Acetabular cup prosthesis positioning instrument and method

Information

  • Patent Grant
  • 11090170
  • Patent Number
    11,090,170
  • Date Filed
    Wednesday, May 2, 2018
    6 years ago
  • Date Issued
    Tuesday, August 17, 2021
    3 years ago
Abstract
A method for assisting in positioning the acetabular cup comprises orienting a cup positioning instrument with a cup thereon in an initial reference orientation relative to an acetabulum of a pelvis with the cup forming a joint with the acetabulum, the cup positioning instrument comprising an inertial sensor unit with pre-planned orientation data for a desired cup orientation based on at least one landmark of the pelvis, The cup positioning instrument is rotated to a desired abduction angle as guided by an interface of the cup positioning instrument, based on movements relative to at least one landmark. The cup positioning instrument is rotated to a desired anteversion angle as guided by the interface of the cup positioning instrument, based on movements relative to the at least one landmark. Upon reaching the desired cup orientation as indicated by the interface, the cup is impacted into the acetabulum.
Description
FIELD OF THE APPLICATION

The present application relates to computer-assisted surgery for hip using inertial sensors.


BACKGROUND OF THE ART

During orthopedic implant procedures, e.g. total hip replacement (THR), the orientation of the surgical implants has a direct impact on the postoperative function and long term operability of the implant. Conventional surgical techniques use simple “eyeballing” methods or mechanical tools to position the implant. The “eyeballing” method may be found as being insufficient to provide an accurate alignment of the implant components with the bones where the implant is attached. Studies have shown that sub-optimally positioned orthopedic implants correlate to improper loading, increased implant wear, and even implant failure.


Commercially available computer-assisted surgery systems use tracked tools using optical or magnetic tracking systems. These systems are able to track patient coordinate system accurately and reliably. However, the factors, such as high costs, limited operating range, maintaining a line of sight contact, magnetic interferences, are main issues associated with these technologies.


Inertial sensors have hence been used as tracking technology in computer-assisted surgery. Inertial sensors do not rely on signal transmission and are immune to electromagnetic disturbances during operation. Therefore, inertial sensors are well suited for applications in the OR environment containing a large amount of equipment.


SUMMARY OF THE APPLICATION

It is therefore an aim of the present disclosure to provide a novel method and system to assist in positioning the acetabular cup using inertial sensors.


Therefore, in accordance with the present application, there is provided a method for assisting in positioning the acetabular cup comprising: orienting a cup positioning instrument with a cup thereon in an initial reference orientation relative to an acetabulum of a pelvis with the cup forming a joint with the acetabulum, the cup positioning instrument comprising an inertial sensor unit with pre-planned orientation data for a desired cup orientation based on at least one landmark of the pelvis; rotating the cup positioning instrument to a desired abduction angle as guided by an interface of the cup positioning instrument, based on movements relative to at least one landmark; rotating the cup positioning instrument to a desired anteversion angle as guided by the interface of the cup positioning instrument, based on movements relative to the at least one landmark; and upon reaching the desired cup orientation as indicated by the interface, impacting the cup into the acetabulum.


Still further in accordance with the present disclosure, The method according to claim 1, wherein orienting the cup positioning instrument in an initial reference orientation comprises orienting the cup positioning instrument to a vertical orientation with the patient in lateral decubitus.


Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation comprises pointing a visual guide toward the at least one landmark, and wherein rotating the cup positioning instrument comprises rotating the cup positioning instrument while the visual guide points toward the at least one landmark.


Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation comprises pointing another visual guide on a second landmark.


Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation further comprises orienting the cup positioning instrument to a vertical orientation with the patient in lateral decubitus, and wherein the at least one landmark is a frontal plane of the patient


Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation further comprises pointing the visual guide toward the ASIS as the second landmark.


Still further in accordance with the present disclosure, a registration device is positioned to support the inertial sensor unit in a planned manner in the acetabulum of the pelvis to record a pre-operative pelvic coordinate system on the inertial sensor unit, and transferring the inertial sensor unit to the cup positioning instrument prior to orienting the cup positioning instrument.


