Accoustic resonator having integrated lateral feature and temperature compensation feature

Information

  • Patent Grant
  • 9444426
  • Patent Number
    9,444,426
  • Date Filed
    Thursday, February 14, 2013
    11 years ago
  • Date Issued
    Tuesday, September 13, 2016
    8 years ago
Abstract
A bulk acoustic wave (BAW) resonator device includes a bottom electrode on a substrate over one of a cavity and an acoustic mirror, a piezoelectric layer on the bottom electrode, a top electrode on the piezoelectric layer, and a temperature compensation feature having positive temperature coefficient for offsetting at least a portion of a negative temperature coefficient of the piezoelectric layer. At least one of the bottom electrode and the top electrode includes an integrated lateral feature configured to create at least one of a cut-off frequency mismatch and an acoustic impedance mismatch.
Description
BACKGROUND

Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic signals (sound waves) and convert received acoustic waves to electrical signals via inverse and direct piezoelectric effect. Acoustic transducers generally include acoustic resonators, such as surface acoustic wave (SAW) resonators and bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, BAW resonators include thin film bulk acoustic resonators (FBARs), which may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may form a thin membrane.


FBAR devices, in particular, generate longitudinal acoustic waves and lateral acoustic waves when stimulated by an applied time-varying electric field, as well as higher order harmonic mixing products. The longitudinal acoustic wave, usually called a piston mode, is electrically excited by a vertical electric field between electrode plates and has a form of laterally uniform motion with the boundaries of motion determined by an overlap of top and bottom electrodes and the piezoelectric material. Lateral acoustic waves, usually called lateral modes, are excited at the edges of the piston mode motion and facilitate continuity of appropriate mechanical displacements and stresses between electrically excited and non-excited regions. In general, lateral modes are specific forms of motion supported by a mechanical stack and have both longitudinal and shear components. The lateral modes can either propagate freely (so called propagating modes) or exponentially decay (so called evanescent and complex modes) from the point of excitation. These modes can be excited both by a lateral mechanical discontinuity (for example, at an interface between a frame and a membrane, or at the edge of a top or bottom electrode) or by electric field discontinuity (for example, at an edge of a top electrode where the electric field is terminated abruptly). The lateral modes and the higher order harmonic mixing products generally have a deleterious impact on functionality.


In certain configurations, a frame may be provided along one or more sides of an FBAR to mitigate acoustic losses at the boundaries by minimizing scattering of electrically excited piston mode at the top electrode edges and by improving confinement of mechanical motion to the active region of the FBAR (the region of overlap of the top electrode, the piezoelectric layer, and the bottom electrode). In general, frames are made of added (or removed) thin layers of material along the perimeter of the resonator device with the purpose of lowering (increasing) the cutoff frequency in that region with respect to the main membrane. This in turn minimizes the amplitude of the electrically excited piston mode and the resulting scattering at top electrode edges above (or below) the cut-off frequency of a membrane. Frames also create an acoustic impedance mismatch that enables suppression of the amplitudes of propagating and/or evanescent modes (whichever exist in the frequency range of interest) mechanically excited at the membrane/frame boundary, thus further minimizing acoustic energy leakage to the outside of the active region. However, in addition to improved acoustic energy confinement, as well as further improvements in FBAR quality factor Q due to the better acoustic energy confinement, simplified design and implementation of frames are needed. In particular, in some applications, frames placed above the piezoelectric layer are not effective in suppressing modes confined to the bottom part of the stack.


In addition, FBAR filters in particular need to guarantee sufficiently low insertion loss (IL) across temperature ranges, as well as frequency ranges. Typically, as ambient temperature increases, sound velocity of most materials decreases and the cutoff frequency of each of the FBARS forming the filter decreases. Thus, as the temperature increases, the pass-band of the filter generally moves towards lower frequencies. Therefore, in the absence of temperature compensation, the pass-band must be designed wide enough to allow for changes of the ambient temperature, requiring high a coupling coefficient kt2 of each FBAR, which may be difficult to achieve. Also, in some cases (e.g., Band 13), the pass-band may not be allowed to move to prevent encroachment on other (e.g. safety) bands. Temperature compensation of the filter (and therefore each FBAR) is sometimes required. For example, boron-doped silicon oxide SiOx (which may be referred to as “tempco oxide”) may be added as a temperature compensating layer to the FBAR. The sound velocity of tempco oxide increases with temperature, which yields the desired stabilization of resonator and filter response with changes in ambient temperature. The temperature compensating layer may be embedded into either top or bottom electrode, with all the associated process complications. Typical structures to improve Rp and Q are then used: top electrode air-bridges (to eliminate dead-FBAR) and add-on frames on top electrode (to minimize scattering at the top electrode edges.


Typically, the temperature compensating layer lowers the effectiveness of add-on frames used for quality factor Q improvement. The reason is that low acoustic impedance of the temperature compensating layer confines a significant amount of energy both from the piston mode and from stack eigenmodes that are confined to the part of the resonator stack where the temperature compensating layer is placed. The typical add-on frames are placed on the top of the stack in order to facilitate growth of high-quality planar piezoelectric layer. The temperature compensating layer may be placed either below or above the piezoelectric layer, which limits the effectiveness of top add-on frames on suppressing the eigen-modes confined to the bottom of the resonator stack. Thus, approaches allowing for construction of both planarized frames (that may be placed at arbitrary location in the resonator stack) and temperature compensating layers within a BAW resonator stack are needed for applications requiring high-quality factor Q and temperature compensated frequency response.





BRIEF DESCRIPTION OF THE DRAWINGS

The example embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.



FIGS. 1A-1D are cross-sectional diagrams illustrating acoustic resonators having temperature compensating layers and integrated frames, according to representative embodiments.



FIG. 2 is a cross-sectional diagram illustrating an acoustic resonator having an encapsulated temperature compensating layer, according to representative embodiments.



FIGS. 3A-3D are cross-sectional diagrams illustrating acoustic resonators having temperature compensating layers and integrated frames, according to representative embodiments.



FIGS. 4A-4B are cross-sectional diagrams illustrating acoustic resonators having temperature compensating layers and integrated frames, according to representative embodiments.



FIGS. 5A-5D are cross-sectional diagrams illustrating acoustic resonators having temperature compensating layers and integrated frames, according to representative embodiments.



FIGS. 6A-6C are cross-sectional diagrams illustrating acoustic resonators having temperature compensating layers and integrated frames, according to representative embodiments.



FIG. 7 is a cross-sectional diagram illustrating an acoustic resonator having a temperature compensating layer and an integrated frame, according to representative embodiments.



FIGS. 8A-8B are graphs depicting Normalized Peak Strain Energy (NPSE) distributions of the first five modes for an FBAR having no tempco composite electrode and a tempco composite electrode, respectively, for comparison purposes.



FIG. 9 is a graph illustrating parallel resistance Rp versus frame width of integrated low velocity frames having various thicknesses in an FBAR with a top frame composite electrode and a bottom tempco composite electrode, according to representative embodiments.





DETAILED DESCRIPTION

In the following detailed description, for purposes of explanation and not limitation, representative embodiments disclosing specific details are set forth in order to provide a thorough understanding of the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the representative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.


Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper,” “lower,” “left.” “right,” “vertical” and “horizontal,” are used to describe the various elements' relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be “below” that element. Likewise, if the device were rotated 90 degrees with respect to the view in the drawings, an element described as “vertical,” for example, would now be “horizontal.”


Further, as used in the specification and appended claims, the terms “a”, “an” and “the” include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, “a device” includes one device and plural devices.


As used in the specification and appended claims, and in addition to their ordinary meanings, the terms “substantial” or “substantially” mean to within acceptable limits or degree. For example, “substantially cancelled” means that one skilled in the art would consider the cancellation to be acceptable.


As used in the specification and the appended claims and in addition to its ordinary meaning, the term “approximately” means to within an acceptable limit or amount to one having ordinary skill in the art. For example, “approximately the same” means that one of ordinary skill in the art would consider the items being compared to be the same.


The present teachings are directed to including integrated lateral features and/or temperature compensating layers within one or more composite electrodes of a BAW resonator, such as an FBAR. For purposes of discussion, a composite electrode including one or more an integrated lateral features may be referred to as a “frame composite electrode;” a composite electrode including one or more temperature compensating layers may be referred to as a “tempco composite electrode;” and composite electrode including an integrated lateral feature and a temperature compensating layer may be referred to as a “hybrid composite electrode.” In various embodiments, one or both of the top and bottom electrodes may be a frame composite electrode, a tempco composite electrode or a hybrid composite electrode in any combination where the resulting BAW resonator includes at least one lateral feature and at least one temperature compensation feature. Similarly, in various embodiments, one of the top and bottom electrodes may be a hybrid composite electrode and the other one of the top and bottom electrodes may be a conventional electrode (i.e., containing no lateral features or temperature compensation features). Further, in various embodiments, the piezoelectric layer of the BAW resonator may include one or more temperature compensating layers, while one or both of the top and bottom electrodes may be a frame composite electrode, a tempco composite electrode or a hybrid composite electrode in any combination where the resulting BAW resonator includes at least one lateral feature in the top and bottom electrodes. Notably, FIGS. 1A to 7 below depict configurations of various embodiments for purposes of illustration, and thus the depicted configurations are not intended to be limiting.


Integrated lateral features may include integrated low velocity and high velocity frames, for example, which generally suppress electrically excited piston mode in the region defined by the feature, and reflect and otherwise resonantly suppress propagating eigenmodes in lateral directions, with both effects simultaneously improving operation of the BAW resonator. Introduction of integrated lateral features generally results in creating at least one of a cut-off frequency mismatch and an acoustic impedance mismatch. The (frame or hybrid) composite electrodes are formed of at least two different conductive materials, such as metals, having different sound velocities and acoustic impedances. The term “integrated” means that the lateral feature is formed within a corresponding composite electrode, as opposed to being formed on or otherwise protruding from one of the surfaces of an electrode, such that the composite electrode maintains substantially planar top and bottom surfaces that are substantially parallel to one another. This simplifies fabrication of the FBAR with regard to application of layers on planar surfaces, yet provides the benefits of the lateral features.


For example, an integrated low velocity frame may be located along the outer edges of an FBAR, which generally increases parallel resistance Rp and quality factor Q above the cut-off frequency. Similarly, an integrated high velocity frame may be located along the outer edges of an FBAR, which generally decreases series resistance Rs and increases quality factor Q below the cut-off frequency. A typical integrated low velocity frame, for example, effectively provides a region with significantly lower cut-off frequency than the main membrane and therefore minimizes the amplitude of the electrically excited piston mode towards the edge of the top electrode in the frame region. Furthermore, it provides two interfaces (impedance miss-match planes), which increase reflection of (mechanically excited at membrane/frame interface) propagating eigenmodes in lateral directions. When the width of the frame is properly designed for a given eigenmode, it results in resonantly enhanced suppression of that particular eigenmode. Lastly, a sufficiently wide integrated low velocity frame provides a region for smooth decay of the evanescent and complex modes mechanically excited at the membrane/frame interface. The combination of these three effects yields better energy confinement and higher quality factor Q at parallel resonance frequency Fp.


In addition, the temperature compensating layer may be deposited between an electrode layer and a conductive interposer layer in a (tempco or hybrid) composite electrode. The temperature compensating layer may be formed of an oxide material, such as boron silicate glass (BSG), for example, having a positive temperature coefficient which offsets at least a portion of negative temperature coefficients of the piezoelectric layer and the conductive material in the top and bottom electrodes. The interposer layer may make a DC electrical connection with the electrode layer, effectively shorting out a capacitive component of the temperature compensating layer and increasing a coupling coefficient kt2 of the FBAR. Also, the interposer layer, which is positioned between the temperature compensating layer the piezoelectric layer, presents a barrier preventing oxygen in the temperature compensating layer from diffusing into the piezoelectric material of the piezoelectric layer. Further description of temperature compensating layers is included in U.S. Pat. App. Pub. No. 2011/0266925 (published Nov. 3, 2011) to Ruby et al., which is hereby incorporated by reference.


Certain aspects of the present teachings build upon components of FBAR devices, FBAR-based filters, their materials and methods of fabrication. Many details of FBARs, materials thereof and their methods of fabrication may be found in one or more of the following U.S. patents and patent applications: U.S. Pat. No. 6,107,721 (Aug. 22, 2000) to Lakin; U.S. Pat. No. 5,587,620 (Dec. 24, 1996), U.S. Pat. No. 5,873,153 (Feb. 23, 1999) U.S. Pat. No. 6,507,983 (Jan. 21, 2003) and U.S. Pat. No. 7,388,454 (Jun. 17, 2008) to Ruby, et al.; U.S. Pat. No. 7,629,865 (Dec. 8, 2009) to Ruby; U.S. Pat. No. 7,714,684 (May 11, 2010) to Ruby et al.; U.S. Pat. No. 7,280,007 (Oct. 9, 2007) to Feng et al.; U.S. Pat. App. Pub. No. 2007/0205850, entitled “Piezoelectric Resonator Structures and Electrical Filters having Frame Elements” to Jamneala et al.; U.S. Pat. App. Pub. No. 2010/0327697, entitled “Acoustic Resonator Structure Comprising a Bridge” to Choy et al.; U.S. Pat. App. Pub. No. 2010/0327994, entitled “Acoustic Resonator Structure having an Electrode with a Cantilevered Portion” to Choy et al.; and U.S. Pat. App. Pub. No. 2012/0218056, entitled “Coupled Resonator Filter Comprising a Bridge” to Burak published Aug. 30, 2012. The disclosures of these patents and patent applications are hereby incorporated by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.



FIGS. 1A-1C are cross-sectional diagrams illustrating acoustic resonators, according to representative embodiments. In the examples depicted in FIGS. 1A-1C (as well as the examples depicted in FIGS. 2-7, discussed below), the acoustic resonator is an FBAR, for convenience of explanation. However, it is understood that other types of acoustic resonators may be included, without departing from the scope of the present teachings. Each of the acoustic resonators shown in FIGS. 1A-1C includes an integrated low velocity frame in at least one frame composite electrode and a temperature compensating layer in a tempco composite electrode or the piezoelectric layer. It is understood that the same general configurations may be included in acoustic resonators having an integrated high velocity frame, in addition to or in place of an integrated low velocity frame, without departing from the scope of the present teachings.


Referring to FIG. 1A, FBAR 100A includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, a known acoustic mirror, such as a Bragg mirror (e.g., Bragg mirror 125 in FIG. 1D) comprising alternating layers of high and low acoustic impedance materials (not shown) may be provided in the substrate 110 to provide acoustic isolation, in place of the cavity 115, without departing from the scope of the present teachings. The substrate 110 may be formed of a material compatible with semiconductor processes, such as silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), glass, sapphire, alumina, or the like, for example. Various illustrative fabrication techniques of cavities in a substrate are described by U.S. Pat. No. 7,345,410 (Mar. 18, 2008) to Grannen et al., and various illustrative fabrication techniques of acoustic mirrors are described by in U.S. Pat. No. 7,358,831 (Apr. 15, 2008), to Larson III, et al., which are hereby incorporated by reference in their entireties.


The FBAR 100A further includes piezoelectric layer 130 sandwiched between two composite electrodes: a first or bottom electrode 120a, which is a tempco composite electrode containing temperature compensating layer 127, and second or top electrode 140, which is a frame composite electrode containing integrated low velocity frame 141. The bottom electrode 120a is disposed over the substrate 110 and the cavity 115. A planarization layer 129 is also provided over the substrate 110 as shown in order to provide a planar top surface of the bottom electrode 120a. In a representative embodiment, the planarization layer 129 includes non-etchable borosilicate glass (NEBSG), for example. In general, the planarization layer 129 does not need to be present in the structure (as it increases overall processing cost), but when present, it may improve quality of growth of subsequent layers and simplify their processing. The piezoelectric layer 130 is disposed over the bottom electrode 120a, and the top electrode 140 is disposed over the piezoelectric layer 130. Together, the bottom electrode 120a, the piezoelectric layer 130 and the top electrode 140 form the (thin) membrane of the FBAR 100A. The piezoelectric layer 130 is formed of a thin film of piezoelectric material, such as aluminum nitride (AlN), zinc oxide (ZnO) or lead zirconium titanate (PZT), for example. However, other materials may be incorporated without departing from the scope of the present teachings.


