung et al. Aug 2005 B2
6936837 Yamada et al. Aug 2005 B2
6936928 Hedler et al. Aug 2005 B2
6936954 Peczalski Aug 2005 B2
6941036 Lucero Sep 2005 B2
6943647 Aigner Sep 2005 B2
6943648 Maiz et al. Sep 2005 B2
6946928 Larson et al. Sep 2005 B2
6954121 Bradley et al. Oct 2005 B2
6963257 Ella et al. Nov 2005 B2
6970365 Tuchi Nov 2005 B2
6975183 Aigner et al. Dec 2005 B2
6977563 Komuro et al. Dec 2005 B2
6979597 Geefay et al. Dec 2005 B2
6985051 Nguyen et al. Jan 2006 B2
6985052 Tikka Jan 2006 B2
6987433 Larson et al. Jan 2006 B2
6989723 Komuro et al. Jan 2006 B2
6998940 Metzger Feb 2006 B2
7002437 Takeuchi et al. Feb 2006 B2
7019604 Gotoh et al. Mar 2006 B2
7019605 Larson Mar 2006 B2
7026876 Esfandiari et al. Apr 2006 B1
7053456 Matsuo May 2006 B2
7057476 Hwu Jun 2006 B2
7057478 Korden et al. Jun 2006 B2
7064606 Louis Jun 2006 B2
7084553 Ludwiczak Aug 2006 B2
7091649 Larson et al. Aug 2006 B2
7098758 Wang et al. Aug 2006 B2
7102460 Schmidhammer et al. Sep 2006 B2
7109826 Ginsburg et al. Sep 2006 B2
7128941 Lee Oct 2006 B2
7129806 Sato Oct 2006 B2
7138889 Lakin Nov 2006 B2
7161283 Geefay Jan 2007 B1
7161448 Feng et al. Jan 2007 B2
7170215 Namba et al. Jan 2007 B2
7173504 Larson et al. Feb 2007 B2
7179392 Robert et al. Feb 2007 B2
7187254 Su et al. Mar 2007 B2
7199683 Thalhammer Apr 2007 B2
7209374 Noro Apr 2007 B2
7212083 Inoue et al. May 2007 B2
7212085 Wu May 2007 B2
7230509 Stoemmer Jun 2007 B2
7230511 Onishi et al. Jun 2007 B2
7233218 Park et al. Jun 2007 B2
7235462 Letertre et al. Jun 2007 B2
7242270 Larson et al. Jul 2007 B2
7259498 Nakatsuka et al. Aug 2007 B2
7268647 Sano et al. Sep 2007 B2
7275292 Ruby et al. Oct 2007 B2
7276994 Takeuchi et al. Oct 2007 B2
7280007 Feng et al. Oct 2007 B2
7281304 Kim et al. Oct 2007 B2
7294919 Bai Nov 2007 B2
7301258 Tanaka Nov 2007 B2
7310861 Aigner et al. Dec 2007 B2
7313255 Machida et al. Dec 2007 B2
7332985 Larson et al. Feb 2008 B2
7345409 Leidl et al. Mar 2008 B2
7345410 Grannen et al. Mar 2008 B2
7358831 Larson, III et al. Apr 2008 B2
7367095 Larson et al. May 2008 B2
7368857 Tanaka May 2008 B2
7369013 Fazzio et al. May 2008 B2
7385467 Stoemmer et al. Jun 2008 B2
7388318 Yamada et al. Jun 2008 B2
7388454 Ruby et al. Jun 2008 B2
7388455 Larson Jun 2008 B2
7391286 Jamneala et al. Jun 2008 B2
7400217 Larson et al. Jul 2008 B2
7408428 Larson Aug 2008 B2
7414349 Sasaki Aug 2008 B2
7414495 Iwasaki et al. Aug 2008 B2
7420320 Sano et al. Sep 2008 B2
7423503 Larson et al. Sep 2008 B2
7425787 Larson Sep 2008 B2
7439824 Aigner Oct 2008 B2
7463118 Jacobsen Dec 2008 B2
7466213 Lobl et al. Dec 2008 B2
7482737 Yamada et al. Jan 2009 B2