Still further in accordance with the present disclosure, positioning the registration device in the planned manner comprises inserting a base of the registration device in the acetabulum, and abutting a patient-specific contour matching abutment surface of the registration device against the pelvis.


Still further in accordance with the present disclosure, a registration device is positioned in a planned manner in the acetabulum of the pelvis, a tracker device is secured to the pelvis using the registration device to record a pre-operative pelvic coordinate system on an inertial sensor unit of the tracker device, and transferring pelvic coordinate system to the inertial sensor unit of the cup positioning instrument prior to orienting the cup positioning instrument.


In accordance with another embodiment of the present disclosure, there is provided a cup impactor assembly comprising: a shaft; a cup coupler at a cup end of the shaft adapted to releasably connect a cup in fixed relation for subsequent impacting; a handle at an impacting end of the shaft; a visual guide mounted to at least one of the shaft and the handle, the visual guide producing visual guidance toward at least one anatomical landmark of a pelvis; an inertial sensor unit adapted to produce at least an orientation output related to an orientation of the cup impactor assembly and having a patient-specific file comprising: calibration data based on a planned geometric relation between an initial reference orientation of the cup impactor assembly and the at least one anatomical landmark of the pelvis via the visual guidance of the visual guide, the calibration data for calibrating the inertial sensor unit relative to the pelvis for the inertial sensor unit to produce said orientation output; and a desired acetabular cup orientation data based on preoperative planning.


Still further in accordance with the present disclosure, the visual guide is a light projector.


Still further in accordance with the present disclosure, the light projector projects two light beams angled relative to each other by a patient-specific angle based on a position of landmarks relative to one another, the planned geometric relation including the patient-specific angle.


Still further in accordance with the present disclosure, the initial reference orientation of the cup impactor assembly comprises a vertical orientation of the shaft with the patient in lateral decubitus with the visual guide pointing to two landmarks, the orientation output requiring that one of the two landmarks be pointed during movement to the desired acetabular cup orientation.


In accordance with another embodiment of the present disclosure, there is provided a kit comprising the cup impactor assembly as defined above, further comprising a registration device having a base adapted to be received in the acetabulum, a patient-specific contour matching abutment surface adapted to be abutted against the pelvis in accordance with a planned pelvic coordinate system, the registration device having a coupler adapted to be coupled to the inertial sensor unit to transfer the planned pelvic coordinate system prior to being used with the cup impactor assembly.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a planned reference angle for subsequent acetabular cup positioning navigation;



FIG. 2 is schematic view of 3-D models that may be used in the method of the present disclosure;



FIG. 3 is an elevation view of a pelvis in lateral decubitus and a pelvic positioning instrument;



FIG. 4 is a perspective view of a cup positioning instrument relative to a pelvis, as being calibrated for impacting use;



FIG. 5 is a schematic view of the reference angle as during calibration;



FIG. 6 is a block diagram of an inertial sensor unit of the cup positioning instrument;



FIG. 7 is a perspective view of a registration device used with the cup positioning instrument of FIG. 4, in accordance with an embodiment of the present disclosure; and



FIG. 8 is a perspective view of the registration device of FIG. 7 relative to a pelvis.





DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

Referring to the drawings, there is shown a sequence of steps to assist in positioning the acetabular cup using inertial sensors, to a planned orientation. The proposed method and system and method have minimum modifications on standard surgical techniques and instruments. For instance, instrumentation described hereinafter can be adaptable to surgeons' current practice, in that the instruments used are similar to standard surgical instruments that surgeons typically use in their daily practice. Moreover, surgical techniques using the proposed instrument are similar to the standard surgical techniques.


Pre-Operative Planning


The method of the present disclosure assists in orienting an acetabular cup implant as a function of a pre-operatively planned orientation. It is known that the orientation of the cup implant in the acetabulum has an abduction component and an anteversion component. The abduction (a.k.a., inclination) is the angle between the longitudinal axis (cranial-caudal axis) and the projection of the axis of the cup (i.e., the axis being normal to a rim of the cup) on the frontal plane. The anteversion is the angle between the acetabular axis and the frontal plane. Hence, often times the orientation of the cup is at a 3D angle relative to the standard patient planes (i.e., transverse plane, frontal plane, sagittal plane). Other definitions could be used for the anteversion and abduction, for instance based on anatomical or operative standpoints.