The FBAR 100A includes integrated temperature compensating layer 127 in the bottom electrode 120a, which stabilizes changes of the sound velocity and the cut-off frequency of the piezoelectric layer 130 in response to changes in temperature. More particularly, the bottom electrode 120a includes outside electrode layer 126, temperature compensating layer 127 and conductive interposer layer 128 (hereafter interposer layer 128) stacked in this order on the substrate 110. The interposer layer 128 separates the temperature compensating layer 127 from the piezoelectric layer 130, so that the temperature compensating layer 127 is effectively buried within the bottom electrode 120a. In other words, the temperature compensating layer 127 is not formed on a top or bottom surface of the bottom electrode 120a and is therefore separated from adjacent components (e.g., piezoelectric layer 130 and substrate 110) in the resonator stack. Although the presence of the interposer layer 128 is not necessary, it facilitates proper growth of the piezoelectric layer 130 and otherwise provides protection of the temperature compensating layer 127 (e.g., from hydrofluoric acid (HF) used for wet etching or wet release process) during the fabrication process. Also, the presence and thickness of the interposer layer 128 affect temperature compensation effects of the temperature compensating layer 127. In addition, thick enough interposer layer 128 made of low sheet resistance metal, for example, may electrically short the temperature compensating layer 127, therefore eliminating its series capacitance and increasing electromechanical coupling coefficient Kt2.


The temperature compensating layer 127 is shown encapsulated within the bottom electrode 120, meaning that it is surrounded by the outside electrode layer 126 and the interposer layer 128. An example of encapsulating the temperature compensating layer 127 is described below in more detail with reference to FIG. 2. However, in alternative embodiments, the temperature compensating layer 127 may not be encapsulated, or may be partially encapsulated, such that at least a portion of the temperature compensating layer 127 is exposed at one or more edges (top, bottom or side) of the bottom electrode 120a. For example, the temperature compensating layer 127 may extend the entire width (horizontal direction in the depicted orientation) of the bottom electrode 120a.


In the bottom electrode 120a, the outside electrode layer 126 and the interposer layer 128 may be formed of electrically conductive materials, such as various metals compatible with semiconductor processes, including tungsten (W), molybdenum (Mo), aluminum (Al), platinum (Pt), ruthenium (Ru), niobium (Nb), or hafnium (Hf), for example. In the depicted embodiment, the outside electrode layer 126 and the interposer layer 128 are formed of the same conductive material (e.g., Mo). However, in various alternative embodiments, the outside electrode layer 126 and the interposer layer 128 may be formed of different conductive materials, where the outside electrode layer 126 is formed of a material having relatively lower conductivity and relatively higher acoustic impedance, and the interposer layer 128 is formed of a material having relatively higher conductivity and relatively lower acoustic impedance. For example, the outside electrode layer 126 may be formed of W and the interposer layer 128 may be formed of Mo, although other materials and/or combinations of materials may be used without departing from the scope of the present teachings.


The temperature compensating layer 127 may be formed of various materials compatible with semiconductor processes, including boron silicate glass (BSG), silicon dioxide (SiO2), chromium (Cr) or tellurium oxide (TeO(x)), for example, which have positive temperature coefficients. The positive temperature coefficient of the temperature compensating layer 127 offsets negative temperature coefficients of other materials in the resonator stack, including the piezoelectric layer 130, the second electrode 140, and the outside electrode and interposer layers 126 and 128 of the bottom electrode 120a.


The FBAR 100A further includes integrated low velocity frame 141 surrounding inner portion 142 in the top electrode 140, which minimizes scattering of piston mode at the top electrode 140 edge at frequencies above the cut-off frequency of the membrane by three mechanisms: (1) minimization of piston mode amplitude excited by time-harmonic electric field in the integrated lateral feature region, (2) suppression at least a portion of the thickness extensional (TE), thickness shear (TS) and flexural propagating lateral acoustic modes, and (3) facilitation of exponential decay of evanescent and higher-order complex TE modes. According to the depicted representative embodiment, the integrated low velocity frame 141 is formed of a first material and the inner portion 142 is formed of a second material different from the first material, where the first material has lower sound velocity than the second material. For example, the integrated low velocity frame 141 may be formed of W and the inner portion 142 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings. More generally, in various embodiments, the first material may have a sound velocity, acoustic impedance and location in the resonator stack, in relation to the sound velocity, acoustic impedance and location in the resonator stack of second material, that are designed to lower the effective sound velocity of the portion of the resonator stack comprising the first material. For example, a frame composite electrode may include one or more alternative metal materials, such as Al or copper (Cu), or dielectric materials, such as SiO2, silicon nitride (SiN), silicon carbide (SiC), AlN, ZnO or PZT, in place of a metal material. It should be apparent to one skilled in the art that in a resonator device, like an FBAR, high or low sound velocity in a specific peripheral region of the resonator device (e.g., integrated high or low velocity frame regions) means that the cutoff frequency in that region is higher or lower, respectively, as compared to the cutoff frequency of a central region of the resonator device.


In the depicted embodiment, the integrated low velocity frame 141 is co-planar with the inner portion 142, meaning that both the integrated low velocity frame 141 and the inner portion 142 have substantially the same thickness (in the vertical direction according to the orientation shown in FIG. 1A) within the top electrode 140. Stated differently, the integrated low velocity frame 141 forms a ring of equal thickness around the inner portion 142. The integrated low velocity frame 141 is generally located in an outer region of the FBAR 100A, and may be formed around all or part of a parameter of the top electrode 140. For example, the FBAR 100A (as well as the other FBARs discussed herein) may be apodized or irregular in shape from a top perspective (not shown), and the integrated low velocity frame 141 may substantially follow along an outer perimeter of the top electrode 140. That is, the top electrode 140 may have five sides arranged in a substantially trapezoidal shape, for example, in which case the integrated low velocity frame 141 may be formed along all five sides, or fewer than all five sides of the FBAR 100A.


The top electrode 140 may further include a passivation layer (not shown), which may be formed of various types of materials, including AlN, SiC, BSG, SiO2, SiN, polysilicon, and the like. The thickness of the passivation layer is sufficient to insulate all layers of the resonator stack from the environment, including protection from moisture, corrosives, contaminants, debris and the like. The first and second electrodes 120a and 140 are electrically connected to external circuitry via contact pads (not shown), which may be formed of a conductive material, such as gold, gold-tin alloy or the like.


The bottom electrode 120a may be formed by applying a layer of conductive material (e.g., W) to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a sputtering, evaporation or chemical vapor disposition (CVD) technique, for example, to the desired thickness to form the outside electrode layer 126. Then, a layer of temperature compensation material (e.g., Si02) is applied to the outside electrode layer 126 to form the temperature compensating layer 127, and another layer of conductive material (e.g., Mo) is applied to the temperature compensation layer 127 to form the interposer layer 128 using a sputtering, evaporation or CVD technique, for example. An example of forming an encapsulated temperature compensating layer is discussed below with reference to FIG. 2. Various illustrative techniques for forming temperature compensating layers are described, for example, in U.S. Pat. No. 7,561,009 to Larson, III, et al., which is hereby incorporated by reference. The piezoelectric layer 130 is grown on the interposer layer 128 using known techniques, such as RF and DC magnetron sputtering, spin-on, evaporation, CVD, laser assisted deposition and the like.


The top electrode 140 may be formed by applying a layer of the first material (e.g., W) to a top surface of the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then dry etch is used to define a desired pattern of the first material forming the low velocity frame 141. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the piezoelectric layer 130 and the integrated low velocity frame 141. The second material (e.g., Mo) is deposited over a top surface of the piezoelectric layer 130 and the low velocity frame 141 (and over the metal-etch stop layer) using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the piezoelectric layer 130 and from the low velocity frame 141, following application of a photoresist pattern (e.g., via photolithography), using sulfur hexafluoride (SF6)-based plasma etch, for example, forming the desired pattern of the top electrode 140. Finally, chemical-mechanical planarization (CMP) using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar top electrode 140. Of course, various other techniques may be incorporated to form the bottom and top electrodes 120a and 140, as would be apparent to one of ordinary skill in the art.


Referring to FIG. 1B, the FBAR 100B is similar to the FBAR 100A, except that the bottom electrode 120 is a frame composite electrode including integrated lateral features and the top electrode 140a is a tempco composite electrode including integrated temperature compensation features. The integrated lateral features of the bottom electrode 120 include integrated low velocity frame 121 surrounding inner portion 122. The integrated low velocity frame 121 is formed of the first material (e.g., W) and the inner portion 122 is formed of the second material (e.g., Mo) different from the first material, where the first material has lower sound velocity than the second material.


In the depicted embodiment, the integrated low velocity frame 121 is co-planar with the inner portion 122, meaning that both the integrated low velocity frame 121 and the inner portion 122 have substantially the same thickness (in the vertical direction according to the orientation shown in FIG. 1B) within the bottom electrode 120. Stated differently, the integrated low velocity frame 121 forms a ring of equal thickness around the inner portion 122. The integrated low velocity frame 121 is generally located in an outer region of the FBAR 100B, and may be formed around all or part of a parameter of the bottom electrode 120.


The bottom electrode 120 may be formed on the top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) in substantially the same manner as the top electrode 140 is formed on the top surface of the piezoelectric layer, discussed above. The piezoelectric layer 130 is grown on the top surface of the bottom electrode 120. In an embodiment, a seed layer may first be applied to the bottom electrode 120 to assist in growing the piezoelectric layer 130.


The integrated tempco features of the top electrode 140a include integrated temperature compensating layer 147 in the top electrode 140a. More particularly, the top electrode 140a includes interposer layer 146, temperature compensating layer 147 and outside electrode layer 148 stacked in this order on the piezoelectric layer 130. The interposer layer 146 separates the temperature compensating layer 147 from the piezoelectric layer 130. Although the presence of an interposer layer is not necessary, particularly since it is not required to assist growth of the piezoelectric layer 130, it provides protection of the temperature compensating layer 147 (e.g., from HF used for wet etching) during the fabrication process, and otherwise influences the temperature compensation effects of the temperature compensating layer 147. In alternative embodiments, the interposer layer 146 is not included, and thus the temperature compensating layer 147 is formed directly on the top surface of the piezoelectric layer 130. Also, although the temperature compensating layer 147 is shown encapsulated within the top electrode 140a, it is understood that it may extend the entire width of the top electrode 140a, or otherwise be only partially encapsulated within the top electrode 140a, without departing from the scope of the present teachings.


In the top electrode 140a, the interposer and outside electrode layers 146 and 148 may be formed of the same or different electrically conductive materials, as discussed above with regard to outside electrode and interposer layers 126 and 128. In an embodiment, the outside electrode layer 148 may be formed of a material having relatively lower conductivity and relatively higher acoustic impedance, and the interposer layer 146 may be formed of a material having relatively higher conductivity and relatively lower acoustic impedance. For example, the outside electrode layer 146 may be formed of W and the interposer layer 146 may be formed of Mo, although other materials and/or combinations of materials may be used without departing from the scope of the present teachings. The temperature compensating layer 147 may be formed of various materials compatible with semiconductor processes, including BSG, SiO2, Cr or TeO(x)), for example, which have positive temperature coefficients.


The top electrode 140a may be formed by applying a layer of conductive material to a top surface of the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, to the desired thickness to form the interposer layer 146. Then, a layer of temperature compensation material (e.g., Si02) is applied to the interposer layer 146 to form the temperature compensating layer 147, and another layer of conductive material is applied to the temperature compensation layer 147 and exposed portions of the interposer layer 128 to form the outside electrode layer 148, respectively using a sputtering, evaporation or CVD technique, for example. Of course, various other techniques may be incorporated to form the bottom and top electrodes 120 and 140a, as would be apparent to one of ordinary skill in the art.


Referring to FIG. 1C, the FBAR 100C is similar to the FBARs 100A and 100B, except that both the bottom electrode 120 and the top electrode 140 are frame composite electrodes including integrated lateral features, and piezoelectric layer 130a includes integrated temperature compensation features. The integrated lateral features of the top electrode 140 include integrated low velocity frame 141 surrounding inner portion 142, and the integrated lateral features of the bottom electrode 120 include integrated low velocity frame 121 surrounding inner portion 122. The construction of these integrated lateral features is the same as discussed above with regard to FBARs 100A and 100B, respectively, so the description will not be repeated. Having integrated lateral feature in both the top and bottom electrodes 120 and 140 further minimizes scattering of piston mode at frequencies above the cut-off frequency of the membrane.


The piezoelectric layer 130a includes temperature compensating layer 137, which may be buried in the piezoelectric layer 130a. In other words, the temperature compensating layer 327 is not formed on a top or bottom surface of the piezoelectric layer 130 and is therefore separated from adjacent components (e.g., bottom and top electrodes 120 and 140) in the resonator stack. In the depicted embodiment, the temperature compensating layer 137 is positioned approximately half way through the total thickness of the piezoelectric layer 130a, for example. The piezoelectric layer 130a may be formed of two layers of the same material, indicated as bottom piezoelectric layer 132 and top piezoelectric layer 134, with the temperature compensating layer 137 formed in between. The temperature compensating layer 137 may be formed of various materials compatible with semiconductor processes, including BSG, SiO2, Cr or TeO(x), for example, which have positive temperature coefficients. The positive temperature coefficient of the temperature compensating layer 137 offsets negative temperature coefficients of other materials in the resonator stack, including the piezoelectric layer 130, and the bottom and top second electrodes 120 and 140. Also, although the temperature compensating layer 137 is shown encapsulated within the piezoelectric layer 130a, it is understood that it may extend the entire width of the piezoelectric layer 130a, or otherwise be only partially encapsulated within the piezoelectric layer 130a, without departing from the scope of the present teachings.


The piezoelectric layer 130a may be formed by growing the bottom piezoelectric layer 132 of piezoelectric material (e.g., AlN) on a top surface of the bottom electrode 120, then applying a layer of temperature compensation material (e.g., Si02) to the bottom piezoelectric layer 132 to form the temperature compensating layer 137 using a sputtering, evaporation or CVD technique, for example. An example of forming an encapsulated temperature compensating layer is discussed below with reference to FIG. 2. A piezoelectric material (e.g., AlN) is grown on a top surface of the bottom piezoelectric layer 132 and the temperature compensating layer 137 to form the top piezoelectric layer 134. Of course, different materials may be incorporated without departing from the scope of the present teachings.


Referring generally to FIGS. 1A-1D, the integrated low velocity frames 121 and 141 present a substantial down-shift of cut-off frequency yielding substantially lower amplitude of electrically excited piston mode at the pass-band frequencies (above the series resonance frequency). Also, the integrated low velocity frames 121 and 141 provide large acoustic impedance discontinuities to both propagating and evanescent modes mechanically excited at interfaces between integrated low velocity frames 121 and 141 and the inner portions 122 and 142, respectively. Beneficially, impact of this discontinuity on the acoustic waves can be minimized by proper selection of integrated low velocity frame width, thus suppressing the propagating eigen-modes and exponentially decaying the evanescent and complex eigen-modes. As a result, total acoustic energy density at the edge of the top electrode 140 is minimized, which beneficially yields minimized scattering of acoustic energy and increased parallel resistance Rp and quality factor Q of the FBARs 100A-100C.


Further, representative FBARs 100A-100C (as well as the other FBARs discussed herein) may be apodized or irregular in shape, as discussed above, and the integrated low velocity frames 121 and 141 may be formed around all or part of a parameter of the bottom and top electrodes 120 and 140. In general, an active region of each of the FBARs 100A-100C, in particular, is defined by overlap between the top electrode 140, the piezoelectric layer 130 and the bottom electrode 120. However, since both the low velocity frames 121 and 141 facilitate significant down shift of cut-off frequency, an effective active region of the FBAR 100C, in particular, in the pass-band frequency range is determined by overlap of the bottom and top inner portions 122 and 142, and the piezoelectric layer 130. Of course, the FBARs 100A-100C may be formed in various alternative shapes, such as circular, square, rectangular, trapezoidal, etc., without departing from the scope of the present teachings. Also, in various embodiments, the integrated low velocity frames 121 and 141 may be shaped differently from the shape of the FBARs 100A-100 and/or the integrated low velocity frames 121 and 141 may not be disposed along all of the edges of the bottom and top electrodes 120 and 140, respectively.


The outer region of each of the FBARs 100A-100C (as well as the other FBARs discussed herein) generally includes portions at and/or near an outer perimeter of bottom and top electrodes 120 and 140. The outer region may extend toward (but not include) a central region by various amounts, depending on application specific design requirements of various implementations, for example. The central region generally includes a portion of each of the bottom and top electrodes 120 and 140 that incorporates the center of the active region of the FBAR 100A-100C. In FIGS. 1A-1C, the inner portions 122 and/or 142 of the bottom and top electrodes 120 and 140 incorporate the central region.


Illustratively, each of the bottom electrode 120 and the top electrode 140 may be formed of W and Mo, as mentioned above, and have a thickness (vertical direction in the depicted orientation) of approximately 1000 Å to approximately 20000 Å. In various embodiments, the bottom and top electrodes 120 and 140 may have the same or different thicknesses from one another. Because the integrated low velocity frames 121 and 141 are the same thicknesses as the bottom and top electrodes 120 and 140, respectively, these thicknesses may be varied only by varying the total thicknesses of the bottom and top electrodes 120 and 140. Each of the integrated low velocity frames 121 and 141 may have a width (horizontal direction in the depicted orientation) of approximately 0.1 μm to approximately 10 μm, for example. In various embodiments, the integrated low velocity frames 121 and 141 may have the same or different widths from one another. The piezoelectric layer 130 may be formed of AlN and have a thickness of approximately 5000 Å to approximately 25000 Å, for example.