7508286 Ruby et al. Mar 2009 B2
7515018 Handtmann et al. Apr 2009 B2
7535324 Fattinger et al. May 2009 B2
7545532 Muramoto Jun 2009 B2
7561009 Larson, III et al. Jul 2009 B2
7563475 Ruby et al. Jul 2009 B2
7567023 Iwaki et al. Jul 2009 B2
7575292 Furukawa Aug 2009 B2
7576471 Solal Aug 2009 B1
7602101 Hara et al. Oct 2009 B2
7602102 Barber et al. Oct 2009 B1
7619493 Uno et al. Nov 2009 B2
7629865 Ruby Dec 2009 B2
7636026 Heinze et al. Dec 2009 B2
7649304 Umeda et al. Jan 2010 B2
7655963 Sadaka et al. Feb 2010 B2
7684109 Godshalk et al. Mar 2010 B2
7714684 Ruby et al. May 2010 B2
7737807 Larson et al. Jun 2010 B2
7758979 Akiyama et al. Jul 2010 B2
7768364 Hart et al. Aug 2010 B2
7791434 Fazzio et al. Sep 2010 B2
7795781 Barber et al. Sep 2010 B2
7869187 McKinzie Jan 2011 B2
7889024 Bradley et al. Feb 2011 B2
7893793 Iwasaki et al. Feb 2011 B2
7978025 Yokoyama et al. Jul 2011 B2
7986198 Nakatsuka et al. Jul 2011 B2
8008993 Milsom et al. Aug 2011 B2
8030823 Sinha et al. Oct 2011 B2
8084919 Nishihara et al. Dec 2011 B2
8222795 Sinha et al. Jul 2012 B2
8232845 Ruby et al. Jul 2012 B2
8253513 Zhang Aug 2012 B2
8330325 Burak et al. Dec 2012 B1
8384497 Zhang Feb 2013 B2
8456257 Fattinger Jun 2013 B1
8575820 Shirakawa et al. Nov 2013 B2
9069005 Ruby Jun 2015 B2
9099983 Burak et al. Aug 2015 B2
9136819 Grannen et al. Sep 2015 B2
9154112 Burak Oct 2015 B2
9223248 Kawano et al. Dec 2015 B2
9225313 Bradley et al. Dec 2015 B2
20010045793 Misu et al. Nov 2001 A1
20020000646 Gooch et al. Jan 2002 A1
20020030424 Iwata Mar 2002 A1
20020063497 Panasik May 2002 A1
20020070463 Chang et al. Jun 2002 A1
20020121944 Larson et al. Sep 2002 A1
20020121945 Ruby et al. Sep 2002 A1
20020126517 Matsukawa et al. Sep 2002 A1
20020140520 Hikita et al. Oct 2002 A1
20020152803 Larson et al. Oct 2002 A1
20020153965 Ruby et al. Oct 2002 A1
20020158716 Pensala Oct 2002 A1
20020190814 Yamada et al. Dec 2002 A1
20030001251 Cheever et al. Jan 2003 A1
20030006502 Karpman Jan 2003 A1
20030011285 Ossmann Jan 2003 A1
20030011446 Bradley Jan 2003 A1
20030051550 Nguyen et al. Mar 2003 A1
20030087469 Ma May 2003 A1
20030102776 Takeda et al. Jun 2003 A1
20030111439 Fetter et al. Jun 2003 A1
20030128081 Ella et al. Jul 2003 A1
20030132493 Kang et al. Jul 2003 A1
20030132809 Senthikumar et al. Jul 2003 A1
20030141946 Ruby et al. Jul 2003 A1
20030179053 Aigner et al. Sep 2003 A1
20030205948 Lin et al. Nov 2003 A1
20030213964 Flynn et al. Nov 2003 A1
20030227357 Metzger et al. Dec 2003 A1
20040016995 Kuo et al. Jan 2004 A1
20040017130 Wang et al. Jan 2004 A1
20040027216 Ma et al. Feb 2004 A1
20040046622 Aigner et al. Mar 2004 A1
