1. Field of the Invention
The present invention relates in general to a refrigeration cycle system and more particularly to an accumulator installed in the refrigeration cycle system at a position between an evaporator and a compressor.
2. Description of the Related Art
In a refrigeration cycle system of vapor-compression type (or heat pump type), there is arranged an accumulator in a refrigerant flow line at a position between an evaporator and a compressor. The accumulator has basically two functions, one being to feed the compressor with gaseous refrigerant to prevent the compressor from effecting compression against liquid refrigerant, and the other being to return oil, which circulates in the refrigeration cycle circuit together with the refrigerant, to the compressor. Actually, the oil is applied to the compressor for lubricating rotating parts of the compressor. However, under operation of the refrigeration cycle system, the oil leaks into the refrigerant.
One of the accumulators having such two functions is shown in Japanese Laid-open Patent Application (Tokkai) 2004-324899.
In order to clarify the feature of the present invention, the accumulator of this Japanese Laid-open Patent Application will be briefly described with the aid of
In
The known accumulator 50 comprises a cylindrical case 52 which has a liquid accumulating chamber 51 formed therein, a refrigerant inlet pipe 53 through which refrigerant is led into the liquid accumulating chamber 51, a refrigerant outlet pipe 54 through which the refrigerant is discharged from the liquid accumulating chamber 51 to the outside (viz., to a compressor), stirring vanes 60 which are placed in the liquid accumulating chamber 51 and rotatably disposed around the refrigerant outlet pipe 54, and an electric drive mechanism (not shown) which turns the stirring vanes 60 with electric power. The refrigerant inlet pipe 53 has an outlet end 53a that is exposed to an upper part of the liquid accumulating chamber 51, as shown. The refrigerant outlet pipe 54 has an inlet end 54a that is exposed to the upper part of the liquid accumulating chamber 51. The refrigerant outlet pipe 54 is formed with a plurality of small openings 55 which serve as oil returning openings.
In operation of an associated refrigeration cycle system, refrigerant is led into the liquid accumulating chamber 51 from the refrigerant inlet pipe 53 as is indicated by an arrow. The refrigerant is then temporarily accumulated in the liquid accumulating chamber 51. During the temporal accumulation, liquid refrigerant is forced to take a lower position due to its higher specific gravity and gaseous refrigerant is forced to take a higher position due to its lower specific gravity. Since the inlet end 54a of the refrigerant outlet pipe 54 is kept exposed to the upper gaseous part of the liquid accumulating chamber 51, the inlet end 54a sucks only the gaseous refrigerant. The gaseous refrigerant thus led into the refrigerant outlet pipe 54 is led to the compressor (not shown). During this, the liquid refrigerant placed in the lower part (which will be referred to lower liquid part hereinafter) of the liquid accumulating chamber 51 is stirred by the stirring vanes 60. Thus, oil in the liquid refrigerant is sufficiently mixed with the liquid refrigerant. Then, a small amount of oil-mixed liquid refrigerant is led into the refrigerant outlet pipe 54 from the small openings 55 and then led to the compressor.
Usually, when it is very cold, for example, when the outside air temperature is lower than −25° C., it tends to occur that oil is separated from the oil-mixed liquid refrigerant due to difference in specific gravity and viscosity. In the known accumulator, such undesired separation is suppressed by the stirring work of the stirring vanes 60. Thus, in the known accumulator, a sufficient oil circulation rate (OCR) can be obtained in the refrigeration cycle system.
However, in the above-mentioned known accumulator, an electric drive mechanism is used for driving the stirring vanes 60. This means that it is necessary to provide an electric power source (or motor), a link mechanism extending between the power source and each stirring vane 60 and an electrically insulated construction for electric power transmission. Thus, the known accumulator tends to be complicated in construction and high in cost.
Accordingly, it is an object of the present invention to provide an accumulator for a refrigeration cycle system, which is free of the above-mentioned drawbacks.
That is, an object of the present invention is to provide an accumulator for a refrigeration cycle system, which can exhibit its essential function without the aid of electric power.
Another object of the present invention is to provide an accumulator for a refrigeration cycle system, which can exhibit its essential function without inducting complicated and high cost construction.