The respective dimensions of the bottom and top electrodes 120 and 140, and the integrated low velocity frames 121 and 141 (as well as the dimensions of the piezoelectric layer 130), may be varied to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations. Accordingly, when designed properly for maximum piston mode and eigenmode suppression at the edges of bottom and top electrodes 120 and 140, the integrated low velocity frames 121 and 141 improve the energy confinement inside the FBARs 100A-100C, which manifests itself by increased parallel resistance Rp and quality factor Q.


As should be appreciated by one of ordinary skill in the art, the structure provided by the bottom electrode 120, the piezoelectric layer 130 and the top electrode 140 is a BAW resonator. When the BAW resonator is disposed over a cavity (e.g., the cavity 115), it is a so-called FBAR, and when the BAW resonator is disposed over an acoustic mirror (e.g., Bragg mirror), it is a so-called solidly mounted resonator (SMR). The teachings herein apply to both FBARs and SMRs, which may be used in a variety of applications, including filters (e.g., ladder filters comprising a plurality of BAW resonators). However, the effects related to minimization of piston mode scattering at the edge of the top electrode 140 with the integrated low velocity frames 121 and/or 141 on parallel resistance Rp and on series resistance Rs of the FBARs 100A-100C (as well as the other FBARs discussed herein) are generally the same as the effects on parallel resistance Rp and series resistance Rs of an SMR supporting a similar set of modes, as would be appreciated by one of ordinary skill in the art.


Referring to FIG. 1D, an SMR 100D is depicted. The SMR 100D is substantively the same, for example, as the FBAR 100A, except for the inclusion of Bragg mirror 125 (or similar acoustic reflector) in place of cavity 115.



FIG. 2 is a cross-sectional diagram illustrating an acoustic resonator, including an encapsulated temperature compositing layer, according to a representative embodiment.


Referring to FIG. 2, FBAR 200 includes a resonator stack comprising multiple layers stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. The FBAR 200 further includes piezoelectric layer 130 sandwiched between first or bottom electrode 220 and second or top electrode (not shown in FIG. 2), which may be a frame composite electrode containing an integrated low velocity frame (e.g., such as integrated low velocity frame 141). In the depicted configuration, the bottom electrode 220 includes outside electrode layer 226, encapsulated temperature compensating layer 227 and interposer layer 228 stacked in this order on the substrate 110. The substrate 110, the cavity 115, the piezoelectric layer 130 and the planarization layer 129 are substantially the same as discussed above with reference to FIGS. 1A-1C, and therefore the descriptions will not be repeated.


In the depicted embodiment, the outside electrode layer 226 and the interposer layer 228 are formed of the same electrically conductive materials, such as various metals compatible with semiconductor processes, including W, Mo, Al, Pt, Ru, Nb, or Hf, for example. In alternative embodiments, the outside electrode layer 226 and the interposer layer 228 may be formed of different conductive materials, where the outside electrode layer 226 is formed of a material having relatively lower conductivity and relatively higher acoustic impedance, and the interposer layer 228 is formed of a material having relatively higher conductivity and relatively lower acoustic impedance. For example, the outside electrode layer 226 may be formed of W and the interposer layer 228 may be formed of Mo, although other materials and/or combinations of materials may be used without departing from the scope of the present teachings.


The temperature compensating layer 227 is formed between the outside electrode and interposer layers 226 and 228, and is therefore separated or isolated from the piezoelectric layer 130 by the interposer layer 228 and is otherwise sealed in by the connection between the outside electrode and interposer layers 226 and 228. Accordingly, the temperature compensating layer 227 is effectively encapsulated within the bottom electrode 220. The temperature compensating layer 227 may be formed of various materials having positive temperature coefficients, as discussed above with regard to temperature compensating layer 127, for example.


The interposer layer 228, which is formed on the top and side surfaces of the temperature compensating layer 227, contacts the top surface of the outside electrode layer 226, as indicated for example by reference number 229. Therefore, a DC electrical connection is formed between the outside electrode layer 226 and the interposer layer 228. By DC electrically connecting the outside electrode layer 226 and the interposer layer 228, the interposer layer 228 effectively “shorts” out a capacitive component of the temperature compensating layer 227, thus increasing a coupling coefficient kt2 of the FBAR 2X00. In addition, the interposer layer 228 provides a barrier that prevents oxygen in the temperature compensating layer 227 from diffusing into the piezoelectric layer 130, preventing contamination of the piezoelectric layer 130. Also, in the depicted embodiment, the temperature compensating layer 227 has tapered edges 227a, which enhance the DC electrical connection between the interposer layer 228 and the outside electrode layer 226. In addition, the tapered edges 227a enhance the mechanical connection between the interposer layer 228 and the outside electrode layer 226, which improves the sealing quality, e.g., for preventing oxygen in the temperature compensating layer 227 from diffusing into the piezoelectric layer 130. In alternative embodiments, one or both of the edges of the temperature compensating layer 227 are not tapered, but may be substantially perpendicular to the top and bottom surfaces of the temperature compensating layer 227, for example, without departing from the scope of the present teachings.


Of course, the relative thicknesses of the outside electrode and interposer layers 226 and 228 and/or the temperature compensating layer 227 may be varied, without departing from the scope of the present teachings. For example, the thickness of the interposer layer 228 may be increased, thus “sinking” the temperature compensating layer 227 deeper into the composite bottom electrode 220 (and further away from the active piezoelectric layer 130). Generally, the thickness and location of the temperature compensating layer 227, as well as the thicknesses of the outside electrode layer 226 and the interposer layer 228, within the bottom electrode 220 should be optimized in order to maximize the coupling coefficient for an allowable linear temperature coefficient. This optimization may be accomplished, for example, by modeling an equivalent circuit of the resonator stack using a Mason model, as would be apparent to one of ordinary skill in the art. Although there is some degradation in the offsetting effects of the temperature coefficient by sinking the temperature compensating layer 227, the coupling coefficient of the FBAR 200 may be improved. An algorithm may be developed to optimize the depth of the temperature compensating layer 227 in the bottom electrode 220 in light of the trade-off between the temperature coefficient and the coupling coefficient, for example, using a multivariate optimization technique, such as a Simplex method, as would be apparent to one of ordinary skill in the art. In addition, the depth of the temperature compensating layer 227 may be limited by various constraints, such as minimum necessary coupling coefficient and maximum allowable temperature coefficient. Likewise, the thickness of the temperature compensating layer 227 may be adjusted to provide the optimal coupling coefficient and a minimum overall temperature coefficient of the FBAR 200. Such optimization and corresponding considerations regarding temperature compensating layers are also applicable to the other FBARs discussed herein.


The bottom electrode 220 may be formed by applying a layer of conductive material (e.g., Mo) to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a sputtering, evaporation or CVD technique, for example, to the desired thickness to form the outside electrode layer 226. Then, a layer of temperature compensation material (e.g., Si02) is formed on a top surface of the outside electrode layer 226. In an embodiment, the temperature compensating layer 227 is formed of BSG, for example, although different materials may be used, as discussed above with reference to the temperature compensating layers of FIGS. 1A-1C, without departing from the scope of the present teachings. The temperature compensation material may be applied using sputtering, evaporation or CVD techniques, for example, although other application methods may be incorporated.


The temperature compensation material is etched to a desired size to form the temperature compensating layer 227 and the edges are tapered to form the tapered edges 227A. For example, a photoresist layer (not shown) may be applied to the top surface of the temperature compensating layer 227 and patterned to form a mask or photoresist pattern, using any phostoresist patterning technique compatible with semiconductor processes, as would be apparent to one of ordinary skill in the art. The photoresist pattern may be formed by machining or by chemically etching the photoresist layer using photolithography, although various alternative techniques may be incorporated. Following etching of the temperature compensating layer 227, the photoresist pattern is removed, for example, by chemically releasing or etching using a wet etch process including HF etch solution, although the photoresist pattern may be removed by various other techniques, without departing from the scope of the present teachings.


In various embodiments, to obtain the tapered edges 227a, oxygen may be leaked into the etcher used to etch the temperature compensating layer 227. The oxide (and/or temperature chuck) causes the photoresist to erode more quickly at the edges of the patterned photo resist and to pull back slightly. This “thinning” of the resist forms a wedge shape profile that is then imprinted into the oxide underneath as the photoresist goes away. Generally, the wedge is created by adjusting the etch rate of resist relative to the etched material, as would be apparent to one of ordinary skill in the art. Meanwhile, further from the edges of the temperature compensating layer 227, there is sufficient photoresist coverage throughout the etch that the underlying oxide material is not touched. Of course, other methods of obtaining tapered edges 227a may be incorporated without departing from the scope of the present teachings.


The interposer layer 228 is applied to top surfaces of the temperature compensating layer 227 and the outside electrode layer 226. The interposer layer 228 is formed of Mo, for example, although different materials may be used, as discussed above, without departing from the scope of the present teachings. The interposer layer 228 may be applied using sputtering, evaporation or CVD techniques, for example, although other application methods may be incorporated. The piezoelectric layer 130 is applied to a top surface of the interposer layer 228, which is also the top surface of the bottom electrode 220.


In an alternative embodiment, an interim seed layer (not shown) may be formed on the top surface of the temperature compensation material before etching. The interim seed layer may be formed of the same piezoelectric material as the piezoelectric layer 130, such as AlN, for example. The interim seed layer may be formed to a thickness of about 300 Å, for example, and reduces or minimizes oxide diffusion from the temperature compensating layer 227 into the piezoelectric layer 130. Outer portions of the interim seed layer are removed by etching, along with the etched portions of the temperature compensating layer 227, to expose portions of the top surface of the outside electrode layer 226, so that the outside electrode layer 226 is able to make an electrical connection with the interposer layer 228. In other words, after etching, the interim seed layer covers only the top surface of the temperature compensating layer 227, so that it is positioned between the temperature compensating layer 227 and the interposer layer 228.


As mentioned above, FBAR 200 is depicted as a variation of FBAR 100A. However, it is understood that an encapsulated temperature compensating layer, such as illustrative temperature compensating layer 227, may be included as the temperature compensating layer in any top and/or bottom tempco or hybrid composite electrode discussed herein.


In various embodiments, a BAW resonator, such as an FBAR, for example, includes one or more frame composite electrodes having multiple electrode layers formed of different materials. For example, FIGS. 3A to 7 are cross-sectional diagrams illustrating acoustic resonators, including at least one frame composite electrode or hybrid composite electrode having a multilayer portion comprising at least two electrode layers of different conductive materials stacked in the vertical direction (in the illustrative orientations depicted in FIGS. 3A to 7). For purposes of discussion, the electrode layer closer to the piezoelectric layer may be referred to as an inside electrode layer, and the electrode layer adjacent the inside electrode layer may be referred to as an outside electrode layer, where at least a portion of the outside electrode layer is separated from the piezoelectric layer by at least the inside electrode layer (and possibly an interposer layer and/or a temperature compensation layer, as discussed below). The integrated frames may be implemented by the conductive material having the higher sound velocity than the corresponding inner portion (integrated high velocity frame) or lower sound velocity than the corresponding inner portion (integrated low velocity frame).



FIGS. 3A-3D are cross-sectional diagrams illustrating acoustic resonators, according to representative embodiments. Each of the acoustic resonators shown in FIGS. 3A-3D includes integrated low velocity frames in both electrodes and a temperature compensating layer in at least one of the electrodes. In alternative embodiments, a temperature compensating layer may be included in the piezoelectric layer (e.g., as shown by piezoelectric layer 130a) in addition to or instead of the top and/or bottom electrodes. It is understood that the same general configurations may be included in acoustic resonators having an integrated high velocity frame, in addition to or in place of an integrated low velocity frame, in at least one of the electrodes, respectively, without departing from the scope of the present teachings.


Referring to FIG. 3A, FBAR 300A includes a resonator stack comprising a first or bottom electrode 320a, a piezoelectric layer 130, and a second or top electrode 340 stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, the FBAR 300A may include a known acoustic mirror, such as a Bragg mirror (not shown), in place of the cavity 115, as mentioned above. In the depicted embodiment, the bottom electrode 320a is a hybrid composite electrode that includes both integrated lateral features and temperature compensation features, while the top electrode 340 is a frame composite electrode that includes only integrated lateral features.


More particularly, FBAR 300A includes integrated low velocity frame 321 surrounding inner portion 322 in the bottom electrode 320a, and integrated low velocity frame 341 surrounding inner portion 342 in top electrode 340. The integrated low velocity frames 321 and 341 are formed of the first material and the inner portions 322 and 342 are formed of the second material, where the second material has higher sound velocity than the first material, as discussed above. For example, the integrated low velocity frames 321 and 341 may be formed of W and the inner portions 322 and 342 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings.


In the depicted embodiment, the hybrid composite bottom electrode 320a has multiple electrode layers, including outside electrode layer 326, inside electrode layer 328, temperature compensating layer 327 and interposer layer 329 stacked in this order on the substrate 110. The interposer layer 329 separates the temperature compensating layer 327 from the piezoelectric layer 130. Although the presence of the interposer layer 329 is not necessary, it facilitates proper growth of the piezoelectric layer 130 and otherwise provides protection of the temperature compensating layer 327 during the fabrication process. Also, for purposes of illustration, the temperature compensating layer 327 is shown as an encapsulated temperature compensating layer, e.g., similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 327 may not be encapsulated, or only partially encapsulated (i.e., having one or more end portions exposed or otherwise not surrounded by any portion of the bottom electrode 320a), within the bottom electrode 320a, without departing from the scope of the present teachings.


The outside electrode layer 326 is formed of the first material (e.g., W) and the second material (e.g., Mo), and the inside electrode layer 328 is formed of the first material. The interposer layer 329 is formed of the second material, as well. The temperature compensating layer 327 may be formed of various materials having positive temperature coefficients, such as BSG, SiO2, Cr or TeO(x), for example.


The outside electrode layer 326 is formed first on the substrate 110, including the integrated low velocity frame 321 and the inner portion 322. More particularly, the integrated low velocity frame 321 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the low velocity frame 321. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115, and the integrated low velocity frame 321. The second material is deposited over a top surface of the substrate 110, the cavity 115, and the low velocity frame 321 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the low velocity frame 321, following application of a photoresist pattern (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired frame pattern of the outside electrode layer 326. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 326.


A layer of the first material is applied to the etched layer of the second material using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 328 on the outside electrode layer 326. The temperature compensating layer 327 is formed on all or a portion of the inside electrode layer 328, and the interposer layer 321) is formed on the temperature compensating layer 327 and exposed portions of the inside electrode layer 328 to provide the bottom electrode 320a, as discussed above with reference to FIG. 1A and/or FIG. 2, for example. The piezoelectric layer 130 is then formed on the interposer layer 329. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


The integrated low velocity frame 321 effectively extends from the inside electrode layer 328 vertically through the outside electrode layer 326 in a direction away from the piezoelectric layer 130, such that the inner portion 322 is at least partially surrounded by the integrated low velocity frame 321. The integrated low velocity frame 321 is therefore located at an outer region of the bottom electrode 320a and the inner portion 322 is located at a center region of the bottom electrode 320a.


Similarly, the top electrode 340, which is a frame composite electrode (with no temperature compensating layer), has multiple electrode layers, including inside electrode layer 346 formed adjacent to the piezoelectric layer 130 and outside electrode layer 348 formed adjacent the inside electrode layer 346. Because the top electrode 340 is formed above the piezoelectric layer 130 in the orientation depicted in FIG. 3A, the inside electrode layer 346 is formed first on the piezoelectric layer 130, and the outside electrode layer 348 is formed on the inside electrode layer 346. As discussed above, the inside electrode layer 346 is formed of the first material and the outside electrode layer 348 is formed of the first and second materials. For example, the inside electrode layer 346 may be formed by applying a layer of the first material to a top surface of the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. A thin metal-stop etch layer (300 Å layer of AlN, for example) (not shown) and a layer of the first material is applied to the etched layer of the first material using a sputtering, evaporation or CVD technique, for example. The formation of the outside electrode layer 348, including integrated low velocity frame 341 and inner portion 342, may be performed in a similar manner as formation of the integrated low velocity frame 321 described above, to form the top electrode 340. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


As a result, the integrated low velocity frame 341 effectively extends vertically from the inside electrode layer 346 through the outside electrode layer 348 in a direction away from the piezoelectric layer 130. The integrated low velocity frame 341 at least partially surrounds an inner portion 342 of the outside electrode layer 348, such that the inner portion 342 is at least partially surrounded by the integrated low velocity frame 341. The integrated low velocity frame 341 is therefore located at an outer region of the top electrode 340 and the inner portion 342 is located at a center region of the top electrode 340.