According to an embodiment, referring to FIG. 1, angle α is measured based on the patient's hip model. As shown in FIG. 2, the hip model may be a 3D hip model being the output from 3D reconstruction software using 2 orthogonal x-ray images, or any appropriate images (e.g., 2D lateral view as shown in FIG. 1, etc) from any appropriate imaging technique. In FIG. 1, angle α is defined by the angle between two lines. A first line connects the acetabulum center A and a chosen landmark B on the pelvis, such as the anterior-superior iliac spine (ASIS) on the operated side. A second line lies in the pelvic frontal plane and passes through the acetabulum center A. Other lines could be used, although the first and second line described are respectively related to a visually distinct landmark (ASIS) and a common reference plane (frontal plane). Other planning operations may be performed, for instance to determine reaming parameters, abduction and anteversion angles, implant dimensions, as well as for femoral planning.


Intra-Operative Steps


According to an embodiment, the patient is physically positioned in a strict lateral decubitus, i.e., one ASIS above the other, such that the axis passing through the ASIS is aligned with gravity. A pelvic positioning instrument such as shown in FIG. 3 and described in U.S. Patent Application Ser. No. 61/677,106, filed on Jul. 30, 2012, may be used to verify that the patient is in strict lateral decubitus. Any appropriate tracking device may be used to indicate the correct hip positioning. Moreover, it may be possible to use manual constraints to position and maintain the patient in strict lateral decubitus.


The femoral head may then be dislocated to expose the acetabulum. Reaming may be performed by the surgeon. The reaming may be guided by the pre-operative planning, for instance with respect to the reamer size, etc. After these steps, it may be required to verify that the hip remains in strict lateral decubitus, with repositioning of the hip being performed as needed.


Referring to FIG. 4, a cup positioning instrument 10 at an end of which an acetabular prosthesis cup (implant cup) is positioned, places the implant cup in the acetabulum. The cup positioning instrument 10 is similar in configuration to an impactor, in that it comprises a head 11 to which is mounted the implant cup, and an arm 12 and handle 13 with an impactor end, by which impacts may be transmitted to drive the implant cup in the reamed acetabulum. The head 11 is arranged such that an axis of the arm and handle is normal to a plane in which lies the rim of the implant cup. Stated differently, in an embodiment, the axis of the handle 13 is coincident with the axis of the cup, which cup axis is the reference to orient the cup in the acetabulum.


The instrument 10 further comprises a light projector (e.g., laser projector) as shown at 14 and an inertial sensor unit as shown at 20, both mounted to the arm or handle of the instrument in a known orientation, to track the instrument 10. The light projector 14 is arranged to produce light beams such that the light beams lie in the same plane as the axis of the instrument 10. Alternatively, visual guides such as pointing rods or like visual guides may be used.


The inertial sensor unit 20 is shown in greater detail in FIG. 6 and comprises appropriate micro-electromechanical sensors 21 (e.g., accelerometers, gyroscopes, inclinometers, or the like) and associated electronics and processor chosen to perform the tasks described hereinafter by outputting real-time orientation data related to the movements of the inertial sensor unit 20. The inertial sensor unit 20 is preprogrammed as a function of the pre-operative planning to perform the tasks described hereinafter. It is however known that the inertial sensor unit 20 must be calibrated for its readings to be related to the orientation of the pelvis, and may have a patient-specific file for calibration and navigation. As a starting point, instrument calibration data 22 is for instance provided for the inertial sensor unit 20 to be aligned at initialization with the shaft axis of the instrument 10. The instrument calibration data is based on a planned geometric relation between an initial reference orientation of the instrument 10 and an anatomical landmark(s) of the pelvis via visual guidance of light projector 14 or like visual guidance, the calibration data being used to calibrate the inertial sensor unit 20 relative to the pelvis for the inertial sensor unit 20 to be able to produce the orientation output based on the preoperative planning. The patient-specific file may also include a desired acetabular cup orientation data based on preoperative planning. The desired acetabular cup orientation data may for instance consists of anteversion angle data 23 and/or abduction angle data 24 also programmed into the inertial sensor unit 20, as a function of the pre-operative planning, the anteversion angle data 23 being representative of the anteversion angle at which the operator wants the cup to be, while the abduction angle data 24 is representative of the abduction angle at which the operator wants the cup to be. An interface 25, of any appropriate form, will also be provided as part of the inertial sensor unit 20, directly thereon or remotely therefrom. The interface 25 may be in the form of LEDs signaling a proper/improper orientation, or being a screen giving the numeric angle values.