20040056735 Nomura et al. Mar 2004 A1
20040092234 Pohjonen May 2004 A1
20040099898 Grivna et al. May 2004 A1
20040124952 Tikka Jul 2004 A1
20040129079 Kato et al. Jul 2004 A1
20040150293 Unterberger Aug 2004 A1
20040150296 Park et al. Aug 2004 A1
20040166603 Carley Aug 2004 A1
20040188241 Rich et al. Sep 2004 A1
20040195937 Matsubara et al. Oct 2004 A1
20040212458 Lee Oct 2004 A1
20040246075 Bradley et al. Dec 2004 A1
20040257171 Park et al. Dec 2004 A1
20040257172 Schmidhammer et al. Dec 2004 A1
20040263287 Ginsburg et al. Dec 2004 A1
20050012570 Korden et al. Jan 2005 A1
20050012716 Mikulin et al. Jan 2005 A1
20050023931 Bouche et al. Feb 2005 A1
20050030126 Inoue et al. Feb 2005 A1
20050036604 Scott et al. Feb 2005 A1
20050057117 Nakatsuka et al. Mar 2005 A1
20050057324 Onishi et al. Mar 2005 A1
20050068124 Stoemmer Mar 2005 A1
20050093396 Larson et al. May 2005 A1
20050093397 Yamada et al. May 2005 A1
20050093653 Larson May 2005 A1
20050093654 Larson et al. May 2005 A1
20050093655 Larson et al. May 2005 A1
20050093657 Larson et al. May 2005 A1
20050093658 Larson et al. May 2005 A1
20050093659 Larson et al. May 2005 A1
20050104690 Larson et al. May 2005 A1
20050110598 Larson, III et al. May 2005 A1
20050128030 Larson et al. Jun 2005 A1
20050140466 Larson et al. Jun 2005 A1
20050167795 Higashi Aug 2005 A1
20050193507 Ludwiczak Sep 2005 A1
20050206271 Higuchi et al. Sep 2005 A1
20050206479 Nguyen et al. Sep 2005 A1
20050206483 Pashby et al. Sep 2005 A1
20050218488 Matsuo Oct 2005 A1
20050248232 Itaya et al. Nov 2005 A1
20050269904 Oka Dec 2005 A1
20050275486 Feng Dec 2005 A1
20060017352 Tanielian Jan 2006 A1
20060038636 Tsurumi et al. Feb 2006 A1
20060071736 Ruby et al. Apr 2006 A1
20060081048 Mikado et al. Apr 2006 A1
20060087199 Larson et al. Apr 2006 A1
20060103492 Feng et al. May 2006 A1
20060114541 Van Beek Jun 2006 A1
20060119453 Fattinger et al. Jun 2006 A1
20060125489 Feucht et al. Jun 2006 A1
20060132262 Fazzio et al. Jun 2006 A1
20060164183 Tikka et al. Jul 2006 A1
20060164186 Stoemmer et al. Jul 2006 A1
20060176126 Wang et al. Aug 2006 A1
20060185139 Larson et al. Aug 2006 A1
20060197411 Hoen et al. Sep 2006 A1
20060238070 Costa et al. Oct 2006 A1
20060284706 Ginsburg et al. Dec 2006 A1
20060284707 Larson et al. Dec 2006 A1
20060290446 Aigner et al. Dec 2006 A1
20070035364 Sridhar et al. Feb 2007 A1
20070037311 Izumi et al. Feb 2007 A1
20070040473 Ballandras et al. Feb 2007 A1
20070069225 Krames et al. Mar 2007 A1
20070080759 Jamneala et al. Apr 2007 A1
20070085447 Larson Apr 2007 A1
20070085631 Larson et al. Apr 2007 A1