The operating characteristics of the integrated low velocity frames 321 and 341 may be controlled by adjusting one or more of the widths of the integrated low velocity frames 321 and 341, the thicknesses of the inside electrode layers 328, 346 and the outside electrode layers 326, 348 (which affects the thicknesses of the integrated low velocity frames 321 and 341), and the types of material used to form the inside electrode layers 328, 346 and the outside electrode layers 326, 348. For example, each of the bottom electrode 320a and the top electrode 340 may have a total thickness of approximately 1000 Å to approximately 20000 Å, with each of the inside electrode layers 328, 346 and outside electrode layer 326, 348 being approximately 10 percent to 90 percent fraction of the total thickness of the corresponding bottom or top electrode 320a, 340 at the center region. In various embodiments, the bottom and top electrodes 320a and 340 and corresponding inside electrode layers 328, 346 and outside electrode layers 326, 348 may have the same or different thicknesses from one another. Each of the integrated low velocity frames 321 and 341 may have a width of approximately 0.1 μm to approximately 10 μm, for example. The thicknesses of the integrated low velocity frames 321 and 341 are determined by the relative thicknesses of the outside electrode layers 326 and 348, respectively. In various embodiments, the integrated low velocity frames 321 and 341 may have the same or different widths and thicknesses from one another. In other embodiments the integrated low velocity frames 321 and 341 may be unaligned with respect to each other, as well as may have different widths. The respective dimensions of the bottom and top electrodes 320a and 340, the inside electrode layers 328 and 346, the outside electrode layers 326 and 348, and the integrated low velocity frames 321 and 341, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


The operating characteristics of the temperature compensating layer 327 may likewise be controlled by adjusting one or more of the widths of the temperature compensating layer 327 and the interposer layer 329, and the types of material used to form the temperature compensating layer 327 and the interposer layer 329. For example, the temperature compensating layer 327 may have a thickness of approximately 100 Å to approximately 10000 Å, and the interposer layer 329 may have a thickness of approximately 100 Å to approximately 10000 Å. Generally, temperature compensation characteristics increase as the thickness of the temperature compensating layer 327 increases and/or the thickness of the interposer layer 329 decreases. The respective dimensions of the temperature compensating layer 327 and the interposer layer 329 may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.



FIG. 3B depicts FBAR 300B, according to a representative embodiment, which is similar to FBAR 300A, except for the location of the temperature compensating layer 327 within the bottom electrode 320b. Referring to FIG. 3B, the bottom electrode 320b is a hybrid composite electrode that includes both integrated lateral features (e.g., integrated low velocity frame 321) and temperature compensation features (e.g., temperature compensating layer 327), while the top electrode 340 is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 341), which is the same as discussed above with regard to FBAR 300A.


In the depicted embodiment, the hybrid composite bottom electrode 320b has multiple layers, including outside electrode layer 326, and temperature compensating layer 327 and inside electrode layer 328 stacked in this order on the substrate 110. There is no interposer layer since the inside electrode layer 328 separates the temperature compensating layer 327 from the piezoelectric layer 130. There may be a seed layer (not shown) formed on a top surface of the inside electrode layer 328 to facilitate growth of the piezoelectric layer 130. For purposes of illustration, the temperature compensating layer 327 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 327 may not be encapsulated, or only partially encapsulated, within the bottom electrode 320b, without departing from the scope of the present teachings.


The integrated low velocity frame 321 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the low velocity frame 321. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115, and the integrated low velocity frame 321. The second material is deposited on a top surface of the substrate 110, the cavity 115, and the low velocity frame 321 and over the metal-etch stop layer using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the substrate 110 and from the low velocity frame 321, following application of a photoresist pattern (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired frame pattern of the outside electrode layer 326. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 326. The temperature compensating layer 327 is formed on the outside electrode layer 326 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. A layer of the first material is then applied to the temperature compensating layer 327 and exposed portions of the outside electrode layer 326 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 328. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.



FIG. 3C depicts FBAR 300C, according to a representative embodiment, which is similar to FBAR 300A, except that the top electrode 340a is a hybrid composite electrode and the bottom electrode is a frame composite electrode. Referring to FIG. 3C, the top electrode 340a includes both integrated lateral features (e.g., integrated low velocity frame 341) and temperature compensation features (e.g., temperature compensating layer 347), while the bottom electrode 320 is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 321).


With regard to the bottom electrode 320, the outside electrode layer 326, including the integrated low velocity frame 321, may be formed of the first and second materials on a top surface of the substrate 110 and the cavity 115 as discussed above with reference to FIG. 3A. A layer of the first material is then applied to the outside electrode layer 326 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 328. The piezoelectric layer 130 is disposed over the inside electrode layer 328. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


The top electrode 340a is formed using substantially the same process for forming the bottom electrode 320 in FBAR 300A, discussed above, in reverse order. That is, a layer of the first material is applied to the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the interposer layer 349. The temperature compensating layer 347 is formed on the interposer layer 349 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. As mentioned above, in alternative embodiments, the temperature compensating layer 347 may be formed directly on the top surface of the piezoelectric layer 130 since the interposer layer 349 is not needed to assist growth of the piezoelectric layer 130, although it does provide protection of the temperature compensating layer 347 and otherwise influences the temperature compensation effects of the temperature compensating layer 347.


A layer of the first material is applied to the temperature compensating layer 347 and exposed portions of the interposer layer 349 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 346. The outside electrode layer 348, including the integrated low velocity frame 341, may be formed by applying a layer of the first material to a top surface of the inside electrode layer 346 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the low velocity frame 341. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the inside electrode layer 346 and the integrated low velocity frame 341. The second material is deposited over the inside electrode layer 346 and the low velocity frame 341 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the low velocity frame 341, following application of a photoresist pattern (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired frame pattern of the outside electrode layer 348. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 348. A passivation layer (not shown) may be formed on the outside electrode layer 348.


The integrated low velocity frame 341 effectively extends from the inside electrode layer 346 vertically through the outside electrode layer 348 in a direction away from the piezoelectric layer 130, such that the inner portion 342 of the outside electrode layer 348 is at least partially surrounded by the integrated low velocity frame 341. The integrated low velocity frame 341 is therefore located at an outer region of the top electrode 340a and the inner portion 342 is located at a center region of the top electrode 340a.



FIG. 3D depicts FBAR 300D, according to a representative embodiment, which is similar to FBAR 300C, except for the location of the temperature compensating layer 347 within the top electrode 340b. Referring to FIG. 3D, the top electrode 340b is a hybrid composite electrode that includes both integrated lateral features (e.g., integrated low velocity frame 341) and temperature compensation features (e.g., temperature compensating layer 347), while the bottom electrode 320) is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 321), which is the same as discussed above with regard to FBAR 300C.


In the depicted embodiment, the hybrid composite top electrode 340b has multiple layers, including in electrode layer 346, temperature compensating layer 347 and outside electrode layer 348 stacked in this order on the piezoelectric layer 130. There is no interposer layer since the inside electrode layer 346 separates the temperature compensating layer 347 from the piezoelectric layer 130. For purposes of illustration, the temperature compensating layer 347 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 347 may not be encapsulated, or only partially encapsulated, within the bottom electrode 320, without departing from the scope of the present teachings.


The top electrode 340b is formed by applying a layer of the first material to the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 346. The temperature compensating layer 347 is formed on the inside electrode layer 346 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. The outside electrode layer 348, including the integrated low velocity frame 341, is then formed by applying a layer of the first material to temperature compensating layer 347 and exposed portions of the inside electrode layer 346 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the low velocity frame 341. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the temperature compensating layer 347, the inside electrode layer 346 and the integrated low velocity frame 341. The second material is deposited on a top surface of the inside electrode layer 346 the low velocity frame 341, and the metal-etch stop layer using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the low velocity frame 341, following application of a photoresist patter (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired frame pattern of the outside electrode layer 348. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 348. A passivation layer (not shown) may be formed on the outside electrode layer 348.


As mentioned above, in alternative embodiments, a temperature compensating layer may be located within the piezoelectric layer, as discussed above with reference to piezoelectric layer 130b in FIG. 1C. In such embodiments, the bottom and top electrodes may be frame composite electrodes, such as bottom electrode 320 and top electrode 340. Or, one or both of the bottom and top electrodes may be hybrid composite electrodes, such as bottom electrodes 320a, 320b and top electrodes 340a, 304b.


Referring to FIGS. 3A-3D, in alternative embodiments, high velocity frames may be included in place of one or both of the integrated low velocity frames 321 and 341. Also, in alternative embodiments, each of the FBARs 300A-300D may include only one frame or hybrid composite electrode, having an integrated low (or high) velocity frame 321 or 341, without departing from the scope of the present teachings. In this case, the other electrode may be formed of a single material or multiple materials (without lateral and/or temperature compensation features, or with a different type of lateral feature).



FIGS. 4A-4B are cross-sectional diagrams illustrating acoustic resonators, according to representative embodiments. Each of the acoustic resonators shown in FIGS. 4A-4B includes integrated low velocity frames in both electrodes and a temperature compensating layer in at least one of the electrodes, In alternative embodiments, a temperature compensating layer may be included in the piezoelectric layer (e.g., as shown by piezoelectric layer 130a) in addition to or instead of the top and/or bottom electrodes. However, it is understood that the same general configurations may be included in acoustic resonators having an integrated high velocity frame, in addition to or in place of an integrated low velocity frame, in at least one of the electrodes, respectively, without departing from the scope of the present teachings.


Referring to FIG. 4A, FBAR 400A includes a resonator stack comprising a first or bottom electrode 420a, a piezoelectric layer 130, and a second or top electrode 440 stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, the FBAR 400A may include a known acoustic mirror, such as a Bragg mirror (not shown), in place of the cavity 115, as mentioned above. In the depicted embodiment, the bottom electrode 420a is a hybrid composite electrode in that it includes both integrated lateral features and temperature compensation features, while the top electrode 440 is a frame composite electrode in that includes only integrated lateral features.


More particularly, FBAR 400A includes integrated low velocity frame 421 surrounding inner portion 422 in the bottom electrode 420a, and integrated low velocity frame 441 surrounding inner portion 442 in top electrode 440. The integrated low velocity frames 421 and 441 are formed of the first material and the inner portions 422 and 442 are formed of the second material, where the second material has higher sound velocity than the first material, as discussed above. For example, the integrated low velocity frames 421 and 441 may be formed of W and the inner portions 422 and 442 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings.


In the depicted embodiment, the hybrid composite bottom electrode 420a has multiple electrode layers, including outside electrode layer 426, temperature compensating layer 427, and inside electrode layer 428 stacked in this order on the substrate 110. The inside electrode layer 428 separates the temperature compensating layer 427 from the piezoelectric layer 130, so no interposer layer is needed. A seed layer (not shown) may be included on the top surface of the inside electrode layer 428 to facilitate proper growth of the piezoelectric layer 130. For purposes of illustration, the temperature compensating layer 427 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 427 may not be encapsulated, or only partially encapsulated (i.e., having one or more end portions exposed or otherwise not surrounded by any portion of the bottom electrode 420a), within the bottom electrode 420a, without departing from the scope of the present teachings. The outside electrode layer 426 is formed of the first material (e.g., W), and the inside electrode layer 428 is formed of the first material (e.g., W) and the second material (e.g., Mo). The temperature compensating layer 427 may be formed of various materials having positive temperature coefficients, such as BSG, SiO2, Cr or TeO(x), for example.


The bottom electrode 420a is formed on the substrate 110 in substantially the same manner that the top electrode 340b is formed on the piezoelectric layer 130, as described with reference to FIG. 3D. Similarly, the top electrode 440 is formed on the piezoelectric layer 130 in substantially the same manner that the bottom electrode 320 is formed on the substrate 110, as described with reference to FIG. 3D. Accordingly, the details of these processes will not be repeated here.


The integrated low velocity frame 421 effectively extends from the outside electrode layer 426 vertically through the inside electrode layer 428 in a direction toward the piezoelectric layer 130, such that the inner portion 422 of the inside electrode layer 428 is at least partially surrounded by the integrated low velocity frame 421. The integrated low velocity frame 421 is therefore located at an outer region of the bottom electrode 420a and the inner portion 422 is located at a center region of the bottom electrode 420a. Similarly, the integrated low velocity frame 441 of the top electrode 440 effectively extends from the outside electrode layer 448 vertically through the inside electrode layer 446 in a direction toward the piezoelectric layer 130, such that inner portion 442 of the inside electrode layer 446 is at least partially surrounded by the integrated low velocity frame 441. The integrated low velocity frame 441 is therefore located at an outer region of the top electrode 440 and the inner portion 442 is located at a center region of the top electrode 440.



FIG. 4B depicts FBAR 400B, according to a representative embodiment, which is similar to FBAR 400A, except that the top electrode 440a is a hybrid composite electrode and the bottom electrode 420 is a frame composite electrode. Referring to FIG. 4B, the top electrode 440a includes both integrated lateral features (e.g., integrated low velocity frame 441) and temperature compensation features (e.g., temperature compensating layer 447), while the bottom electrode 420 is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 421).


More particularly, FBAR 400A includes integrated low velocity frame 421 surrounding inner portion 422 in the bottom electrode 420, and integrated low velocity frame 441 surrounding inner portion 442 in top electrode 440a. The integrated low velocity frames 421 and 441 are formed of the first material and the inner portions 422 and 442 are formed of the second material, where the second material has higher sound velocity than the first material, as discussed above. For example, the integrated low velocity frames 421 and 441 may be formed of W and the inner portions 422 and 442 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings.


In the depicted embodiment, the hybrid composite top electrode 440a has multiple electrode layers, including inside electrode layer 446, temperature compensating layer 447, and outside electrode layer 448 stacked in this order on the piezoelectric layer 130. The inside electrode layer 446 separates the temperature compensating layer 447 from the piezoelectric layer 130, so no interposer layer is needed. For purposes of illustration, the temperature compensating layer 447 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 427 may not be encapsulated, or only partially encapsulated, within the bottom electrode 420, without departing from the scope of the present teachings. The inside electrode layer 446 is formed of the first material (e.g., W) and the second material. (e.g., Mo), and the outside electrode layer 448 is formed of the first material. The temperature compensating layer 427 may be formed of various materials having positive temperature coefficients, such as BSG, SiO2, Cr or TeO(x), for example.


The top electrode 440a is formed on the piezoelectric layer 130 in substantially the same manner that the bottom electrode 320b is formed on the substrate 110, as described with reference to FIG. 3B. The bottom electrode 420 is formed on the substrate 110 in substantially the same manner that the top electrode 340 is formed on the piezoelectric layer 130, also as described with reference to FIG. 3B. Accordingly, the details of these processes will not be repeated here.


As mentioned above, in alternative embodiments, a temperature compensating layer may be located within the piezoelectric layer, as discussed above with reference to piezoelectric layer 130b in FIG. 1C. In such embodiments, the bottom and top electrodes may be frame composite electrodes, such as bottom electrode 420 and top electrode 440. Or, one or both of the bottom and top electrodes may be hybrid composite electrodes, such as bottom electrode 420a and top electrode 340a.


Referring to FIGS. 4A-4B, in alternative configurations, high velocity frames may be included in place of one or both of the integrated low velocity frames 421 and 441. Also, in alternative configurations, each of the FBARs 400A-400B may include only one composite electrode, without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low (or high) velocity frame, the other electrode may be formed of a single material or multiple materials (without lateral and/or temperature compensation features, or with a different type of lateral feature).



FIGS. 5A-5D are cross-sectional diagrams illustrating acoustic resonators, according to representative embodiments. Each of the acoustic resonators shown in FIGS. 5A-5D includes integrated low velocity frames in both electrodes and a temperature compensating layer in at least one of the electrodes. In alternative embodiments, a temperature compensating layer may be included in the piezoelectric layer (e.g., as shown by piezoelectric layer 130a) in addition to or instead of the top and/or bottom electrodes. It is understood that the same general configurations may be included in acoustic resonators having an integrated high velocity frame, in addition to or in place of an integrated low velocity frame, in at least one of the electrodes, respectively, without departing from the scope of the present teachings.


Referring to FIG. 5A, FBAR 500A includes a resonator stack comprising a first or bottom electrode 520a, a piezoelectric layer 130, and a second or top electrode 540 stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, the FBAR 500A may include a known acoustic mirror, such as a Bragg mirror (not shown), in place of the cavity 115, as mentioned above. In the depicted embodiment, the bottom electrode 520a is a hybrid composite electrode in that it includes both integrated lateral features and temperature compensation features, while the top electrode 540 is a frame composite electrode in that includes only integrated lateral features.