When maintaining the implant cup in the acetabulum, prior to impacting, the instrument 10 is arranged to be vertical (i.e., an initial reference orientation). According to an embodiment, the inertial sensor unit 20 is used to guide the operator in achieving verticality of the instrument 10. For instance, LEDs may be provided on inertial sensor unit 20 to provide visual indication when appropriate verticality is reached. When the patient is in strict lateral decubitus, the verticality has the shaft axis of the instrument 10 lying in the frontal plane of the patient.


Then, as in FIG. 5, the light beams 1 and 2 are aligned with the chosen landmarks, for instance the ASIS A and the frontal plane, with the instrument 10 having its axis passing through the center of rotation of the acetabulum by mating engagement of the cup therein. To do so, the laser beams can be separated from one another by angle α. Light beam #2 is rotated by α° (i.e., the value obtained in pre-operative planning) from light beam #1, as light beam #1 stays as pointing toward the chosen landmark. As a result, laser beam #2 gives the patient frontal plane indication (i.e. local north). In these steps of rotating the light beams, the instrument 10 is kept vertical using the indication provided by the inertial sensor unit 20. By having the light beams #1 and #2 pointing to the landmark B and the frontal plane while the inertial sensor unit 20 is vertical, the inertial sensor unit 20 is calibrated whereby it may be used to calculate the shaft axis orientation relative to the desired implant orientation (e.g., in abduction and anteversion).


The instrument 10 is then rotated within the pelvic frontal plane, i.e., with the light beam #2 remaining in orientation. It is contemplated to draw a continuation of the light beam #2 on the drape or use any like visual marker prior to this rotation, and use such visual marker during the rotation to ensure that the light beam #2 remains aligned with the frontal plane. As the abduction angle was pre-planned, the inertial sensor unit 20 has been calibrated for indication of desired abduction angle. Hence, this abduction-adjusting rotation is guided by the inertial sensor unit 20, for instance by a LED being lit on the inertial sensor unit 20 (e.g. from a 1st array of LEDs on the inertial sensor unit 20), which indicates the target abduction angle is achieved, or by way of numerical data being provided to indicate the abduction angle.


The instrument 10 may also be rotated to a target anteversion angle. This is done by rotating the instrument 10 orthogonally relative to the light beam #2, i.e., by ensuring that the laser beam #2 remains relatively fixed during this articulation. Similarly to abduction, this anteversion-adjusting rotation is guided by the inertial sensor unit 20, for instance by a LED being lit on the inertial sensor unit 20 (e.g. from a 2nd array of LEDs on the inertial sensor unit 20), which indicates the target anteversion angle is reached, or by way of numerical data being provided to indicate the anteversion angle.


The abduction-adjusting and anteversion-adjusting rotations can be combined as one single movement. The target abduction and anteversion angles can be constantly lit on the inertial sensor unit 20 (e.g., indicated separately on the two arrays of LEDs that are orthogonal to each other), or the two sets of numerical angles may be provided simultaneously. In such an arrangement of arrays, the current cup orientation may be given by two red LEDs which display the real-time orientation. As the instrument 10 approaches the target abduction and anteversion orientations, the red LEDs should converge to the target LEDs (green). The actually position of the target LEDs will be displayed differently, in accordance with pre-operative planning by which the inertial sensor unit is configured with target anteversion and abduction angle. When the inertial sensor unit 20 indicates that the target angles are reached (for instance with the numerical display or light indicator), the implant cup is oriented as planned in anteversion and abduction, and impaction can be performed. As mentioned above, the interface 25 may be a miniature LED screen showing both the target cup orientation and instrument's current orientation in numerical value, which provides visual guidance of the instrument 10 during the cup navigation.