20070085632 Larson et al. Apr 2007 A1
20070086080 Larson et al. Apr 2007 A1
20070086274 Nishimura et al. Apr 2007 A1
20070090892 Larson Apr 2007 A1
20070170815 Unkrich Jul 2007 A1
20070171002 Unkrich Jul 2007 A1
20070176710 Jamneala et al. Aug 2007 A1
20070205850 Jamneala et al. Sep 2007 A1
20070266548 Fattinger Nov 2007 A1
20070279153 Ruby Dec 2007 A1
20080042780 Lee et al. Feb 2008 A1
20080055020 Handtmann et al. Mar 2008 A1
20080129417 Taniguchi Jun 2008 A1
20080143215 Hara et al. Jun 2008 A1
20080258842 Ruby et al. Oct 2008 A1
20080297278 Handtmann et al. Dec 2008 A1
20080297279 Thalhammer et al. Dec 2008 A1
20080297280 Thalhammer et al. Dec 2008 A1
20090001848 Umeda et al. Jan 2009 A1
20090064498 Mok et al. Mar 2009 A1
20090079302 Wall et al. Mar 2009 A1
20090096550 Handtmann et al. Apr 2009 A1
20090127978 Asai et al. May 2009 A1
20090153268 Milsom et al. Jun 2009 A1
20090267453 Barber et al. Oct 2009 A1
20090267457 Barber et al. Oct 2009 A1
20100013573 Umeda Jan 2010 A1
20100033063 Nishihara et al. Feb 2010 A1
20100039000 Milson et al. Feb 2010 A1
20100052176 Kamada et al. Mar 2010 A1
20100052815 Bradley et al. Mar 2010 A1
20100091370 Mahrt et al. Apr 2010 A1
20100102358 Lanzieri et al. Apr 2010 A1
20100111808 Pimputkar et al. May 2010 A1
20100141353 Iwaki et al. Jun 2010 A1
20100148637 Satou Jun 2010 A1
20100176899 Schaufele et al. Jul 2010 A1
20100187948 Sinha et al. Jul 2010 A1
20100187949 Pahl et al. Jul 2010 A1
20100260453 Block Oct 2010 A1
20100327697 Choy et al. Dec 2010 A1
20100327994 Choy et al. Dec 2010 A1
20110037539 Jansman et al. Feb 2011 A1
20110084779 Zhang Apr 2011 A1
20110121689 Grannen et al. May 2011 A1
20110121916 Barber et al. May 2011 A1
20110148547 Zhang Jun 2011 A1
20110180391 Larson et al. Jul 2011 A1
20110204996 Gilbert et al. Aug 2011 A1
20110204997 Elbrecht et al. Aug 2011 A1
20110227671 Zhang Sep 2011 A1
20110266925 Ruby et al. Nov 2011 A1
20120154074 Ruby et al. Jun 2012 A1
20120161902 Feng et al. Jun 2012 A1
20120177816 Larson et al. Jul 2012 A1
20120194297 Choy Aug 2012 A1
20120218055 Burak et al. Aug 2012 A1
20120218056 Burak Aug 2012 A1
20120218057 Burak et al. Aug 2012 A1
20120218058 Burak et al. Aug 2012 A1
20120218059 Burak et al. Aug 2012 A1
20120218060 Burak et al. Aug 2012 A1
20120248941 Shirakawa et al. Oct 2012 A1
20120280767 Burak et al. Nov 2012 A1
20130033151 Ueda et al. Feb 2013 A1
20130038408 Burak et al. Feb 2013 A1
20130063227 Burak et al. Mar 2013 A1
20130082799 Zuo et al. Apr 2013 A1
20130106534 Burak et al. May 2013 A1
20130127300 Umeda et al. May 2013 A1
20130140959 Shin et al. Jun 2013 A1
20130205586 Takada et al. Aug 2013 A1