More particularly, FBAR 500A includes integrated low velocity frame 521 surrounding inner portion 522 in the bottom electrode 520a, and integrated low velocity frame 541 surrounding inner portion 542 in top electrode 540. The integrated low velocity frames 521 and 541 are formed of the first material and the inner portions 522 and 542 are formed of the second material, where the second material has higher sound velocity than the first material, as discussed above. For example, the integrated low velocity frames 521 and 541 may be formed of W and the inner portions 522 and 542 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings.


In the depicted embodiment, the hybrid composite bottom electrode 520a has multiple electrode layers, including outside electrode layer 526, inside electrode layer 528, temperature compensating layer 527 and interposer layer 529 stacked in this order on the substrate 110. The interposer layer 529 separates the temperature compensating layer 527 from the piezoelectric layer 130. Although the presence of the interposer layer 529 is not necessary, it facilitates proper growth of the piezoelectric layer 130 and otherwise provides protection of the temperature compensating layer 527 during the fabrication process. Also, for purposes of illustration, the temperature compensating layer 527 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 527 may not be encapsulated, or only partially encapsulated, within the bottom electrode 520a, without departing from the scope of the present teachings.


Generally, the outside electrode layer 526 is formed first on the substrate 110, and the inside electrode layer 528 is then formed on the outside electrode layer 526. The temperature compensating layer 527 is formed on all or a portion of the inside electrode layer 528, and the interposer layer 529 is formed on the temperature compensating layer 527 and exposed portions of the inside electrode layer 528 to provide the bottom electrode 520a. The piezoelectric layer 130 is then formed on the interposer layer 529.


For example, with regard to the outside electrode layer 526, the integrated low velocity frame 521 may be formed by applying a layer of the first material to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the integrated low velocity frame 521. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the substrate 110, the cavity 115, and the integrated low velocity frame 521. The second material is then deposited on a top surface of the substrate 110, the cavity 115, and the low velocity frame 521 and over the metal-etch stop layer using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the substrate 110 and from the low velocity frame 521, following application of a photoresist pattern (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired outside electrode layer 526 pattern. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 526. A layer of the second material is applied to the outside electrode layer 526 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 528. The temperature compensating layer 527 and the interposer layer 529 are formed on the inside electrode layer 528 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


As a result, the integrated low velocity frame 521 is effectively embedded in the bottom electrode 520a. The inner portion 522 of the outside electrode layer 526 is at least partially surrounded by the integrated low velocity frame 521 of the outside electrode layer 526. The integrated low velocity frame 521 is therefore located at an outer region of the bottom electrode 520a and the inner portion 522 is located at a center region of the bottom electrode 520a. Notably, the integrated low velocity frame 521 is similar to the integrated low velocity frame 121 in FBAR 100B, discussed above with reference to FIG. 1B, except that the integrated low velocity frame 521 does not pass through the entire thickness of the bottom electrode 520a. Therefore, the thickness of the integrated low velocity frame 521 may be varied (by varying the thickness of the outside electrode layer 526) without varying the total thickness of the bottom electrode 520a.


Similarly, the frame composite top electrode 540 has multiple electrode layers, including an inside electrode layer 546 formed adjacent to the piezoelectric layer 130 and an outside electrode layer 548 formed adjacent the inside electrode layer 546. Because the top electrode 540 is formed above the piezoelectric layer 130 in the orientation depicted in FIG. 5, the inside electrode layer 546 is formed first on the piezoelectric layer 130, and the outside electrode layer 548 is formed on the inside electrode layer 546. For example, the inside electrode layer 546 may be formed by applying a layer of the second material to a top surface of the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) may be then deposited. The formation of the integrated low velocity frame 541 as part of the outside layer 548 may be then performed in a similar manner as formation of the integrated low velocity frame 521, discussed above. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


As a result, the integrated low velocity frame 541 is effectively embedded in the top electrode 540. The integrated low velocity frame 541 at least partially surrounds inner portion 542 of the outside electrode layer 548. The integrated low velocity frame 541 is therefore located at an outer region of the top electrode 540 and the inner portion 542 is located at a center region of the top electrode 540. As discussed above in regard to the integrated low velocity frame 521, the integrated low velocity frame 541 is similar to the integrated low velocity frame 141 in FBAR 100A, except that the integrated low velocity frame 541 does not pass through the entire thickness of the top electrode 540. Therefore, the thickness of the integrated low velocity frame 541 may be varied (by varying the thickness of the outside electrode layer 548) without varying the total thickness of the top electrode 540.



FIG. 5B depicts FBAR 500B, according to a representative embodiment, which is similar to FBAR 500A, except for the location of the temperature compensating layer 527 within the bottom electrode 520b. Referring to FIG. 5B, the bottom electrode 520b is a hybrid composite electrode that includes both integrated lateral features (e.g., integrated low velocity frame 521) and temperature compensation features (e.g., temperature compensating layer 527), while the top electrode 540 is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 541), which is the same as discussed above with regard to FBAR 500A.


In the depicted embodiment, the hybrid composite bottom electrode 520b has multiple layers, including outside electrode layer 526, temperature compensating layer 527 and inside electrode layer 528 stacked in this order on the substrate 110. There is no interposer layer since the inside electrode layer 528 separates the temperature compensating layer 527 from the piezoelectric layer 130. There may be a seed layer (not shown) formed on a top surface of the inside electrode layer 528 to facilitate growth of the piezoelectric layer 130. For purposes of illustration, the temperature compensating layer 527 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 527 may not be encapsulated, or only partially encapsulated, within the bottom electrode 520b, without departing from the scope of the present teachings.


The outside electrode layer 526, including the integrated low velocity frame 521, may be formed as described above with reference to the bottom electrode 520a. The temperature compensating layer 527 may be formed on the outside electrode layer 526 as discussed above with reference to the temperature compensating layer 127 and/or 227 as described above with reference FIG. 1A and/or FIG. 2, for example. A layer of the second material is applied to the temperature compensating layer and exposed portions of the outside electrode layer 526 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 528. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.



FIG. 5C depicts FBAR 500C, according to a representative embodiment, which is similar to FBAR 500A, except that the top electrode 540a is a hybrid composite electrode and the bottom electrode 520 is a frame composite electrode. Referring to FIG. 5C, the top electrode 540a includes both integrated lateral features (e.g., integrated low velocity frame 541) and temperature compensation features (e.g., temperature compensating layer 547), while the bottom electrode 520 is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 521).


With regard to the bottom electrode 520, the outside electrode layer 526, including the integrated low velocity frame 521, may be formed of the first and second materials on a top surface of the substrate 110 and the cavity 115 as discussed above with reference to FIG. 5A. A layer of the second material is then applied to the outside electrode layer 526 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 528. The piezoelectric layer 130 is disposed over the inside electrode layer 528. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


The top electrode 540a is formed using substantially the same process for forming the bottom electrode 520a in FBAR 500A, discussed above, in reverse order. That is, a layer of the second material is applied to the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the interposer layer 549. The temperature compensating layer 547 is formed on the interposer layer 529 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. As mentioned above, in alternative embodiments, the temperature compensating layer 547 may be formed directly on the top surface of the piezoelectric layer 130 since the interposer layer 549 is not needed to assist growth of the piezoelectric layer 130, although it does provide protection of the temperature compensating layer 547 and otherwise influences the temperature compensation effects of the temperature compensating layer 547. For purposes of illustration, the temperature compensating layer 547 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 547 may not be encapsulated, or only partially encapsulated, within the top electrode 540b, without departing from the scope of the present teachings.


A layer of the second material is applied to the temperature compensating layer 547 and exposed portions of the interposer layer 549 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 546. The outside electrode layer 548, including the integrated low velocity frame 541, may be formed by applying a layer of the first material to a top surface of the inside electrode layer 546 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the integrated low velocity frame 541. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the inside electrode layer 546 and the integrated low velocity frame 541. The second material is deposited over the inside electrode layer 546 and the integrated low velocity frame 541 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the integrated low velocity frame 541, following application of a photoresist pattern (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired frame pattern of the outside electrode layer 548. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar outside electrode layer 548. A passivation layer (not shown) may be formed on the outside electrode layer 548.



FIG. 5D depicts FBAR 500D, according to a representative embodiment, which is similar to FBAR 500C, except for the location of the temperature compensating layer 547 within the top electrode 540b. Referring to FIG. 5D, the top electrode 540b is a hybrid composite electrode that includes both integrated lateral features (e.g., integrated low velocity frame 541) and temperature compensation features (e.g., temperature compensating layer 547), while the bottom electrode 520 is a frame composite electrode that includes only integrated lateral features (e.g., integrated low velocity frame 521), which is the same as discussed above with regard to FBAR 500C.


In the depicted embodiment, the hybrid composite top electrode 540b has multiple layers, including inside electrode layer 546, temperature compensating layer 547 and outside electrode layer 548 stacked in this order on the piezoelectric layer 130. There is no interposer layer since the inside electrode layer 546 separates the temperature compensating layer 547 from the piezoelectric layer 130. For purposes of illustration, the temperature compensating layer 547 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 547 may not be encapsulated, or only partially encapsulated, within the top electrode 540b, without departing from the scope of the present teachings.


The top electrode 540b is formed by applying a layer of the second material to the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the inside electrode layer 546. The temperature compensating layer 547 is formed on the inside electrode layer 546 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. The outside electrode layer 548, including the integrated low velocity frame 541, is then formed on the temperature compensating layer 547 and exposed portions of the inside electrode layer 546 as described above with reference to the top electrode 540a. A passivation layer (not shown) may be formed on the outside electrode layer 348.


As mentioned above, in alternative embodiments, a temperature compensating layer may be located within the piezoelectric layer, as discussed above with reference to piezoelectric layer 130b in FIG. 1C. In such embodiments, the bottom and top electrodes may be frame composite electrodes, such as bottom electrode 520 and top electrode 540. Or, one or both of the bottom and top electrodes may be hybrid composite electrodes, such as bottom electrode 520a, 520b and top electrode 540a, 540b.


Referring to FIGS. 5A-5D, in alternative configurations, high velocity frames may be included in place of one or both of the integrated low velocity frames 521 and 541. Also, in alternative configurations, each of the FBARs 500A-500E may include only one composite electrode, without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low (or high) velocity frame, the other electrode may be formed of a single material or multiple materials (without lateral and/or temperature compensation features, or with a different type of lateral feature).



FIGS. 6A-6C are cross-sectional diagrams illustrating acoustic resonators, according to representative embodiments. Each of the acoustic resonators shown in FIGS. 6A-6C includes integrated low velocity frames in both electrodes and a temperature compensating layer in at least one of the electrodes. In alternative embodiments, a temperature compensating layer may be included in the piezoelectric layer (e.g., as shown by piezoelectric layer 130a) in addition to or instead of the top and/or bottom electrodes. It is understood that the same general configurations may be included in acoustic resonators having an integrated high velocity frame, in addition to or in place of an integrated low velocity frame, in at least one of the electrodes, respectively, without departing from the scope of the present teachings.


Referring to FIG. 6A, FBAR 600A includes a resonator stack comprising a first or bottom electrode 620a, a piezoelectric layer 130, and a second or top electrode 640 stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, the FBAR 600A may include a known acoustic mirror, such as a Bragg mirror (not shown), in place of the cavity 115, as mentioned above. In the depicted embodiment, the bottom electrode 620a is a hybrid composite electrode in that it includes both integrated lateral features and temperature compensation features, while the top electrode 640 is a frame composite electrode in that includes only integrated lateral features.


More particularly, the bottom electrode 620a of the FBAR 600A is substantially the same as the bottom electrode 520a of the FBAR 500A discussed above. Therefore, details regarding the configuration and formation of the bottom electrode 620a will not be repeated. The top electrode 640 of the FBAR 600A is similar to the top electrode 540 of the FBAR 500A, except that the integrated low velocity frame 641 surrounding inner portion 642 is in the inner electrode layer 646 (as opposed to the outer electrode layer). The integrated low velocity frame 641 is formed of the first material and the inner portion 642 is formed of the second material, where the second material has higher sound velocity than the first material, as discussed above. For example, the integrated low velocity frame 641 may be formed of W and the inner portion 642 may be formed of Mo, although other materials may be incorporated without departing from the scope of the present teachings. The top electrode 640 is formed on the piezoelectric layer 130 in substantially the same manner that the bottom electrode 520 is formed on the substrate 110, as described with reference to FIG. 5C. Accordingly, the details of these processes will not be repeated here.


Referring to FIG. 6B, FBAR 600B includes a resonator stack comprising a first or bottom electrode 620b, a piezoelectric layer 130, and a second or top electrode 640 stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, the FBAR 600A may include a known mirror, such as a Bragg mirror (not shown), in place of the cavity 115, as mentioned above. In the depicted embodiment, the bottom electrode 620a is a hybrid composite electrode in that it includes both integrated lateral features and temperature compensation features, while the top electrode 640 is a frame composite electrode in that includes only integrated lateral features.


The FBAR 600B is substantially the same as the FBAR 600A except for the location of the temperature compensating layer 627 within the bottom electrode 620b. More particularly, the bottom electrode 620b is substantially the same as the bottom electrode 520b in FBAR 500B discussed above. Therefore, details regarding the configuration and formation of the bottom electrode 520b will not be repeated.



FIG. 6C depicts FBAR 600C, according to a representative embodiment, which is similar to FBAR 600A, except that the top electrode 640a is a hybrid composite electrode and the bottom electrode 620 is a frame composite electrode. Referring to FIG. 6C, the top electrode 640a includes both integrated lateral features (e.g., integrated low velocity frame 641) and temperature compensation features (e.g., temperature compensating layer 647), while the bottom electrode 620 is a frame composite electrode that is substantially the same as the bottom electrode 520 of the FBAR 500C discussed above.


In the depicted embodiment, the hybrid composite top electrode 640a has multiple layers, including inside electrode layer 646, temperature compensating layer 647 and outside electrode layer 648 stacked in this order on the piezoelectric layer 130. For purposes of illustration, the temperature compensating layer 647 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 647 may not be encapsulated, or only partially encapsulated, within the top electrode 640a, without departing from the scope of the present teachings.


For example, with regard to the inside electrode layer 646, the integrated low velocity frame 641 may be formed by applying a layer of the first material to a top surface of the piezoelectric layer 130 using a sputtering, evaporation or CVD technique, for example, to the desired thickness. Then, dry etch is used to define a desired pattern of the first material forming the integrated low velocity frame 641. A thin metal-etch stop layer (300 Å of AlN, for example) (not shown) is deposited over the piezoelectric layer 130 and the integrated low velocity frame 641. The second material is then deposited on a top surface of the piezoelectric layer 130 and the low velocity frame 641 and over the metal-etch stop layer using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The second material is then etched from the piezoelectric layer 130 and from the low velocity frame 641, following application of a photoresist pattern (e.g., via photolithography), using SF6-based plasma etch, for example, forming the desired inside electrode layer 646 pattern. Finally, CMP using aluminum oxide abrasive, for example, is performed to obtain a desired substantially planar inside electrode layer 646. The temperature compensating layer 647 is formed on the outside electrode layer 646 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. A layer of the second material is applied to the temperature compensating layer 647 and exposed portions of the inside electrode layer 646 using a sputtering, evaporation or CVD technique, for example, resulting in formation of the outside electrode layer 648. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.


For purposes of illustration, the temperature compensating layer 647 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 647 may not be encapsulated, or only partially encapsulated, within the top electrode 640a, without departing from the scope of the present teachings.


As mentioned above, in alternative embodiments, a temperature compensating layer may be located within the piezoelectric layer, as discussed above with reference to piezoelectric layer 130b in FIG. 1C. In such embodiments, the bottom and top electrodes may be frame composite electrodes, such as bottom electrode 620 and top electrode 640. Or, one or both of the bottom and top electrodes may be hybrid composite electrodes, such as bottom electrode 620a, 620b and top electrode 640a.


Referring to FIGS. 6A-6C, in alternative configurations, high velocity frames may be included in place of one or both of the integrated low velocity frames 621 and 641. Also, in alternative configurations, each of the FBARs 600A-600C may include only one composite electrode, without departing from the scope of the present teachings. When only one of the electrodes includes an integrated low (or high) velocity frame, the other electrode may be formed of a single material or multiple materials (without lateral and/or temperature compensation features, or with a different type of lateral feature).


Further, in various embodiments in addition to those discussed above with reference to FIGS. 3A-6C, the temperature compensating layer may be included in a tempco composite electrode having no lateral features. An example of this configuration is depicted in each of FIG. 1A and FIG. 1B, which depicts one electrode being a tempco composite electrode (bottom electrode 120a, top electrode 140a) while the other electrode is a frame composite electrode (bottom electrode 120, top electrode 140).


