This application claims priority of U.S. Provisional Patent Application Ser. No. 60/607,546 filed Sep. 7, 2004, which is incorporated herein by reference.
This invention relates to exhaust systems for contaminated gases produced by industrial machines or processes and more particularly to an exhaust system which is constantly ventilated by a blower having an output capacity which exceeds the average rate of production of gases by the machine or process and an accumulator for storing gases which are intermittently produced in excess of this average volume and slowly feeding them to the blower.
Fan or blower powered exhaust or ventilating systems are often used in industrial plants to remove and sometimes process contaminated gases produced by the machine or process being ventilated. Exhausted gases, sometimes after being processed, may be passed to the atmosphere or, after appropriate filtering and the like, recycled for further use in connection with the machine or process as make-up air. A wide variety of such machines or processes undergo a repetitive operational cycle and emit air or other gases at variable rates at different parts of the cycle. These gases may be generated by the machine or process itself or may constitute ventilating or flushing gases introduced to the machine or process. By way of example, casting machines intermittently feed molten metal into molds and require a high volume of ventilating air during the pour. Injection molding machines often use air-assisted molding which generates a high volume of exhaust air for a brief portion of the operational cycle of the machine.
Typical prior art systems have used exhaust blowers sized to exhaust the maximum volume of gases produced by the machine or process at any time during its cycle and operating on a continuous or semi-continuous basis. This requires relatively expensive and energy inefficient exhaust systems and typically requires larger make-up air units than might otherwise be required. For example, a machine might require continuous exhausting at X cubic feet per minute. Periodically, however, the exhaust volume must be increased to a much higher rate of Y cubic feet per minute, for a short period of time. Previous gas exhaust systems would be sized to continuously handle Y feet per minute. The need obviously exists for an improved system capable of meeting the exhaust needs of the machine without continuously operating at the highest exhaust rate required by the machine or process.
The present invention is accordingly directed toward an exhaust system for gaseous products of an industrial machine or process which operates on a repetitive cycle and must be exhausted at a higher rate at selected times in the cycle than at other times. This exhaust system is designed to operate continuously at the average volume of exhaust from the machine or process rather than the peak exhaust volume. During the periods of peak gaseous production from the machine or process, the output gas for the system, or at least that part of it which exceeds the average flow volume handled by the exhaust blower, is fed into an accumulator. The gas is then fed from the accumulator into the exhaust blower continuously during the cycle. In this manner the flow volume in excess of the average flow volume is stored in the accumulator and gradually released to the output exhaust blower. The accumulator may include apparatus for removing particulate material from the exhausted gases, for processing the gases to remove contaminants, to filter the gases, etc.
Other objects, advantages and applications of the present invention will be made apparent by the following detailed description of a preferred embodiment of the invention. The description makes reference to the accompanying drawings, in which:
The process or machine that is serviced by the exhaust system of the present invention is generally indicated at 10 in
The air or other gas used to ventilate the source 10 may be derived from line 12. The ventilation may be of a push variety, from an external blower (not shown), or the ventilating gases in line 12 may be drawn into the source 10 by the vacuum produced by the exhausting apparatus.
The exhaust from the source 10 may be carried by a duct 14 into a main exhaust duct 16 which also receives air or other gases from other machines or processes, or ambient air from the building housing the exhaust system, from a duct 18. The gases in the duct 16 may be passed through a processing apparatus 20 which could constitute an emissions control, a heat exchanger to change the temperature of the gas, a condensation chamber or other device to alter the state of the gas from the duct 16 before it is exhausted to the atmosphere or returned for further use.
Air or other gas to be exhausted is drawn through the duct 16 and the processing unit 20 by a primary blower 22. The output of the primary blower on line 24 may be exhausted to the atmosphere or returned to the plant for further use as make-up, air or the like either directly, or after passing through other suitable gas processing apparatus.
The blower 22 is designed, in accordance with the present invention, to operate at a flow rate which is at least equal, but preferably somewhat in excess, of the average flow volume required to exhaust the source 14 as well as the air or gas flowing through the duct 18. This average must be computed over a time period which includes all cyclical changes in that air or gas flow, including cyclical operation of the source 10.
In accordance with the present invention, the volume of gas or air outputted from the source 10 will vary during its operational cycle. The present invention does not have applicability to processes in which the exhaust rate from the source 10 as well as the flow of auxiliary air or gases through the duct 18 are constant over a long period of time. In that event the blower 22 is simply designed to be able to handle that average capacity. However, in accordance with the present invention the source 10 will produce exhausts at exhaust rates at one or more times during its operational cycle which are substantially in excess of the average flow from the source 10. Rather than designing the primary exhaust blower 22 with sufficient capacity to continuously handle these peak flow volumes. The blower 22 is designed to handle the lower average flow.