20130235001 Yun et al. Sep 2013 A1
20130241673 Yokoyama et al. Sep 2013 A1
20140111288 Nikkel et al. Apr 2014 A1
20140118087 Burak et al. May 2014 A1
20140118088 Burak et al. May 2014 A1
20140118091 Burak et al. May 2014 A1
20140118092 Burak et al. May 2014 A1
20140159548 Burak et al. Jun 2014 A1
20140224941 Gitter et al. Aug 2014 A1
20140225682 Burak et al. Aug 2014 A1
20140225683 Burak et al. Aug 2014 A1
Foreign Referenced Citations (95)
Number Date Country
1171382 Oct 2004 CN
101170303 Sep 2011 CN
10160617 Jun 2003 DE
10239317 Mar 2004 DE
102007012384 Sep 2008 DE
231892 Aug 1987 EP
0637875 Feb 1995 EP
689254 Dec 1995 EP
0865157 Sep 1998 EP
880227 Dec 1998 EP
1047189 Oct 2000 EP
1096259 May 2001 EP
1100196 May 2001 EP
1180494 Feb 2002 EP
1249932 Oct 2002 EP
1258989 Nov 2002 EP
1258990 Nov 2002 EP
1517443 Mar 2005 EP
1517444 Mar 2005 EP
1528674 May 2005 EP
1528675 May 2005 EP
1528676 May 2005 EP
1528677 May 2005 EP
1542362 Jun 2005 EP
1557945 Jul 2005 EP
1575165 Sep 2005 EP
0973256 Sep 2006 EP
2299592 Mar 2011 EP
2299593 Mar 2011 EP
2951027 Apr 2011 FR
1207974 Oct 1970 GB
2013343 Aug 1979 GB
2411239 Aug 2005 GB
2418791 Apr 2006 GB
2427773 Jan 2007 GB
359023612 Feb 1984 JP
60-16010 Jan 1985 JP
61054686 Mar 1986 JP
6165507 Apr 1986 JP
62-109419 May 1987 JP
62-200813 Sep 1987 JP
1-295512 Nov 1989 JP
2-10907 Jan 1990 JP
06005944 Jan 1994 JP
8-330878 Dec 1996 JP
09-027729 Jan 1997 JP
9-83029 Mar 1997 JP
10-32456 Feb 1998 JP
10-308645 Nov 1998 JP
2000-31552 Jan 2000 JP
2000076295 Mar 2000 JP
2000-232334 Aug 2000 JP
2000-295065 Oct 2000 JP
2000-514278 Oct 2000 JP
2000-332568 Nov 2000 JP
2001-102901 Apr 2001 JP
2001-508630 Jun 2001 JP
2002217676 Aug 2002 JP
2003017964 Jan 2003 JP
2003017974 Jan 2003 JP
2003-505905 Feb 2003 JP
2003124779 Apr 2003 JP
2003-332872 Nov 2003 JP
2005-159402 Jun 2005 JP
2006-109472 Apr 2006 JP
2006-295924 Oct 2006 JP
2006-319796 Nov 2006 JP
2007-006501 Jan 2007 JP
2007028669 Feb 2007 JP
2007-295306 Nov 2007 JP
2008-066792 Mar 2008 JP
4471443 Jun 2010 JP
2003-505906 Sep 2013 JP
9816957 Apr 1998 WO
9838736 Sep 1998 WO
9856049 Dec 1998 WO
99-37023 Jul 1999 WO
0106646 Jan 2001 WO
0106647 Jan 2001 WO
0199276 Dec 2001 WO
02103900 Dec 2002 WO
03030358 Apr 2003 WO
03043188 May 2003 WO
03050950 Jun 2003 WO
03058809 Jul 2003 WO
2004034579 Apr 2004 WO
2004051744 Jun 2004 WO
2004102688 Nov 2004 WO
2005043752 May 2005 WO
2005043753 May 2005 WO
2005043756 May 2005 WO
2006018788 Feb 2006 WO
2006079353 Aug 2006 WO
2007085332 Aug 2007 WO
2013065488 May 2013 WO
Non-Patent Literature Citations (78)
Entry
U.S. Appl. No. 13/232,334, filed Sep. 14, 2011.
