The present invention relates to an accumulation volume fuel-injection system for an internal-combustion engine.
Fuel-injection systems for modern internal-combustion engines in general comprise a pump designed to send fuel at high pressure to a common rail having a pre-determined volume of accumulation of the fuel, for supplying a plurality of injectors associated to the cylinders of the engine. The pump comprises at least one reciprocating-motion pumping element, which each time carries out a suction stroke and a compression or delivery stroke.
As is known, to obtain a good atomization of the fuel, this must be brought to a very high pressure, for example in the region of 1600 bar in the conditions of maximum load of the engine. Recent standards regarding the limits of the pollutants in the exhaust gases of engines require that the pressure of supply of the fuel to the injectors should be reproducible in the most accurate way possible with respect to what is mapped in the electronic control unit. It is possible to limit the oscillations of the pressure in the common rail with respect to what is envisaged if its volume is more than three orders of magnitude greater than the amount of fuel injected by each injector per combustion cycle. The said common rail is in general very cumbersome, and hence its arrangement on the engine proves critical.
For controlling the pressure in the common rail according to what is mapped in the control unit, it has been proposed to set a by-pass solenoid valve on the delivery pipe of the pump towards the common rail, said valve being controlled by an electronic control unit according to various parameters of operation of the engine. It has also been proposed to perform actuation of the pumping element by means of a cam acting in synchronism with the actuation of each injector.
In these known systems, each pumping element has an instantaneous flow rate, the maximum value of which is much smaller than the maximum flow rate of each injector, so that normally, during an injection event, just a part of the fuel injected, in the region of 20%, is supplied by the pump, whilst the remaining part is supplied by the common rail. Consequently, these systems present the drawback of not requiring the presence of a common rail of adequate dimensions. Furthermore, the pump always works at the maximum flow rate, whilst the by-pass solenoid valve simply discharges into the tank the fuel pumped in excess with respect to what is injected by the injectors, with consequent dissipation of thermal energy.
The purpose of the invention is to provide a fuel-injection system that presents high reliability and eliminates the drawbacks of the systems of the known art, optimizing the performance, and enabling a reduction to the minimum of the volume of accumulation of the fuel between the pump and the injectors.
According to the invention, this purpose is achieved by a fuel-injection system for an internal-combustion engine having a plurality of cylinders, which comprises a pump designed to send fuel at high pressure to an accumulation volume, a plurality of injectors supplied by said accumulation volume and actuatable each for performing a phase of injection of pressurized fuel into a corresponding cylinder of the engine, said injection phase having a maximum flow rate of fuel depending upon the operating conditions of the engine, said pump comprising at least one reciprocating-motion pumping element with a compression stroke for each of said injections, and a by-pass solenoid valve for the fuel sent by said pump into the accumulation volume, wherein the maximum value of the instantaneous flow delivered by said pumping element is of the same order of magnitude as the maximum flow rate of each of said injectors, said by-pass solenoid valve being controlled by a chopper control unit in synchronism with said compression stroke.
In particular, the chopper control unit is designed to control said by-pass solenoid valve in pulse-width modulation (PWM) with a pulse having an instant of start and an instant of end of the delivery during said compression stroke according to the operating conditions of the engine, the modulation being obtained by varying both the instant of start and the instant of end of the delivery, so that said delivery is barycentric with respect to said injection phase.
The invention moreover relates to a high-pressure pump for sending fuel to an accumulation volume designed to supply a plurality of fuel injectors, said pump comprising at least one reciprocating-motion pumping element with a compression stroke, said pumping element having a compression chamber in communication with a delivery pipe and comprising a by-pass solenoid valve set in a position corresponding to said delivery pipe for controlling the amount of fuel sent by said pump into the accumulation volume, wherein the maximum value of the instantaneous flow rate delivered by said pumping element is of the same order of magnitude as the maximum flow rate of each of said injectors, said by-pass solenoid valve being controlled by a chopper control unit in synchronism with the injection phase of said injector.