The above is one sequence of steps among others that can be performed in any appropriate order to reach a desired orientation for the implant cup. The sequence of steps may be modified where appropriate. For instance, the anteversion-adjusting rotation may be done prior to the abduction-adjusting rotation.


As alternative to the method described above, another approach is defined below.


Pre-Operative Planning


During planning, several landmarks are chosen on the pelvis or on the spine, e.g. ASIS, landmarks on the acetabular rim, landmarks on the sacrum, or any other identifiable landmarks on the spine, using the images and/or model.


A pelvic coordinate system or a local coordinate system containing the pelvis is built using the known angular and geometrical measurements from the 3D model, using the chosen landmarks. The target cup orientation (with anteversion and abduction angles) may be calculated with respect to this coordinate system. It is considered to use a registration device 30 as in FIGS. 7 and 8.


Intra-Operative Steps


During the intra-operative steps, the landmarks measured/identified in the pre-operative planning with model are identified intraoperatively and the known angular and geometrical measurements acquired in the model will be applied to find the pelvic coordinate system or the coordinate system containing the pelvis.


This can be achieved by the registration device 30 shown in FIGS. 7 and 8. The device 30 has a cup-like base 31 that is sized as a function of the reamed acetabulum, so as to be snuggly received therein, in the manner shown in FIG. 8, and is hence placed in the acetabulum during the operation (e.g. after reaming the native acetabulum). The device 30 may also have a patient-specific abutment 32, that has a contact surface fabricated in contour matching to be a replica of a corresponding surface of the pelvis, to ensure a high-precision complementary engagement between the patient-specific abutment 32 and the pelvis (with the cup-like base 31 in the reamed acetabulum. The patient-specific abutment 32 is based on the data obtained pre-operatively, and has a 3D contour matching geometry, whereby the 3D model of pre-planning is used in the fabrication process (e.g., 3D printing, NC machining, etc).


By way of the above-referred configuration, the device 30 identifies several pelvic landmarks simultaneously, whereby it may be used to secure one of the inertial sensor units 20 to the pelvis in such a way that the orientation of the inertial sensor unit 20 is known relative to the pelvic coordinate system. More specifically, knowing the geometrical & angular relation of these landmarks that was established in preoperative planning and used by contact with the base 31 and the patient-specific abutment 32 with the pelvis, the device 30 is in a known orientation relative to the pelvic coordinate system intra-operatively. For this purpose, the registration device 30 has an arm 33 projecting away from the base 31, and having an interface 34. The interface 34 may be a coupler to receive in a known manner one of the inertial sensor units 20 thereon, or may alternatively be provided with a pair of guides 35. In this alternative embodiment, the pair of guides 35 may be used to drive Steinmann pins or equivalent support into the pelvis, to attach one of the inertial sensor units 20 thereto, which inertial sensor unit 20 is part of a tracking device. The geometry of the arm 33 and interface 34 is selected based on the planning data to drive the pins into a desired location of the pelvis, in a desired orientation, such that the pelvic coordinate system may be transferred to an inertial sensor unit 20 that is rigidly attached to the pins or like support.


Depending on the nature of the registration device 30 (i.e., having either a coupler for inertial sensor unit 20 or a pair of guides 35), the subsequent steps are performed.


According to a 1st option, the inertial sensor unit 20 directly on the coupler of the registration device 30 is turned on when the registration device 30 is mounted to the pelvis in the manner shown in FIG. 8. The inertial sensor unit 20 is preprogrammed with the pelvic coordinate system which is known from preplanning. Hence, by being turned on at that moment, the inertial sensor unit 20 is calibrated, and may be removed from the registration device 30 and positioned on the instrument 10. A geometric constraint is then applied between the instrument 10 and the pelvic landmarks. The light projector can be used to achieve this constraint. Therefore, the target cup orientation can be transferred from the pelvic coordinate system to the local coordinate system of the instrument 10, and hence taken in consideration by the inertial sensor unit on the instrument 10 to then start navigation for movements toward desired orientation (e.g., anteversion and abduction). This option assumes that the pelvis stays stationary or quasi-stationary after reaming.