G.W. Archibald, “Experimental results of bulk acoustic wave transverse graded electrode patterns”, Proceedings of the 1998 IEEE International Frequency Control Symposium, Publication Year: 1998 , pp. 477-483.
Zou, et al. “High Coupling Coefficient Temperature Compensated FBAR Resonator for Oscillator Application with Wide Pulling Range”, 2010 IEEE International Frequency Control Symposium (FCS), Jun. 1-4, 2010, pp. 646-651 and one page IEEE Xplore Abstract.
Zhang, et al. “MIMO Multiplexer Based on Film Bulk Acoustic Resonator”; IEEE Transactions on Consumer Electronics, vol. 56, No. 2, May 2010, pp. 805-810.
Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/766,993.
Machine Translation of WO02103900, published Dec. 27, 2002.
Machine Translation of WO03/030358, published Apr. 10, 2003.
Machine Translation of WO03/043188, published May 22, 2003.
Machine Translation of WO03/050950, published Jun. 19, 2003.
Machine Translation of CN101170303, published Sep. 14, 2011.
Machine Translation of DE10160617, published Jun. 12, 2003.
Machine Translation of DE102007012384, published Sep. 18, 2008.
Machine Translation of DE10239317, published Mar. 11, 2004.
Machine Translation of JP10308645, published Nov. 17, 1998.
Machine Translation of JP10-32456, published Feb. 3, 1998.
Machine Translation of JP2000076295, published Mar. 14, 2000.
Machine Translation of JP2000-232334, published Aug. 22, 2000.
Machine Translation of JP2000295065, published Oct. 20, 2000.
Machine Translation of JP2000-332568, published Nov. 30, 2000.
Machine Translation of JP2001-102901, published Apr. 13, 2001.
Machine Translation of JP2001-508630, published Jun. 26, 2001.
Machine Translation of JP20021217676, published Aug. 2, 2002.
Machine Translation of JP2003017964, published Jan. 17, 2003.
Machine Translation of JP2003124779, published Apr. 25, 2003.
Machine Translation of JP2003017974, published Jan. 17, 2003.
Machine Translation of JP2003-332872, published Nov. 21, 2003.
Machine Translation of JP2003-505905, published Feb. 12, 2003.
Examination Report dated Aug. 25, 2006 for UK Application No. GB0605770.7.
Examination Report dated Aug. 24, 2006 for UK Application No. GB0605971.1.
Search Report dated Dec. 13, 2006 for UK Application No. GB0617742.2.
Search Report dated Jun. 26, 2006 for UK Application No. GB0605225.2.
Search Report dated Nov. 15, 2006 for UK Application No. GB0620152.9.
Search Report dated Nov. 15, 2006 for UK Application No. GB0620655.1.
Search Report dated Nov. 17, 2006 for UK Application No. GB0620653.6.
Search Report dated Nov. 23, 2006 for UK Application No. GB0620657.7.
Search Report dated Aug. 23, 2006 for UK Application No. GB0605779.8.
Search Report dated Nov. 30, 2006 for UK Application No. GB0619698.4.
Auld, “Acoustic Resonators Acoustic Fields and Waves in Solids”, Second Edition, vol. II, 250-259, 1990.
Bi, “Bulk Acoustic Wave RF Technology”, IEEE Microwave Magazine, vol. 9, Issue 5. 65-80, 2008.