The purpose of the invention is moreover achieved with a method for controlling the pressure of the fuel in an accumulation volume for a set of fuel injectors in an internal-combustion engine, in which the fuel is supplied to the accumulation volume by at least one reciprocating-motion pumping element with a compression stroke, said method including the following steps: providing said pumping element with a maximum value of the instantaneous flow rate of the same order of magnitude as the maximum flow rate of said injector; providing a by-pass solenoid valve on a delivery pipe of said pumping element; actuating said pumping element during each injection phase of said injector; and controlling said by-pass solenoid valve for modulating the delivery by varying both its instant of start and its instant of end, so that said delivery is barycentric with respect to said compression stroke.
For a better understanding of the invention two preferred embodiments are herein described, which are provided purely by way of example with the aid of the annexed drawings, in which:
With reference to
The injection system 1 comprises a plurality of electrically controlled injectors 5, associated to the cylinders 3 and designed to perform a phase of injection of fuel therein at high pressure for injecting therein the fuel at high pressure. The injectors 5 are connected to an accumulation volume, which has a pre-determined volume for one or more injectors 5. The accumulation volume can also be distributed in the delivery pipe 8 of the pump to the injectors.
In the embodiment illustrated in
The electric pump 9 is generally set in the usual fuel tank 11, out of which a pipe 12 extends for discharging fuel in excess of the injection system 1. The discharge pipe 12 conveys towards the tank 11 both the fuel in excess discharged by the injectors 5 and the possible fuel in excess discharged by the common rail 6, when the pressure exceeds the one defined by a regulation solenoid valve 15.
Furthermore, for controlling the pressure of the fuel in the common rail 6, between the high-pressure pump 7 and the tank 11, there is set at least one by-pass solenoid valve 14, which is designed to discharge into the tank 11, through the discharge pipe 12, the possible fuel in excess with respect to what is necessary for maintaining the pressure required in the common rail 6. The by-pass solenoid valve 14 is associated with a non-return valve 48 set on the delivery pipe 8.
In the tank 11, the fuel is at atmospheric pressure. In use, the electric pump 9 compresses the fuel at low pressure, for example in the region of 2-3 bar. In turn, the high-pressure pump 7 compresses the fuel received from the intake pipe 10 so as to send the fuel at high pressure, for example in the region of 1600 bar, to the common rail 6, via the delivery pipe 8. Each injector 5 is designed to be actuated for performing, in the corresponding cylinder 3, a fuel injection of variable flow rate, i.e., with an amount of fuel that can vary between a minimum value and a maximum value under the control of an electronic control unit 16, which may be formed by the usual microprocessor control unit for controlling the engine 2.
The control unit 16 is designed to receive signals indicating the conditions of operation of the engine 2, such as the position of the accelerator pedal and the r.p.m. of the engine shaft 4, which are detected by corresponding sensors, as well as the pressure of the fuel in the common rail 6, detected by a pressure sensor 17. By processing said received signals by means of an appropriate software, the control unit 16 controls the instant and the duration of the actuation of the individual injectors 5, as well as the regulation solenoid valve 15.
The high-pressure pump 7 comprises one or more pumping elements 18 of the reciprocating-motion type, each formed by a cylinder 19 having a compression chamber 20, in which there slides a piston 21. The compression chamber 20 is in communication with the intake pipe 10, via a intake valve 25, and is in communication with the delivery pipe 8, via a delivery valve 30. The piston 21 is actuated by cam means 22 carried by a shaft 23, with a sinusoidal reciprocating motion comprising a suction stroke and a compression or delivery stroke, as will be more clearly seen hereinafter.