For example, FIG. 7 is a cross-sectional diagram illustrating an acoustic resonator, according to a representative embodiment, which includes a frame composite electrode as a top electrode and a tempco composite electrode as a bottom electrode. More particularly, FBAR 700 includes a resonator stack comprising a first or bottom electrode 720, a piezoelectric layer 130, and a second or top electrode 740 stacked over substrate 110 having a cavity 115 for reflection of acoustic waves. In various alternative configurations, the FBAR 700 may include a known mirror, such as a Bragg mirror (not shown), in place of the cavity 115, as mentioned above. In the depicted embodiment, the bottom electrode 720 is a tempco composite electrode in that it includes temperature compensation features, while the top electrode 740 is a frame composite electrode in that includes integrated lateral features. The top electrode 740 is substantially the same as the top electrode 640 in FBARs 600A and 600B discussed above. Therefore, details regarding the configuration and formation of the bottom electrode 720 will not be repeated. It is understood that the top electrode 740 may have any frame composite electrode configuration, such as the configurations of top electrodes 140, 340, 440, and 540, without departing from the scope of the present teachings.


The bottom electrode 720 has multiple electrode layers, including outside electrode layer 726, temperature compensating layer 727 and interposer layer 729 stacked in this order on the substrate 110. The interposer layer 729 separates the temperature compensating layer 727 from the piezoelectric layer 130. Although the presence of the interposer layer 729 is not necessary, it facilitates proper growth of the piezoelectric layer 130 and otherwise provides protection of the temperature compensating layer 727 during the fabrication process. Also, for purposes of illustration, the temperature compensating layer 727 is shown as an encapsulated temperature compensating layer, similar to the encapsulated temperature compensating layer 227 discussed above with reference to FIG. 2. However, it is understood that in alternative configurations, the temperature compensating layer 727 may not be encapsulated, or only partially encapsulated, within the bottom electrode 720, without departing from the scope of the present teachings.


The outside electrode layer 726 may be formed by applying a layer of the second material (e.g., Mo) to a top surface of the substrate 110 and the cavity 115 (before releasing sacrificial material initially filling the cavity 115) using a sputtering, evaporation or CVD technique, for example, to the desired thickness. The temperature compensating layer 727, the interposer layer 729 are formed on the outside electrode layer 726, and the piezoelectric layer 130 is formed on the interposer layer 729 as discussed above with reference to FIG. 1A and/or FIG. 2, for example. Of course, various other techniques may be incorporated, as would be apparent to one of ordinary skill in the art.



FIG. 8A is a graph depicting Normalized Peak Strain Energy (NPSE) distributions of the first five modes (evanescent and propagating) for an FBAR having a top frame composite electrode and no tempco composite electrode, and FIG. 8B is a graph depicting NPSE distributions of the first five modes for an FBAR having a top frame composite electrode and a bottom tempco composite electrode (e.g., FBAR 700 shown in FIG. 7). In both FIGS. 8A and 8B, the top frame composite electrode is formed using Al as the first material and Mo as the second material, where Al has comparable sound velocity with Mo but approximately 30 percent lower acoustic impedance. As Mason model calculations indicate, such a structure forms a weak low-velocity frame as compared, for example, to the main resonator stack of FBAR 700. The reason for this behavior is that the low impedance Al allows for more energy to penetrate through both the Al layer forming the frame and the top Mo layer, making the Al layer and top Mo layer contributions to the total sound velocity of the resonator stack larger. Since sound velocity of the Al and Mo layers is approximately 40 percent lower than the sound velocity in AlN, the increased contribution to sound velocity from the Al layer and top Mo layer lowers the overall sound velocity in the resonator stack, effectively creating a low velocity frame. Notably, in a typical add-on frame configuration, where a layer of material is simply added in the frame region, the effective low velocity is obtained by increasing the round-trip path of a sound wave between the bottom and the top of the resonator stack. In contrast, in the integrated composite frame described above, the effective low velocity of the resonator stack is obtained by increasing contributions of from lower-velocity Mo and Al layers to the weighted sum of all velocities from materials comprising the resonator stack in the integrated composite frame region.


The five modes lowest order modes that are supported by the stack for frequencies above the cutoff frequency include evanescent thickness extensional mode (denoted as eTE1), propagating thickness extensional mode (denoted as pTE1), thickness sheer (denoted as TS1) mode, dilatational mode (denoted as L1) and flexural mode (denoted as F1). The five modes are calculated at respective series resonance frequencies Fs+30 MHz which corresponds to a frequency approximately halfway between series resonance frequency Fs and parallel resonance frequency Fp. Zac indicates acoustic impedance normalized to acoustic impedance of the Mo layer (the highest in the resonator stack), and is used in FIGS. 8A and 8B to mark positions in the resonator stack. For example, referring to the Zac trace in FIG. 8A, it is apparent that the bottom Mo electrode extends from 0 to approximately 0.4 μm, the AlN piezoelectric layer extends from approximately 0.4 μm to approximately 1.3 μm, the top Mo layer extends from approximately 1.3 μm to approximately 1.65 μm, and the AlN passivation layer extends from approximately 1.65 μm to approximately 1.85 μm. The difference between the resonator stacks shown in FIG. 8A and FIG. 8B is that in FIG. 8B, an approximately 1000 Å thick temperature compensating layer is added below the AlN piezoelectric layer and extends from about 0.3 μm to about 0.4 μm in the resonator stack.


The “low-frequency” integrated frames in the top frame composite electrode lower the electrically excited piston mode amplitude in the frame region around the parallel resonant frequency Fp, thus lowering scattering at the edge of the top frame composite electrode. In addition, integrated frames with optimized width suppress propagating modes excited at the interface of the integrated frame and the membrane located in the central portion of the FBAR. However, effectiveness of the integrated frame generally depends on overlap of given eigenmodes with the integrated frame.


As shown in FIG. 8A, the integrated frames placed in the top frame composite electrode (above the piezoelectric layer) interact most effectively with the pTE1 and L1 modes (confined to the top of the resonator stack), and less effectively with the TS1 and F1 modes (confined to the bottom of the stack). On the other hand, integrated frames placed in the bottom frames composite electrodes interact most effectively with the TS1 and F1 modes (confined to the bottom of the resonator stack), and less effectively with the pTE1 and L1 modes (confined to the top of the stack). Thus the benefit of using integrated frames is that they can be placed at the location in the resonator stack that provides maximum benefit for suppression of spurious lateral modes.


Referring to FIG. KB, low impedance of the temperature compensating layer (e.g., temperature compensating layer 727) in the bottom tempco composite electrode shifts the NPSE for the TS1 and F1 modes even further towards bottom of the resonator stack, making integrated frames in the top frame composite electrode even less efficient in suppressing these modes. Depending on design requirements, the performance improvement provided by the top frames (either integrated or add-on frames) may not be sufficient in resonators and filters with temperature compensating layers. Thus, integrated frames may be included in the bottom electrode (e.g., as shown in FIGS. 6A and 6B) to suppress the TS1 and F1 modes. Since these integrated frames are essentially planar, they will enable growth of high quality piezoelectric material on top of them. The decision whether to use integrated frames in top, bottom, or both electrodes may be made based on overall cost/performance considerations, as adding integrated frames in different locations may improve the quality factor Q of the resonator, but it may also increase the total cost of the filter comprising of temperature compensated resonators.



FIG. 9 is a graph illustrating simulated parallel resistance Rp (ohms) versus frame width (μm) of integrated low velocity frames having various thicknesses in an FBAR with a top frame composite electrode and a bottom tempco composite electrode (e.g., FBAR 700 shown in FIG. 7), according to representative embodiments. Generally, parallel resistance Rp is a function of integrated frame width. In the depicted example, the integrated low velocity frame is made of Al as the first material and Mo as the second material, where Al has comparable sound velocity to Mo, but has approximately 30 percent lower acoustic impedance. As explained above, such a resonator stack design effectively yields a low velocity frame. Trace 910 depicts the integrated low velocity frame with a thickness of about 0.5 kÅ, trace 920 depicts the integrated low velocity frame with a thickness of about 1 kÅ, and trace 930 depicts the integrated low velocity frame with a thickness of about 2 kÅ. The thicknesses of the layers in the resonator stack otherwise remain the same. For example, the bottom tempco composite electrode has an outside electrode layer formed of Mo, and a temperature compensating layer formed of BSG having a thickness of about 500 Å. In this example, the interposer layer (e.g., interposer layer 729 shown in FIG. 7) is omitted to simplify the calculations. The bottom electrode has an overall thickness of about 3.3 kÅ. The piezoelectric layer is formed of AlN and has a thickness of about 9.3 kÅ. The top frame composite electrode is formed of Mo with an integrated low velocity frame formed of Al, as mentioned above. The top frame composite electrode has an overall thickness of about 3.25 kÅ, while the thickness of the integrated low velocity frame varies. A passivation layer formed of AlN is formed over the top frame composite electrode at a thickness of about 2 kÅ. Note that the NPSE distributions for eigenmodes supported by this resonator stack without the composite frames are very similar to NPSE distributions shown in FIG. 8B (where the BSG layer has a thickness of about 1 kÅ).


Traces 910-930 indicate that parallel resistance Rp is a periodic function of the thickness of the integrated low velocity frame, as expected. Generally, the thinner integrated low velocity frames yield better peak parallel resistance Rp improvement at each frame width. The best simulated parallel resistance Rp improvement shown in FIG. 9 represents about 2.5 times improvement (from about 500 ohms to about 1200 ohms) for a 3 μm wide integrated low velocity frame, indicated by trace 910.


It is understood that the specific configurations of the FBARs 100A to 700 and related embodiments discussed above are illustrative, and that the various parameters and characteristics described herein may vary to provide unique benefits for any particular situation or to meet application specific design requirements. Further, various alternative combinations of integrated low velocity and high velocity frames may be incorporated, without departing from the scope of the present teachings.


In addition, although each of the representative integrated low velocity frames discussed above has a rectangular cross-sectional shape, it is understood that they may include other cross-section shapes and/or may include multiple lateral interfaces within the composite electrode, such as stepped structures. Examples of frames having multiple lateral interfaces are included in U.S. patent application Ser. No. 13/232,334, to Burak et al., filed Sep. 14, 2011, which is hereby incorporated by reference in its entirety. The multiple lateral interfaces may provide improved selected mode confinement and/or suppression.


Notably, the teachings of the incorporated patents and patent applications are intended to be illustrative of methods, materials and structures useful to the present teachings, but in no way limiting to the present teachings. The various components, materials, structures and parameters are included by way of illustration and example only and not in any limiting sense. In view of this disclosure, those skilled in the art can implement the present teachings in determining their own applications and needed components, materials, structures and equipment to implement these applications, while remaining within the scope of the appended claims.

Claims
  • 1. A bulk acoustic wave (BAW) resonator device, comprising: a lower electrode disposed over a substrate over one of a cavity and an acoustic mirror;a piezoelectric layer on the lower electrode; andan upper electrode disposed over the piezoelectric layer, at least one of the lower electrode and the upper electrode being a hybrid electrode comprising a temperature compensating layer having a positive temperature coefficient for offsetting at least a portion of a negative temperature coefficient of the piezoelectric layer, and an integrated frame configured to create at least one of a cut-off frequency mismatch and an acoustic impedance mismatch, wherein the hybrid electrode comprises an outside electrode layer, an inside electrode layer and an interposer layer, the temperature compensating layer being formed between the inside electrode layer and the interposer layer and the interposer layer being formed between the temperature compensating layer and the piezoelectric layer.
  • 2. The BAW resonator device of claim 1, wherein the integrated frame comprises an integrated low velocity frame formed by a first material located at an outer region of the hybrid electrode and an inner portion formed by a second material located at a center region of the hybrid electrode, the first material having a lower sound velocity than the second material.
  • 3. The BAW resonator device of claim 1, wherein the integrated frame comprises an integrated high velocity frame formed by a second material located at an outer region of the hybrid electrode and an inner portion formed by a first material located at a center region of the hybrid electrode, the first material having a lower sound velocity than the second material.
  • 4. The BAW resonator device of claim 1, wherein the lower electrode comprises the hybrid electrode and the upper electrode comprises a frame electrode having an integrated frame.
  • 5. The BAW resonator device of claim 1, wherein the upper electrode comprises the hybrid electrode and the lower electrode comprises a frame electrode having an integrated frame.
  • 6. The BAW resonator of claim 1, further comprising a cavity disposed in the substrate, over which the lower electrode is disposed.
  • 7. The BAW resonator of claim 1, further comprising a Bragg mirror disposed beneath the lower electrode.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a continuation-in-part application under 37 C.F.R. §1.53(b) of commonly owned U.S. patent application Ser. No. 13/660,941, entitled “Acoustic Resonator having Composite Electrodes with Integrated Lateral Features.” filed on Oct. 25, 2012, which is hereby specifically incorporated by reference.