According to a 2nd option, using the registration device 30 with the guides 35, the registration device 30 is used as a guide to attach the tracking device with inertial sensor unit 20 on the pelvic at the location preoperatively determined (e.g., with the Steinmann pins). This tracking device will keep track of pelvic movement and update the target cup orientation in the local coordinate system of the inertial sensor unit 20 on the instrument 10 placed in the reamed acetabulum. The target cup orientation is programmed into and indicated by the inertial sensor unit 20 attached to the instrument 10, with the constraint that the two inertial sensor units (on the tracker device secured to the Steinmann pins and on the instrument 10) must be linked by a common reference. For example, this common reference can be achieved by laser beams or a mechanical linkage that provide constraint between the two inertial sensor units 20. Therefore, the inertial sensor unit on the instrument 10 gives the target cup orientation without the need for light projectors 14.


Similar approaches may be taken based on other patient positions, for instance in supine decubitus.

Claims
  • 1. A cup impactor assembly comprising: a shaft;a cup coupler at a cup end of the shaft adapted to releasably connect a cup in fixed relation for subsequent impacting;a handle at an impacting end of the shaft;a light projector mounted to at least one of the shaft and the handle, the light projector producing visual guidance toward at least one anatomical landmark of a pelvis, the light projector projecting at least two light beams angled relative to each other so as to diverge from one another from the light projector;an inertial sensor unit configured for producing at least an orientation output related to an orientation of the cup impactor assembly, the inertial sensor unit including a processor and a program executable by the processor and including: calibration data based on a planned geometric relation between an initial reference orientation of the cup impactor assembly and the at least one anatomical landmark of the pelvis as aligned with the visual guidance of the light projector, the calibration data for calibrating the inertial sensor unit relative to the pelvis for the inertial sensor unit to produce said orientation output; anda desired acetabular cup orientation data based on preoperative planning.
  • 2. The cup impactor assembly according to claim 1, wherein the light projector projects the two light beams angled relative to each other by a patient-specific angle based on a position of landmarks relative to one another, the planned geometric relation including the patient-specific angle.
  • 3. The cup impactor assembly according to claim 1, wherein the initial reference orientation of the cup impactor assembly comprises a vertical orientation of the shaft with the patient in lateral decubitus with the light projector pointing to two landmarks, the orientation output requiring that one of the two landmarks be pointed during movement to the desired acetabular cup orientation.
  • 4. A system comprising the cup impactor assembly according to claim 1, further comprising a registration device having a base adapted to be received in the acetabulum, a patient-specific contour matching abutment surface adapted to be abutted against the pelvis in accordance with a planned pelvic coordinate system, the registration device having a coupler adapted to be coupled to the inertial sensor unit to transfer the planned pelvic coordinate system prior to being used with the cup impactor assembly.
  • 5. A system comprising: a cup impactor including a shaft, a cup coupler at a cup end of the shaft adapted to releasably connect a cup in fixed relation for subsequent impacting, a handle at an impacting end of the shaft, a visual guide mounted to at least one of the shaft and the handle, the visual guide producing visual guidance toward at least one anatomical landmark of a pelvis; andan inertial sensor unit configured for producing at least an orientation output related to an orientation of the cup impactor, the inertial sensor unit including a processor and a program executable by the processor and including: calibration data based on a planned geometric relation between an initial reference orientation of the cup impactor assembly and the at least one anatomical landmark of the pelvis as aligned with the visual guidance of the visual guide, the calibration data for calibrating the inertial sensor unit relative to the pelvis for the inertial sensor unit to produce said orientation output, anda desired acetabular cup orientation data based on preoperative planning.
  • 6. The system according to claim 5, wherein the visual guide is a light projector.
  • 7. The system according to claim 6, wherein the light projector projects two light beams angled relative to each other by a patient-specific angle based on a position of landmarks relative to one another, the planned geometric relation including the patient-specific angle.
  • 8. The system according to claim 6, wherein the initial reference orientation of the cup impactor assembly comprises a vertical orientation of the shaft with the patient in lateral decubitus with the visual guide pointing to two landmarks, the orientation output requiring that one of the two landmarks be pointed during movement to the desired acetabular cup orientation.
  • 9. The system according to claim 6, further comprising a registration device having a base adapted to be received in the acetabulum, a patient-specific contour matching abutment surface adapted to be abutted against the pelvis in accordance with a planned pelvic coordinate system, the registration device having a coupler adapted to be coupled to the inertial sensor unit to transfer the planned pelvic coordinate system prior to being used with the cup impactor assembly.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a divisional application of Ser. No. 14/301,877 filed on Jul. 11, 2014 which claims the priority of U.S. Provisional Application Ser. No. 61/833,654, filed on Jun. 11, 2013 and incorporated herein SPE by reference.