A still another object of the present invention is to provide an accumulator for a refrigeration cycle system, which can exhibit a sufficient oil circulation rate (OCR) even in a low temperature condition of an associated refrigeration cycle system.
In accordance with a first aspect of the present invention, there is provided an accumulator (1A, 1B) for use in a refrigeration cycle system, which comprises a liquid accumulating chamber (2) in which refrigerant is accumulated; a refrigerant inlet port (4a) through which the refrigerant is led into the liquid accumulating chamber (2); a refrigerant outlet pipe (5) that has an upstream open end (5a) exposed to an upper part of the liquid accumulating chamber (2) to discharge the refrigerant from the liquid accumulating chamber (2) to the outside of the chamber (2); an oil return opening (6) provided in a given part of the refrigerant outlet pipe (5) to return oil, which is contained in the refrigerant in the lower part of the liquid accumulating chamber (2), to a compressor of the refrigeration cycle system; a refrigerant flow generating structure (10, 30a, 30b) that provides the refrigerant from the refrigerant inlet port (4a) with a given flow, the given flow being produced by a drive force possessed by the refrigerant; and a refrigerant flow mixing structure (21, 31, 32) that provides the given flow of refrigerant from the refrigerant flow generating structure (10, 30a, 30b) with an upward-and-downward movement thereby to mix the refrigerant.
In accordance with a second aspect of the present invention, there is provided an accumulator (1A, 1B) for use in a refrigeration cycle system, which comprises a case (3) having a liquid accumulating chamber (2) defined therein, the liquid accumulating chamber (2) forming a gaseous part in an upper portion thereof and a liquid part in a lower portion thereof when the refrigeration cycle system is in operation; a refrigerant inlet pipe (4) through which refrigerant is led into the liquid accumulating chamber (2); a refrigerant outlet pipe (5) having an upstream open end (5a) exposed to the gaseous part of the liquid accumulating chamber (2), a middle part placed in the liquid part of the liquid accumulating chamber (2) and a downstream open end exposed to the outside of the case (3); a first flow guide device (10, 30a, 30b) installed in the liquid accumulating chamber (2) at a position near the refrigerant inlet pipe (4) to provide the refrigerant from the refrigerant inlet pipe (4) with a predetermined flow, the predetermined flow being produced by a kinetic energy possessed by the refrigerant; a second flow guide device (21, 31, 32) installed in the liquid accumulating chamber (2) at a position remote from the refrigerant inlet pipe (4) to provide the flow of refrigerant from the first flow guide device (10, 301, 30b) with an upward and downward movement; and an opening (6) formed in the middle part of the refrigerant outlet pipe (5) at a position near the second flow guide device (21, 31, 32) to discharge a certain small amount of refrigerant in the liquid part to the outside through the refrigerant outlet pipe (5).
Other objects and advantages of the present invention will become apparent from the following description when taken in conjunction with the accompanying drawings, in which:
In the following, the present invention will be described in detail with reference to the accompanying drawings.
For ease of understanding, in the following description, various directional terms, such as, upper, lower, right, left, upward and the like, are used. However, such terms are to be understood with respect to only a drawing or drawings on which corresponding portion or part is shown.
Referring to
Like the above-mentioned known accumulator 50 of
As is well shown in
As is seen from
As is seen from
As is seen from
As is seen from
As is seen from
As shown, the inlet end 5a of the refrigerant outlet pipe 5 is directed to the outlet end 4a of the refrigerant inlet pipe 4 keeping a given clearance therebetween.
The refrigerant outlet pipe 5 is formed at a portion near the interference ridge portion 21 with a small opening 6 which serves as an oil returning opening. The refrigerant outlet pipe 5 is connected to a refrigerant inlet port of the compressor (not shown).
As is seen from
More specifically, the flow guide device 10 comprises a cylindrical side wall 12 and a circular upper head 11.