The exhaust from the source 10 also flows to an auxiliary duct 26 which feeds a secondary blower 28 designed to have sufficient capacity to handle the flow volumes from the source 10 which exceed the average volume produced over its cycle by the source 10. The blower 28 provides its output to a two-way directional switching device 30. In one position of the valve 30, employed when the volume of exhaust from the source 10 does not include peaks which exceed its average flow volume, the output of the blower 28 is fed back to the input on line 32 and relatively low energy is required to power the blower 28. At times when the exhaust from the source 10 must exceed its average flow volume, a control line 33 provides a signal to the valve 30, switching it to a position where flow is terminated through the feedback line 32, and is instead directed through duct 34 to an accumulator, generally indicated at 36.
The accumulator 36 constitutes a variable capacity gas storage device which has a flexible enclosure 38 connected to a hopper 40. As the valve 30 is switched to provide the flow output from the blower 28 into the accumulator 36, the flexible enclosure 38 expands to receive and temporarily store the exhausted gases. The bottom of the hopper is preferably sloped to receive any particulate matter that falls out of the exhaust gases which may be periodically removed through an outlet 42.
The accumulator 36 is continuously exhausted through the processing apparatus 20 and the blower 22 via a duct 44, through an adjustable orifice or damper 46 which limits the flow rate through duct 44 to volumes that represent the average of the peak volumes fed into the accumulator over the operational cycle of the source 10. Thus, the volume in the accumulator 40 is reduced at a constant rate.
To better understand operation of the system of
In an alternative embodiment of the invention constituting a variation on
In the system of
Flow volume peaks in excess of the average from the source 10 are fed through a duct 52 to the top of a variable volume bag 54 forming part of an accumulator generally indicated at 56. The volume within the accumulator is constantly drained during the operational cycle through a flow restricting valve 46 into a duct 44 which feeds the processor 10 and the exhaust blower 22.
Again, like the embodiment of
The average exhaust value is passed by the restrictor valve 50 to the line 14. Intermittent peak volumes in excess of the average volume are fed to an accumulator booth generally indicated at 60 which might constitute a hood over the source. The booth 60 contains a flexible bag 62 of variable volume. The interior of the bag 62 is maintained at a slight positive pressure, allowing the bag 62 to essentially fill the volume on the interior of the booth 60 in the absence of any flow from the source 10. This low positive pressure is maintained by a low volume blower 64 with a pressure relief valve 66 at its output, feeding back on line 68 to its input.
When the output flow from the line 58 exceeds the flow allowed by the restrictor valve 50, the excess volume is fed to the booth 60, deflating the bag 62 with the gas within the bag escaping through valve 66. After this surge, evacuation of the booth exterior of the bag 62 by the negative pressure from the blower 22, acting through the restrictor valve 46, allows the bag 62 to reinflate with air from the blower 64.
Having thus described my invention,
Number | Name | Date | Kind |
---|---|---|---|
2469006 | Shelby | May 1949 | A |
2949126 | Kuntz et al. | Aug 1960 | A |
3167415 | Edwards | Jan 1965 | A |
3838977 | Warren | Oct 1974 | A |
4174065 | Knauth | Nov 1979 | A |
4247519 | Sano | Jan 1981 | A |
4270694 | Knauth | Jun 1981 | A |
4280826 | Johnson, Jr. | Jul 1981 | A |
4454894 | Tallon | Jun 1984 | A |
4538605 | Gedeon et al. | Sep 1985 | A |
4645520 | Huttlin | Feb 1987 | A |
4758255 | Yamada et al. | Jul 1988 | A |
4874007 | Taylor | Oct 1989 | A |
4883418 | Hehl | Nov 1989 | A |
5145648 | Miyahara et al. | Sep 1992 | A |
5240399 | Baxi et al. | Aug 1993 | A |
5823177 | Whitehead | Oct 1998 | A |
6042791 | Johnson et al. | Mar 2000 | A |
6059497 | Iannone | May 2000 | A |
6122908 | Wirmark | Sep 2000 | A |
6343591 | Hara et al. | Feb 2002 | B1 |
20010027657 | Yamasaki et al. | Oct 2001 | A1 |
Number | Date | Country |
---|---|---|
003903140 | Aug 1989 | DE |
361046457 | Mar 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20060076075 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
60607546 | Sep 2004 | US |