US Referenced Citations (544)
Number Name Date Kind
3174122 Fowler et al. Mar 1965 A
3189851 Fowler Jun 1965 A
3321648 Kolm May 1967 A
3422371 Poirier et al. Jan 1969 A
3568108 Poirier et al. Mar 1971 A
3582839 Pim et al. Jun 1971 A
3590287 Berlincourt et al. Jun 1971 A
3610969 Clawson et al. Oct 1971 A
3826931 Hammond Jul 1974 A
3845402 Nupp Oct 1974 A
4084217 Brandli et al. Apr 1978 A
4172277 Pinson Oct 1979 A
4272742 Lewis Jun 1981 A
4281299 Newbold Jul 1981 A
4320365 Black et al. Mar 1982 A
4344004 Okubo Aug 1982 A
4355408 Scarrott Oct 1982 A
4456850 Inoue et al. Jun 1984 A
4529904 Hattersley Jul 1985 A
4608541 Moriwaki et al. Aug 1986 A
4625138 Ballato Nov 1986 A
4640756 Wang et al. Feb 1987 A
4719383 Wang et al. Jan 1988 A
4769272 Byrne et al. Sep 1988 A
4798990 Henoch Jan 1989 A
4819215 Yokoyama et al. Apr 1989 A
4836882 Ballato Jun 1989 A
4841429 McClanahan et al. Jun 1989 A
4906840 Zdeblick et al. Mar 1990 A
4975892 Defranould et al. Dec 1990 A
5048036 Scifres et al. Sep 1991 A
5048038 Brennan et al. Sep 1991 A
5066925 Freitag Nov 1991 A
5075641 Weber et al. Dec 1991 A
5111157 Komiak May 1992 A
5118982 Inoue et al. Jun 1992 A
5129132 Zdeblick et al. Jul 1992 A
5162691 Mariani et al. Nov 1992 A
5166646 Avanic et al. Nov 1992 A
5185589 Krishnaswamy et al. Feb 1993 A
5214392 Kobayashi et al. May 1993 A
5233259 Krishnaswamy et al. Aug 1993 A
5241209 Sasaki Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5262347 Sands Nov 1993 A
5270492 Fukui Dec 1993 A
5294898 Dworsky et al. Mar 1994 A
5361077 Weber Nov 1994 A
5382930 Stokes et al. Jan 1995 A
5384808 Van Brunt et al. Jan 1995 A
5448014 Kong et al. Sep 1995 A
5465725 Seyed-Bolorforosh Nov 1995 A
5475351 Uematsu et al. Dec 1995 A
5548189 Williams Aug 1996 A
5567334 Baker et al. Oct 1996 A
5587620 Ruby et al. Dec 1996 A
5589858 Kadowaki et al. Dec 1996 A
5594705 Connor et al. Jan 1997 A
5603324 Oppelt et al. Feb 1997 A
5633574 Sage May 1997 A
5671242 Takiguchi et al. Sep 1997 A
5692279 Mang et al. Dec 1997 A
5704037 Chen Dec 1997 A
5705877 Shimada Jan 1998 A
5714917 Ella Feb 1998 A
5729008 Blalock et al. Mar 1998 A
5789845 Wadaka et al. Aug 1998 A
5835142 Nakamura et al. Nov 1998 A
5853601 Krishaswamy et al. Dec 1998 A
5864261 Weber Jan 1999 A
5866969 Shimada et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873153 Ruby et al. Feb 1999 A
5873154 Ylilammi et al. Feb 1999 A
5894184 Furuhashi et al. Apr 1999 A
5894647 Lakin Apr 1999 A
5910756 Ella Jun 1999 A
5932953 Drees et al. Aug 1999 A
5936150 Kobrin et al. Aug 1999 A
5953479 Zhou et al. Sep 1999 A
5955926 Uda et al. Sep 1999 A
5962787 Okada et al. Oct 1999 A
5969463 Tomita Oct 1999 A
5982297 Welle Nov 1999 A
6001664 Swirhun et al. Dec 1999 A
6016052 Vaughn Jan 2000 A
6040962 Kanazawa et al. Mar 2000 A
6051907 Ylilammi Apr 2000 A
6060818 Ruby et al. May 2000 A
6087198 Panasik Jul 2000 A
6090687 Merchant et al. Jul 2000 A
6107721 Lakin Aug 2000 A
6111341 Hirama Aug 2000 A
6111480 Iyama et al. Aug 2000 A
6114795 Tajima et al. Sep 2000 A
6118181 Merchant et al. Sep 2000 A
6124678 Bishop et al. Sep 2000 A
6124756 Yaklin et al. Sep 2000 A
6131256 Dydyk Oct 2000 A
6150703 Cushman et al. Nov 2000 A
6187513 Katakura Feb 2001 B1
6198208 Yano et al. Mar 2001 B1
6215375 Larson et al. Apr 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6219263 Wuidart Apr 2001 B1
6228675 Ruby et al. May 2001 B1
6229247 Bishop May 2001 B1
6252229 Hays et al. Jun 2001 B1
6262600 Haigh et al. Jul 2001 B1
6262637 Bradley et al. Jul 2001 B1
6263735 Nakatani et al. Jul 2001 B1
6265246 Ruby et al. Jul 2001 B1
6278342 Ella Aug 2001 B1
6284121 Reid Sep 2001 B1
6291931 Lakin Sep 2001 B1
6292336 Horng et al. Sep 2001 B1
6306755 Zheng Oct 2001 B1
6307447 Barber et al. Oct 2001 B1
6307761 Nakagawa Oct 2001 B1
6335548 Roberts et al. Jan 2002 B1
6355498 Chan et al. Mar 2002 B1
6366006 Boyd Apr 2002 B1
6376280 Ruby et al. Apr 2002 B1
6377137 Ruby Apr 2002 B1
6384679 Lorenz May 2002 B1
6384697 Ruby May 2002 B1
6396200 Misu et al. May 2002 B2
6407649 Tikka et al. Jun 2002 B1
6414569 Nakafuku Jul 2002 B1
6420820 Larson, III Jul 2002 B1
6424237 Ruby et al. Jul 2002 B1
6429511 Ruby et al. Aug 2002 B2
6434030 Rehm et al. Aug 2002 B1
6437482 Shibata Aug 2002 B1
6441539 Kitamura et al. Aug 2002 B1
6441702 Ella et al. Aug 2002 B1
6462631 Bradley et al. Oct 2002 B2
6466105 Lobl et al. Oct 2002 B1
6466418 Horng et al. Oct 2002 B1
6469597 Ruby et al. Oct 2002 B2
6469909 Simmons Oct 2002 B2
6472954 Ruby et al. Oct 2002 B1
6476536 Pensala Nov 2002 B1
6479320 Gooch Nov 2002 B1
6483229 Larson et al. Nov 2002 B2
6486751 Barber et al. Nov 2002 B1
6489688 Baumann et al. Dec 2002 B1
6492883 Liang et al. Dec 2002 B2
6496085 Ella et al. Dec 2002 B2
6498604 Jensen Dec 2002 B1
6507983 Ruby et al. Jan 2003 B1
6515558 Ylilammi Feb 2003 B1
6518860 Ella et al. Feb 2003 B2
6525996 Miyazawa Feb 2003 B1
6528344 Kang Mar 2003 B2
6530515 Glenn et al. Mar 2003 B1
6534900 Aigner et al. Mar 2003 B2
6542054 Aigner et al. Apr 2003 B2
6542055 Frank et al. Apr 2003 B1
6548942 Panasik Apr 2003 B1
6548943 Kaitila et al. Apr 2003 B2
6549394 Williams Apr 2003 B1
6550664 Bradley et al. Apr 2003 B2
6559487 Kang et al. May 2003 B1
6559530 Hinzel et al. May 2003 B2
6564448 Oura et al. May 2003 B1
6566956 Ohnishi et al. May 2003 B2
6566979 Larson et al. May 2003 B2
6580159 Fusaro et al. Jun 2003 B1
6583374 Knieser et al. Jun 2003 B2
6583688 Klee et al. Jun 2003 B2
6593870 Dummermuth et al. Jul 2003 B2
6594165 Duerbaum et al. Jul 2003 B2
6600390 Frank Jul 2003 B2
6601276 Barber Aug 2003 B2
6603182 Low et al. Aug 2003 B1
6617249 Ruby et al. Sep 2003 B2
6617750 Dummermuth et al. Sep 2003 B2
6617751 Sunwoo et al. Sep 2003 B2
6621137 Ma et al. Sep 2003 B1
6630753 Malik et al. Oct 2003 B2
6635509 Ouellet Oct 2003 B1
6639872 Rein Oct 2003 B1
6650205 Goetz et al. Nov 2003 B2
6651488 Larson et al. Nov 2003 B2
6657363 Aigner Dec 2003 B1
6668618 Larson et al. Dec 2003 B2
6670866 Ella et al. Dec 2003 B2
6677929 Gordon et al. Jan 2004 B2
6693500 Yang et al. Feb 2004 B2
6709776 Noguchi et al. Mar 2004 B2
6710508 Ruby et al. Mar 2004 B2
6710681 Figueredo et al. Mar 2004 B2
6713314 Wong et al. Mar 2004 B2
6714102 Ruby et al. Mar 2004 B2
6720844 Lakin Apr 2004 B1
6720846 Iwashita et al. Apr 2004 B2
6724266 Plazza et al. Apr 2004 B2
6738267 Sabater et al. May 2004 B1
6750593 Iwata Jun 2004 B2
6774746 Whatmore et al. Aug 2004 B2
6777263 Gan et al. Aug 2004 B1
6787048 Bradley et al. Sep 2004 B2
6787897 Geefay et al. Sep 2004 B2
6788170 Kaitila et al. Sep 2004 B1
6803835 Frank Oct 2004 B2
6812619 Kaitila et al. Nov 2004 B1
6820469 Adkins et al. Nov 2004 B1
6828713 Bradley et al. Dec 2004 B2
6842088 Yamada et al. Jan 2005 B2
6842089 Lee Jan 2005 B2
6849475 Kim Feb 2005 B2
6853534 Williams Feb 2005 B2
6861920 Ishikawa et al. Mar 2005 B2
6864619 Aigner et al. Mar 2005 B2
6872931 Liess et al. Mar 2005 B2
6873065 Haigh et al. Mar 2005 B2
6873529 Ikuta Mar 2005 B2
6874211 Bradley et al. Apr 2005 B2
6874212 Larson Apr 2005 B2
6888424 Takeuchi et al. May 2005 B2
6894588 Detlefsen May 2005 B2
6900705 Nakamura et al. May 2005 B2
6903452 Ma et al. Jun 2005 B2
6906451 Yamada et al. Jun 2005 B2
6911708 Park Jun 2005 B2
6917261 Unterberger Jul 2005 B2
6919222 Geefay Jul 2005 B2
6924583 Lin et al. Aug 2005 B2
6924717 Ginsburg et al. Aug 2005 B2
6927651 Larson et al. Aug 2005 B2
6933809 Kyoung et al. Aug 2005 B2
6936837 Yamada et al. Aug 2005 B2
6936928 Hedler et al. Aug 2005 B2
6936954 Peczalski Aug 2005 B2
6941036 Lucero Sep 2005 B2
6943647 Aigner Sep 2005 B2
6943648 Maiz et al. Sep 2005 B2
6946928 Larson et al. Sep 2005 B2
6954121 Bradley et al. Oct 2005 B2
6963257 Ella et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6975183 Aigner et al. Dec 2005 B2
6977563 Komuro et al. Dec 2005 B2
6979597 Geefay et al. Dec 2005 B2
6985051 Nguyen et al. Jan 2006 B2
6985052 Tikka Jan 2006 B2
6987433 Larson et al. Jan 2006 B2
6989723 Komuro et al. Jan 2006 B2
6998940 Metzger Feb 2006 B2
7002437 Takeuchi et al. Feb 2006 B2
7019604 Gotoh et al. Mar 2006 B2
7019605 Larson Mar 2006 B2
7026876 Esfandiari et al. Apr 2006 B1
7053456 Matsuo May 2006 B2
7057476 Hwu Jun 2006 B2
7057478 Korden et al. Jun 2006 B2
7064606 Louis Jun 2006 B2
7084553 Ludwiczak Aug 2006 B2
7091649 Larson et al. Aug 2006 B2
7098758 Wang et al. Aug 2006 B2
7102460 Schmidhammer et al. Sep 2006 B2
7109826 Ginsburg et al. Sep 2006 B2
7128941 Lee Oct 2006 B2
7129806 Sato Oct 2006 B2
7138889 Lakin Nov 2006 B2
7161283 Geefay Jan 2007 B1
7161448 Feng et al. Jan 2007 B2
7170215 Namba et al. Jan 2007 B2
7173504 Larson et al. Feb 2007 B2
7179392 Robert et al. Feb 2007 B2
7187254 Su et al. Mar 2007 B2
7199683 Thalhammer Apr 2007 B2
7209374 Noro Apr 2007 B2
7212083 Inoue et al. May 2007 B2
7212085 Wu May 2007 B2
7230509 Stoemmer Jun 2007 B2
7230511 Onishi et al. Jun 2007 B2
7233218 Park et al. Jun 2007 B2
7235462 Letertre et al. Jun 2007 B2
7242270 Larson et al. Jul 2007 B2
7259498 Nakatsuka et al. Aug 2007 B2
7268647 Sano et al. Sep 2007 B2
7275292 Ruby et al. Oct 2007 B2
7276994 Takeuchi et al. Oct 2007 B2
7280007 Feng et al. Oct 2007 B2
7281304 Kim et al. Oct 2007 B2
7294919 Bai Nov 2007 B2
7301258 Tanaka Nov 2007 B2
7310861 Aigner et al. Dec 2007 B2
7313255 Machida et al. Dec 2007 B2
7332985 Larson et al. Feb 2008 B2
7345409 Leidl et al. Mar 2008 B2
7345410 Grannen et al. Mar 2008 B2
7358831 Larson, III et al. Apr 2008 B2
7367095 Larson et al. May 2008 B2
7368857 Tanaka May 2008 B2
7369013 Fazzio et al. May 2008 B2
7385467 Stoemmer et al. Jun 2008 B2
7388318 Yamada et al. Jun 2008 B2
7388454 Ruby et al. Jun 2008 B2
7388455 Larson Jun 2008 B2
7391286 Jamneala et al. Jun 2008 B2
7400217 Larson et al. Jul 2008 B2
7408428 Larson Aug 2008 B2
7414349 Sasaki Aug 2008 B2
7414495 Iwasaki et al. Aug 2008 B2
7420320 Sano et al. Sep 2008 B2
7423503 Larson et al. Sep 2008 B2
7425787 Larson Sep 2008 B2
7439824 Aigner Oct 2008 B2
7463118 Jacobsen Dec 2008 B2
7466213 Lobl et al. Dec 2008 B2
7482737 Yamada et al. Jan 2009 B2
7486213 Yu et al. Feb 2009 B2
7508286 Ruby et al. Mar 2009 B2
7515018 Handtmann et al. Apr 2009 B2
7535324 Fattinger et al. May 2009 B2
7545532 Muramoto Jun 2009 B2
7561009 Larson, III et al. Jul 2009 B2
7563475 Ruby et al. Jul 2009 B2
7567023 Iwaki et al. Jul 2009 B2
7575292 Furukawa Aug 2009 B2
7576471 Solal Aug 2009 B1
7602101 Hara et al. Oct 2009 B2
7602102 Barber et al. Oct 2009 B1
7619493 Uno et al. Nov 2009 B2
7629865 Ruby Dec 2009 B2
7636026 Heinze et al. Dec 2009 B2
7649304 Umeda et al. Jan 2010 B2
7655963 Sadaka et al. Feb 2010 B2
7684109 Godshalk et al. Mar 2010 B2
7714684 Ruby et al. May 2010 B2
7737807 Larson et al. Jun 2010 B2
7758979 Akiyama et al. Jul 2010 B2
7768364 Hart et al. Aug 2010 B2
7791434 Fazzio et al. Sep 2010 B2
7795781 Barber et al. Sep 2010 B2
7869187 McKinzie et al. Jan 2011 B2
7889024 Bradley et al. Feb 2011 B2
7893793 Iwasaki et al. Feb 2011 B2
7978025 Yokoyama et al. Jul 2011 B2
7986198 Nakatsuka et al. Jul 2011 B2
8008993 Milsom et al. Aug 2011 B2
8030823 Sinha et al. Oct 2011 B2
8084919 Nishihara et al. Dec 2011 B2
8222795 Sinha et al. Jul 2012 B2
8232845 Ruby et al. Jul 2012 B2
8253513 Zhang Aug 2012 B2
8330325 Burak et al. Dec 2012 B1
8384497 Zhang Feb 2013 B2
8456257 Fattinger Jun 2013 B1
8575820 Shirakawa et al. Nov 2013 B2
9069005 Ruby Jun 2015 B2
9099983 Burak et al. Aug 2015 B2
9136819 Grannen et al. Sep 2015 B2
9154112 Burak Oct 2015 B2
9223248 Kawano et al. Dec 2015 B2
9225313 Bradley et al. Dec 2015 B2
20010045793 Misu et al. Nov 2001 A1
20020000646 Gooch et al. Jan 2002 A1
20020030424 Iwata Mar 2002 A1
20020063497 Panasik May 2002 A1
20020070463 Chang et al. Jun 2002 A1
20020121944 Larson et al. Sep 2002 A1
20020121945 Ruby et al. Sep 2002 A1
20020126517 Matsukawa et al. Sep 2002 A1
20020140520 Hikita et al. Oct 2002 A1
20020152803 Larson et al. Oct 2002 A1
20020153965 Ruby et al. Oct 2002 A1
20020158716 Pensala Oct 2002 A1
20020190814 Yamada et al. Dec 2002 A1
20030001251 Cheever et al. Jan 2003 A1
20030006502 Karpman Jan 2003 A1
20030011285 Ossmann Jan 2003 A1
20030011446 Bradley Jan 2003 A1
20030051550 Nguyen et al. Mar 2003 A1
20030087469 Ma May 2003 A1
20030102776 Takeda et al. Jun 2003 A1
20030111439 Fetter et al. Jun 2003 A1
20030128081 Ella et al. Jul 2003 A1
20030132493 Kang et al. Jul 2003 A1
20030132809 Senthilkumar et al. Jul 2003 A1
20030141946 Ruby et al. Jul 2003 A1
20030179053 Aigner et al. Sep 2003 A1
20030205948 Lin et al. Nov 2003 A1
20030213964 Flynn et al. Nov 2003 A1
20030227357 Metzger et al. Dec 2003 A1
20040016995 Kuo et al. Jan 2004 A1
20040017130 Wang et al. Jan 2004 A1
20040027216 Ma et al. Feb 2004 A1
20040046622 Aigner et al. Mar 2004 A1
20040056735 Nomura et al. Mar 2004 A1
20040092234 Pohjonen May 2004 A1
20040099898 Grivna et al. May 2004 A1
20040124952 Tikka Jul 2004 A1
20040129079 Kato et al. Jul 2004 A1
20040150293 Unterberger Aug 2004 A1
20040150296 Park et al. Aug 2004 A1
20040166603 Carley Aug 2004 A1
20040188241 Rich et al. Sep 2004 A1
20040195937 Matsubara et al. Oct 2004 A1
20040212458 Lee Oct 2004 A1
20040246075 Bradley et al. Dec 2004 A1
20040257171 Park et al. Dec 2004 A1
20040257172 Schmidhammer et al. Dec 2004 A1
20040263287 Ginsburg et al. Dec 2004 A1
20050012570 Korden et al. Jan 2005 A1
20050012716 Mikulin et al. Jan 2005 A1
20050023931 Bouche et al. Feb 2005 A1
20050030126 Inoue et al. Feb 2005 A1
20050036604 Scott et al. Feb 2005 A1
20050057117 Nakatsuka et al. Mar 2005 A1
20050057324 Onishi et al. Mar 2005 A1
20050068124 Stoemmer Mar 2005 A1
20050093396 Larson et al. May 2005 A1
20050093397 Yamada et al. May 2005 A1
20050093653 Larson May 2005 A1
20050093654 Larson et al. May 2005 A1
20050093655 Larson et al. May 2005 A1
20050093657 Larson et al. May 2005 A1
20050093658 Larson et al. May 2005 A1