As is seen from
As will be seen from
As is seen from
As is seen from
In the following, operation will be described with the aid of
Under operation of the associated refrigeration cycle system, refrigerant from the evaporator (not shown) is led into the liquid accumulating chamber 2 of the accumulator 1A through the refrigerant inlet pipe 4. As will be easily understood from
Because of the curved shape of the grooves 11b, the refrigerant having just passed through the grooves 11b shows a whirling movement along the cylindrical inner surface 2a of the case 3 and thus, in the lower part of the case 3, the refrigerant is whirled, as is shown in
As will be understood from
Even when the outside air temperature is very low (for example, lower than −25° C.) which would induce a possibility of separation of oil from the oil-mixed liquid refrigerant in the liquid accumulating chamber 2, such undesired oil separation is suppressed due to the enforced mixing of the oil-mixed liquid refrigerant.
As is seen from
As will be understood from the above, in the first embodiment of the present invention, the oil-mixed liquid refrigerant in the lower part of the accumulator 1A is effectively stirred or mixed without the aid of electric power. That is, the accumulator 1A can be produced without inducing complicated and high cost construction, and can exhibit a sufficient oil circulation rate (OCR) even in a low temperature condition of the refrigeration cycle system.
In the first embodiment, the flow guide device 10 provides the refrigerant led into the accumulator 1A with a whirling movement by practically using the force of kinetic energy and the own weight of the refrigerant. That is, in the first embodiment, such whirling flow of refrigerant is produced by a simple construction.
Because of the cylindrical inner surface 2a of the case 3, the whirling flow of refrigerant produced by the flow guide device 10 is smoothly promoted.
Due to provision of interference ridge portion 21, the whirling flow of refrigerant is forced to move upward and downward and thus, the refrigerant in the liquid accumulating chamber 2 is effectively stirred and mixed.
It is to be noted that the small opening 6 is provided near the interference ridge portion 21. This is because mixing of refrigerant is most effectively carried out near the interference ridge portion 21. Thus, the oil-mixed liquid refrigerant can be assuredly led to the compressor together with a certain amount of oil.
Referring to
Referring to
The accumulator 1B of the second embodiment is arranged to stand upright when in use, like in such a posture as shown in
As will be understood from
As will be seen from
As is best shown in
As is seen from
As is seen from
As is understood from
As is well shown in
As will be seen from
As will be seen from
Even when the outside air temperature is very low (for example, lower than −25° C.) which would induce a possibility of separation of oil from the oil-mixed liquid refrigerant in the liquid accumulating chamber 2, such undesired oil separation is suppressed due to the enforced mixing of the oil-mixed liquid refrigerant.
As is seen from
As will be understood from the above, also in the second embodiment of the present invention, the oil-mixed liquid refrigerant in the accumulator 1B is effectively stirred or mixed without the aid of electric power.
In the second embodiment, the zigzag flow of the refrigerant is easily produced by the two partition walls 30a and 30b. That is, in the second embodiment, such zigzag flow of refrigerant is produced by a simple construction.
Due to provision of the flow guide members 31 and 32, the zigzag flow of refrigerant led into the third flow passage 2c is forced to move upward and downward and thus, the refrigerant in the liquid accumulating chamber 2 is effectively stirred and mixed.
That is, the accumulator 1B of the second embodiment can be produced without inducing complicated and high cost construction and can exhibit a sufficient oil circulation rate (OCR) even in a low temperature condition of the refrigeration cycle system.
In the above-mentioned first and second embodiments 1A and 1B, the flow guide device 10 and the two partition walls 30a and 30b are used for providing the flow of refrigerant with a whirling movement and zigzag movement respectively. However, if desired, such movement may be produced by other devices.
In the above-mentioned first and second embodiments 1A and 1B, the interference ridge portion 21 and the flow guide members 31 and 32 are used to move the flow of refrigerant upward and downward for effectively mixing the refrigerant in the liquid accumulating chamber 2. However, if desired, such upward and downward movement may be produced by other devices.
The entire contents of Japanese Patent Application 2010-284282 filed Dec. 21, 2010 are incorporated herein by reference.
Although the invention has been described above with reference to the embodiments of the invention, the invention is not limited to such embodiments as described above. Various modifications and variations of such embodiments may be carried out by those skilled in the art, in light of the above description.
Number | Date | Country | Kind |
---|---|---|---|
2010-284282 | Dec 2010 | JP | national |