In the example illustrated in
Advantageously, in the case of a four-stroke engine, the shaft 23 may be represented by the usual camshaft for control of the intake and exhaust valves of the cylinders 3 of the engine 2. In engines with four or more cylinders, the pump 7 is equipped in general with a number of pumping elements 18, which can be actuated by a common cam. In particular, in the embodiment of
In the diagram of
In the known art, represented by the diagram of
According to the invention, the pumping element 18 has an instantaneous flow rate, the maximum value of which is of the same order of magnitude as the maximum flow rate of each injector 5, as indicated in
The control unit 16 via the chopper unit 28 is designed to control the solenoid valve 14 by means of a PWM logic signal, and at a frequency correlated to the speed of the pump 7. Consequently, the delivery of the pump 7 is carried out only during a part of the compression stroke of the individual pumping element 18 when the by-pass solenoid valve 14 is intercepted or closed. Instead, in the remaining part of the compression stroke, since the by-pass valve 14 is open, the compression chamber 20 is in communication with the tank 11, so that the pump 7 presents a low dissipation of energy. The angle of effective delivery of each pumping element 18 is chosen according to the conditions of operation of the engine 2, i.e., according to the flow rate required by the injectors 5.
In particular, the control unit 16, via the chopper unit 28, is designed for modulating the delivery of the pumping elements 18 in a chopped way, controlling opening of the solenoid valve 14 between an instant To of start of delivery during compression and an instant T1 of end of delivery, so as to supply to the delivery pipe 8 the majority (area I0DCI1 in
In particular, the instants T0 and T1 correspond to two intermediate points of the compression stroke of the pumping element 18. The control unit 16, via the chopper unit 28, modulates or varies both the instant of start T0 of delivery and the instant of end T1 of delivery. Advantageously, to reduce the displacement of the pump 7, the delivery is symmetrical or barycentric both with respect to the compression stroke Pi-Ps of the pumping element 18 and with respect to the injection phase I0-I1. In this way, the common rail 6 may be designed with very small dimensions or may even coincide with the volume of the high-pressure pipe 8 itself, given that the fuel injected thereby is simultaneously reintegrated according to a diagram equivalent to the diagram of the injection phase.
According to the embodiment of
It is evident that the injection system described above provides a method for controlling the pressure of the fuel in the accumulation volume 6, into which the fuel is supplied by at least one pumping element 18, which moves with reciprocating motion including a compression stroke, through a delivery pipe 8 equipped with a by-pass solenoid valve 14, the method of control including the following steps: providing a pumping element 18 with an instantaneous maximum flow rate of the same order of magnitude as the maximum flow rate of an injection phase of each injector 5, providing a by-pass solenoid valve 14 on a delivery pipe 8 of said pumping element 18, actuating the pumping element 18 in synchronism with said injection phase, and controlling said by-pass solenoid valve 14 for modulating the delivery by varying both its instant of starting To and its instant of end T1, in such a way that said delivery is barycentric with respect to said compression stroke Pi-Ps.
In this way, the amount of fuel supplied by the common rail to each injector 5 for each injection phase is reduced to the minimum.
From what has been seen above, the advantages of the injection system according to the invention as compared to the known systems are evident. In particular, since the flow rate of the pumping element 18 is of the same order of magnitude as the maximum flow rate of an injection phase of the injector 5, the fuel supplied by the common rail 6 for injection is normally altogether negligible and is small also when the injector 5 operates at its maximum flow rate. Furthermore, since delivery is carried out simultaneously with injection and is barycentric both with respect to the injection phase and with respect to the compression stroke of the pumping element 18, the common rail 6 can have very small dimensions or be eliminated altogether, with beneficial effects on the layout of the injection system in the engine compartment.
It is understood that various other modifications and improvements may be made to the injection system described herein, without thereby departing from the scope of the claims. For example, the by-pass solenoid valve 14 may be integrated with the pump 7. Furthermore, each pumping element 18 of the pump 7 may be equipped with a by-pass solenoid valve of its own on the corresponding delivery pipe. The high-pressure pump 7 may be constituted by a pump with three or more radial pumping elements, used also in engines with a number of cylinders different from four. Finally, the pump 7 can also be constituted by just one pumping element 18.
Number | Date | Country | Kind |
---|---|---|---|
04425839.0 | Nov 2004 | EP | regional |
This is a continuation of U.S. patent application Ser. No. 11/113,502 filed on Apr. 25, 2005, which claims the benefit of European Patent Application Serial No. 04 425 839.0, filed on Nov. 12, 2004. The entire contents of these applications are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 11113502 | Apr 2005 | US |
Child | 12261650 | US |