20050093659 Larson et al. May 2005 A1
20050104690 Larson et al. May 2005 A1
20050110598 Larson, III May 2005 A1
20050128030 Larson et al. Jun 2005 A1
20050140466 Larson et al. Jun 2005 A1
20050167795 Higashi Aug 2005 A1
20050193507 Ludwiczak Sep 2005 A1
20050206271 Higuchi et al. Sep 2005 A1
20050206479 Nguyen et al. Sep 2005 A1
20050206483 Pashby et al. Sep 2005 A1
20050218488 Matsuo Oct 2005 A1
20050248232 Itaya et al. Nov 2005 A1
20050269904 Oka Dec 2005 A1
20050275486 Feng Dec 2005 A1
20060017352 Tanielian Jan 2006 A1
20060038636 Tsurumi et al. Feb 2006 A1
20060071736 Ruby et al. Apr 2006 A1
20060081048 Mikado et al. Apr 2006 A1
20060087199 Larson et al. Apr 2006 A1
20060103492 Feng et al. May 2006 A1
20060114541 Van Beek Jun 2006 A1
20060119453 Fattinger et al. Jun 2006 A1
20060125489 Feucht et al. Jun 2006 A1
20060132262 Fazzio et al. Jun 2006 A1
20060164183 Tikka et al. Jul 2006 A1
20060164186 Stoemmer et al. Jul 2006 A1
20060176126 Wang et al. Aug 2006 A1
20060185139 Larson et al. Aug 2006 A1
20060197411 Hoen et al. Sep 2006 A1
20060238070 Costa et al. Oct 2006 A1
20060284706 Ginsburg et al. Dec 2006 A1
20060284707 Larson et al. Dec 2006 A1
20060290446 Aigner et al. Dec 2006 A1
20070035364 Sridhar et al. Feb 2007 A1
20070037311 Izumi et al. Feb 2007 A1
20070040473 Ballandras et al. Feb 2007 A1
20070069225 Krames et al. Mar 2007 A1
20070080759 Jamneala et al. Apr 2007 A1
20070085447 Larson Apr 2007 A1
20070085631 Larson et al. Apr 2007 A1
20070085632 Larson et al. Apr 2007 A1
20070086080 Larson et al. Apr 2007 A1
20070086274 Nishimura et al. Apr 2007 A1
20070090892 Larson Apr 2007 A1
20070170815 Unkrich Jul 2007 A1
20070171002 Unkrich Jul 2007 A1
20070176710 Jamneala et al. Aug 2007 A1
20070205850 Jamneala et al. Sep 2007 A1
20070266548 Fattinger Nov 2007 A1
20070279153 Ruby Dec 2007 A1
20080042780 Lee et al. Feb 2008 A1
20080055020 Handtmann et al. Mar 2008 A1
20080129417 Taniguchi Jun 2008 A1
20080143215 Hara et al. Jun 2008 A1
20080258842 Ruby et al. Oct 2008 A1
20080297278 Handtmann et al. Dec 2008 A1
20080297279 Thalhammer et al. Dec 2008 A1
20080297280 Thalhammer et al. Dec 2008 A1
20090001848 Umeda et al. Jan 2009 A1
20090064498 Mok et al. Mar 2009 A1
20090079302 Wall et al. Mar 2009 A1
20090096550 Handtmann et al. Apr 2009 A1
20090127978 Asai et al. May 2009 A1
20090153268 Milsom et al. Jun 2009 A1
20090267453 Barber et al. Oct 2009 A1
20090267457 Barber et al. Oct 2009 A1
20100013573 Umeda Jan 2010 A1
20100033063 Nishihara et al. Feb 2010 A1
20100039000 Milson et al. Feb 2010 A1
20100052176 Kamada et al. Mar 2010 A1
20100052815 Bradley et al. Mar 2010 A1
20100091370 Mahrt et al. Apr 2010 A1
20100102358 Lanzieri et al. Apr 2010 A1
20100111808 Pimputkar et al. May 2010 A1
20100148637 Satou Jun 2010 A1
20100176899 Schaufele et al. Jul 2010 A1
20100187948 Sinha et al. Jul 2010 A1
20100187949 Pahl et al. Jul 2010 A1
20100260453 Block Oct 2010 A1
20100327697 Choy et al. Dec 2010 A1
20100327994 Choy et al. Dec 2010 A1
20110037539 Jansman et al. Feb 2011 A1
20110084779 Zhang Apr 2011 A1
20110121689 Grannen et al. May 2011 A1
20110121916 Barber et al. May 2011 A1
20110148547 Zhang Jun 2011 A1
20110180391 Larson et al. Jul 2011 A1
20110204996 Gilbert et al. Aug 2011 A1
20110204997 Elbrecht et al. Aug 2011 A1
20110227671 Zhang Sep 2011 A1
20110266925 Ruby et al. Nov 2011 A1
20120154074 Ruby et al. Jun 2012 A1
20120161902 Feng et al. Jun 2012 A1
20120177816 Larson et al. Jul 2012 A1
20120194297 Choy Aug 2012 A1
20120218055 Burak et al. Aug 2012 A1
20120218056 Burak Aug 2012 A1
20120218057 Burak et al. Aug 2012 A1
20120218058 Burak et al. Aug 2012 A1
20120218059 Burak et al. Aug 2012 A1
20120218060 Burak et al. Aug 2012 A1
20120248941 Shirakawa et al. Oct 2012 A1
20120280767 Burak et al. Nov 2012 A1
20130033151 Ueda et al. Feb 2013 A1
20130038408 Burak et al. Feb 2013 A1
20130063227 Burak et al. Mar 2013 A1
20130082799 Zuo et al. Apr 2013 A1
20130106534 Burak et al. May 2013 A1
20130127300 Umeda et al. May 2013 A1
20130140959 Shin et al. Jun 2013 A1
20130205586 Takada et al. Aug 2013 A1
20130235001 Yun et al. Sep 2013 A1
20130241673 Yokoyama et al. Sep 2013 A1
20140111288 Nikkel et al. Apr 2014 A1
20140118087 Burak et al. May 2014 A1
20140118088 Burak et al. May 2014 A1
20140118091 Burak et al. May 2014 A1
20140118092 Burak et al. May 2014 A1
20140159548 Burak et al. Jun 2014 A1
20140224941 Gitter et al. Aug 2014 A1
20140225682 Burak et al. Aug 2014 A1
20140225683 Burak et al. Aug 2014 A1
Foreign Referenced Citations (93)
Number Date Country
101170303 Sep 2011 CN
10160617 Jun 2003 DE
10239317 Mar 2004 DE
102007012384 Sep 2008 DE
231892 Aug 1987 EP
0637875 Feb 1995 EP
689254 Dec 1995 EP
0865157 Sep 1998 EP
880227 Dec 1998 EP
1047189 Oct 2000 EP
1096259 May 2001 EP
1100196 May 2001 EP
1180494 Feb 2002 EP
1249932 Oct 2002 EP
1258989 Nov 2002 EP
1258990 Nov 2002 EP
1517443 Mar 2005 EP
1517444 Mar 2005 EP
1528674 May 2005 EP
1528675 May 2005 EP
1528676 May 2005 EP
1528677 May 2005 EP
1542362 Jun 2005 EP
1557945 Jul 2005 EP
1575165 Sep 2005 EP
0973256 Sep 2006 EP
2299592 Mar 2011 EP
2299593 Mar 2011 EP
2951027 Apr 2011 FR
1207974 Oct 1970 GB
2013343 Aug 1979 GB
2411239 Aug 2005 GB
2418791 Apr 2006 GB
2427773 Jan 2007 GB
359023612 Feb 1984 JP
60-16010 Jan 1985 JP
61054686 Mar 1986 JP
6165507 Apr 1986 JP
62-109419 May 1987 JP
62-200813 Sep 1987 JP
1-295512 Nov 1989 JP
2-10907 Jan 1990 JP
06005944 Jan 1994 JP
8-330878 Dec 1996 JP
09-027729 Jan 1997 JP
9-83029 Mar 1997 JP
10-32456 Feb 1998 JP
10-308645 Nov 1998 JP
2000-31552 Jan 2000 JP
2000076295 Mar 2000 JP
2000-232334 Aug 2000 JP
2000-295065 Oct 2000 JP
2000-332568 Nov 2000 JP
2001-102901 Apr 2001 JP
2001-508630 Jun 2001 JP
2002217676 Aug 2002 JP
2003017964 Jan 2003 JP
2003017974 Jan 2003 JP
2003-505905 Feb 2003 JP
2003124779 Apr 2003 JP
2003-332872 Nov 2003 JP
2005-159402 Jun 2005 JP
2006-109472 Apr 2006 JP
2006-295924 Oct 2006 JP
2006-319796 Nov 2006 JP
2007-006501 Jan 2007 JP
2007028669 Feb 2007 JP
2007-295306 Nov 2007 JP
2008-066792 Mar 2008 JP
4471443 Jun 2010 JP
2003-505906 Sep 2013 JP
9816957 Apr 1998 WO
9838736 Sep 1998 WO
9856049 Dec 1998 WO
99-37023 Jul 1999 WO
0106646 Jan 2001 WO
0106647 Jan 2001 WO
0199276 Dec 2001 WO
02103900 Dec 2002 WO
03030358 Apr 2003 WO
03043188 May 2003 WO
03050950 Jun 2003 WO
03058809 Jul 2003 WO
2004034579 Apr 2004 WO
2004051744 Jun 2004 WO
2004102688 Nov 2004 WO
2005043752 May 2005 WO
2005043753 May 2005 WO
2005043756 May 2005 WO
2006018788 Feb 2006 WO
WO2006079353 Aug 2006 WO
2007085332 Aug 2007 WO
WO2013065488 May 2013 WO
Non-Patent Literature Citations (80)
Entry
Zou et al.; “High Coupling Coefficient Temperature Compensated FBAR Resontor for Oscillator Application with Wide Pulling Range”; 2010 IEEE International Frequency Control Symposium (FCS), Jun. 1-4, 2010, pp. 646-651 and one page IEEE Xplore abstract.
Zhang et al.; “MIMO Multiplexer Based on Film Bulk Acoustic Resonator”; IEEE Transactions on Consumer Electronics, vol. 56, No. 2, May 2010, pp. 805-810.
U.S. Appl. No. 13/232,334, filed Sep. 14, 2011.
G.W. Archibald, “Experimental results of bulk acoustic wave transverse graded electrode patterns”, Proceedings of the 1998 IEEE International Frequency Control Symposium, Publication Year: 1998 , pp. 477-483.
U.S. Appl. No. 13/660,941, filed Oct. 25, 2012.
Kerherve, “BAW Technologies for Radiofrequency Filters and Duplexers”, Nov. 2011, pp. 1-89.
Lin, “Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode”, Electrical Engineering and Computer Sciences University of California at Berkeley Dec. 14, 2012, 94 pages.
Akiyama et al., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Co-Sputtering”, Advanced Materials 2009, 21, pp. 593-596, copyright 2009 WILEY-VCH Veriag GmbH & Co. KGaA, Weinheim.
Moriera, “Aluminum Scandium Nitride Thin-Film Bulk Acoustic Resonators for Wide Band Applications”, Vacuum 86 (2011) 23-26.
Machine Translation of WO02103900, published Dec. 27, 2002.
Machine Translation of WO03/030358, published Apr. 10, 2003.
Machine Translation of WO03/043188, published May 22, 2003.
Machine Translation of WO03/050950, published Jun. 19, 2003.
Machine Translation of CN101170303, published Sep. 14, 2011.
Machine Translation of DE10160617, published Jun. 12, 2003.
Machine Translation of DE102007012384, published Sep. 18, 2008.
Machine Translation of DE10239317, published Mar. 11, 2004.
Machine Translation of JP10308645, published Nov. 17, 1998.
Machine Translation of JP10-32456, published Feb. 3, 1998.
Machine Translation of JP2000076295, published Mar. 14, 2000.
Machine Translation of JP2000-232334, published Aug. 22, 2000.
Machine Translation of JP2000295065, published Oct. 20, 2000.
Machine Translation of JP2000-332568, published Nov. 30, 2000.
Machine Translation of JP2001-102901, published Apr. 13, 2001.
Machine Translation of JP2001-508630, published Jun. 26, 2001.
Machine Translation of JP2002/217676, published Aug. 2, 2002.
Machine Translation of JP2003017964, published Jan. 17, 2003.
Machine Translation of JP2003124779, published Apr. 25, 2003.
Machine Translation of JP2003017974, published Jan. 17, 2003.
Machine Translation of JP2003-332872, published Nov. 21, 2003.
Machine Translation of JP2003-505905, published Feb. 12, 2003.
Examination Report dated Aug. 25, 2006 for UK Application No. GB0605770.7.
Examination Report dated Aug. 24, 2006 for UK Application No. GB0605971.1.
Search Report dated Dec. 13, 2006 for UK Application No. GB0617742.2.
Search Report dated Jun. 26, 2006 for UK Application No. GB0605225.2.
Search Report dated Nov. 15, 2006 for UK Application No. GB0620152.9.
Search Report dated Nov. 15, 2006 for UK Application No. GB0620655.1.
Search Report dated Nov. 17, 2006 for UK Application No. GB0620653.6.
Search Report dated Nov. 23, 2006 for UK Application No. GB0620657.7.
Search Report dated Aug. 23, 2006 for UK Application No. GB0605779.8.
Search Report dated Nov. 30, 2006 for UK Application No. GB0619698.4.
Auld, “Acoustic Resonators Acoustic Fields and Waves in Solids”, Second Edition, vol. II, 250-259, 1990.
BI, “Bulk Acoustic Wave RF Technology”, IEEE Microwave Magazine, vol. 9, Issue 5. 65-80, 2008.
Chen, “Fabrication and Characterization of ALN Thin Film Bulk Acoustic Wave Resonator Dissertation”, University of Pittsburgh School of Engineering, 2006.
Dubois, “Solidly Mounted Resonator Based On Aluminum Nitride Thin Film”, 1998 IEEE Ultrasonics Symposium, vol. 1, 909-912, 1998.
El Hassan et al., “Techniques For Tuning BAW-SMR Resonators For The 4th Generation Of Mobile Communications Intech”, 421-442, 2013.
Kaitila et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium, 464-467, Oct. 2006.
Krishnaswamy et al., “Film Bulk Acoustic Wave Resonator Technology”, 529-536, May 29, 1990.
Lakin, “Thin Film Resonators and Filters”, IEEE Untrasonics Symposium, Caesar's Tahoe, NV, 895-906, Oct. 1999.
Larson et al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium, 939-943, 2002.
Lee et al., “Optimization of Frame-Like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method”, IEEE Ultrasonic Symposium, vol. 1, 278-281, 2004.
Pensala et al., “Spurious resonance supression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 8, 1731-1744, Aug. 2009.
Pensala, “Thin Film Bulk Acoustic Wave Devices: Performance Optimization And Modeling” VTT Publications 756, http://www.vtt.fi/inf/pdf/publications/2011/P756.pdf; dissertation presented Feb. 25, 2011, copyright VTT 2011, 1-108, Feb. 25, 2011.
Ruby et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005, IEEE MTT-S International, 217-221, Jun. 12, 2005.
Sanchez et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers”, IEEE Xplore, 841-846, 2003.
Strijbos, “Design And Characterisation Of High-Q Solidly-Mounted Bulk Acoustic Wave Filters”, ECTC '07 Proceedings, 57th Electronic Components and Technology Conference, Publication Year 2007, 169-174, 2007.
Tang et al., “Micromachined Bulk Acoustic Resonator With A Raised Frame”, 16th International Conference on Mechatronics Technology, Tianjin, China, Oct. 16-19, 2012.
Machine Translation of JP2003-505906, published Sep. 30, 2013.
Machine Translation of JP2004/034579, published Apr. 22, 2004.
Machine Translation of WO2004/102688, published Nov. 25, 2004.
Machine Translation of JP2005-159402, published Jun. 16, 2005.
Machine Translation of WO2006079353, published Aug. 3, 2006.
Machine Translation of JP2006109472, published Apr. 20, 2006.
Machine Translation of JP2006295924, published Oct. 26, 2006.
Machine Translation of JP2006319796, published Nov. 24, 2006.
Machine Translation of JP2007/028669, published Feb. 1, 2007.
Machine Translation of JP2007-006501, published Jan. 11, 2007.
Machine Translation of WO2007085332, published Aug. 2, 2007.
Machine Translation of JP2007-295306, published Nov. 1, 2007.
Machine Translation of JP2008-066792, published Mar. 21, 2008.
Machine Translation of WO2013065488, published May 10, 2013.
Machine Translation of JP2-10907, published Jan. 16, 1990.
Machine Translation of FR2951027, published Apr. 8, 2011.
Machine Translation of JP4471443, published Jun. 2, 2010.
Machine Translation of WO98/38736, published Sep. 3, 1998.
Machine Translation of WO99-37023, published Jul. 22, 1999.
Partial copy of Search Report dated Jan. 9, 2006 for UK Application No. GB0522393.8, 4 pages.
Partial copy of Search Report dated Feb. 2, 2006 for UK Application No. GB0525884.3, 4 pages.
Search Report dated Jul. 11, 2006 for UK Application No. GB0605222.9.
Tiersten et al., “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, J. Appl. Phys., 54, (10), 5893-5910, Oct. 1983.
Related Publications (1)
Number Date Country
20140118092 A1 May 2014 US
Continuation in Parts (1)
Number Date Country
Parent 13660941 Oct 2012 US
Child 13766993 US