Chen, “Fabrication and Characterization of ALN Thin Film Bulk Acoustic Wave Resonator Dissertation”, University of Pittsburgh School of Engineering, 2006.
Dubois, “Solidly Mounted Resonator Based on Aluminum Nitride Thin Film”, 1998 IEEE Ultrasonics Symposium, vol. 1, 909-912, 1998.
El Hassan et al., “Techniques for Tuning BAW-SMR Resonators For The 4th Generation of Mobile Communications Intech”, 421-442, 2013.
Kaitila et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium, 464-467, Oct. 2006.
Kerherve, “BAW Technologies for Radiofrequency Filters and Duplexers”, Nov. 2011.
Krishnaswamy et al., “Film Bulk Acoustic Wave Resonator Technology”, 529-536, May 29, 1990.
Lakin, “Thin Film Resonators and Filters”, IEEE Untrasonics Symposium, Caesar's Tahoe, NV, 895-906, Oct. 1999.
Larson et al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium, 939-943, 2002.
Lee et al., “Optimization of Frame-Like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method”, IEEE Ultrasonic Symposium, vol. 1, 278-281, 2004.
Pensala et al., “Spurious resonance supression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 8, 1731-1744, Aug. 2009.
Pensala, “Thin Film Bulk Acoustic Wave Devices: Performance Optimization and Modeling” VTT Publications 756, http://www.vtt.fi/inf/pdf/publications/2011/P756.pdf; dissertation presented Feb. 25, 2011, copyright VTT 2011, 1-108, Feb. 25, 2011.
Ruby et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005, IEEE MTT-S International, 217-221, Jun. 12, 2005.
Sanchez et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers”, IEEE Xplore, 841-846, 2003.
Strijbos, “Design and Characterisation of High-Q Solidly-Mounted Bulk Acoustic Wave Filters”, ECTC '07 Proceedings, 57th Electronic Components and Technology Conference, Publication Year 2007, 169-174, 2007.
Tang et al., “Micromachined Bulk Acoustic Resonator With a Raised Frame”, 16th International Conference on Mechatronics Technology, Tianjin, China, Oct. 16-19, 2012.
Machine Translation of JP2003-505906, published Sep. 30, 2013.
Machine Translation of JP2004/034579, published Apr. 22, 2004.
Machine Translation of WO2004/102688, published Nov. 25, 2004.
Machine Translation of JP2005-159402, published Jun. 16, 2005.
Machine Translation of WO2006079353, published Aug. 3, 2006.
Machine Translation of JP2006109472, published Apr. 20, 2006.
Machine Translation of JP2006295924, published Oct. 26, 2006.
Machine Translation of JP2006319796, published Nov. 24, 2006.
Machine Translation of JP2007/028669, published Feb. 1, 2007.
Machine Translation of JP2007-006501, published Jan. 11, 2007.
Machine Translation of WO2007085332, published Aug. 2, 2007.
Machine Translation of JP2007-295306, published Nov. 1, 2007.
Machine Translation of JP2008-066792, published Mar. 21, 2008.
Machine Translation of WO2013065488, published May 10, 2013.
Machine Translation of JP2-10907, published Jan. 16, 1990.
Machine Translation of FR2951027, published Apr. 8, 2011.
Machine Translation of JP4471443, published Jun. 2, 2010.
Machine Translation of WO98/38736, published Sep. 3, 1998.
Machine Translation of WO99-37023, published Jul. 22, 1999.
Search Report dated Jan. 9, 2006 for UK Application No. GB0522393.8, 4 pages.
Search Report dated Feb. 2, 2006 for UK Application No. GB0525884.3, 4 pages.
Search Report dated Jul. 11, 2006 for UK Application No. GB0605222.9.
Tiersten et al., “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, J. Appl. Phys., 54, (10), 5893-5910, Oct. 1983.
Chinese Office Action dated Jun. 3, 2016 with translation.
Related Publications (1)
Number Date Country
20140118088 A1 May 2014 US