US Referenced Citations (330)
Number Name Date Kind
4841975 Woolson Jun 1989 A
5098383 Hemmy et al. Mar 1992 A
5490854 Fisher et al. Feb 1996 A
5768134 Swaelens et al. Jun 1998 A
5871018 Delp et al. Feb 1999 A
5916219 Matsuno et al. Jun 1999 A
6991655 Iversen Jan 2006 B2
7357057 Chiang Apr 2008 B2
7468075 Lang et al. Dec 2008 B2
7510557 Bonutti Mar 2009 B1
7534263 Burdulis May 2009 B2
7618451 Berez et al. Nov 2009 B2
7634119 Tsougarakis et al. Dec 2009 B2
7717956 Lang May 2010 B2
7796791 Tsougarakis et al. Sep 2010 B2
7799077 Lang et al. Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7806897 Bonutti Oct 2010 B1
7967868 White et al. Jun 2011 B2
7981158 Fitz et al. Jul 2011 B2
8062302 Lang et al. Nov 2011 B2
8066708 Lang et al. Nov 2011 B2
8070752 Metzger et al. Dec 2011 B2
8077950 Tsougarakis et al. Dec 2011 B2
8083745 Lang et al. Dec 2011 B2
8092465 Metzger et al. Jan 2012 B2
8094900 Steines et al. Jan 2012 B2
8105330 Fitz et al. Jan 2012 B2
8122582 Burdulis, Jr. et al. Feb 2012 B2
8133234 Meridew et al. Mar 2012 B2
8160345 Pavlovskaia et al. Apr 2012 B2
8167823 Nycz May 2012 B2
8175683 Roose May 2012 B2
8221430 Park et al. Jul 2012 B2
8234097 Steines et al. Jul 2012 B2
8241293 Stone et al. Aug 2012 B2
8282646 Schoenefeld et al. Oct 2012 B2
8298237 Schoenefeld Oct 2012 B2
8337501 Fitz et al. Dec 2012 B2
8337507 Lang et al. Dec 2012 B2
8343218 Lang et al. Jan 2013 B2
8366771 Burdulis et al. Feb 2013 B2
8377129 Fitz et al. Feb 2013 B2
8439926 Bojarski et al. May 2013 B2
8460304 Fitz et al. Jun 2013 B2
8480754 Bojarski et al. Jul 2013 B2
8500740 Bojarski et al. Aug 2013 B2
8529568 Bouadi Sep 2013 B2
8529630 Bojarski Sep 2013 B2
8585708 Fitz et al. Sep 2013 B2
8545569 Fitz et al. Oct 2013 B2
8551099 Lang Oct 2013 B2
8551102 Fitz et al. Oct 2013 B2
8551103 Fitz et al. Oct 2013 B2
8551169 Fitz et al. Oct 2013 B2
8556906 Fitz et al. Oct 2013 B2
8556907 Fitz et al. Oct 2013 B2
8556971 Lang Oct 2013 B2
8556983 Bojarski et al. Oct 2013 B2
8561278 Fitz et al. Oct 2013 B2
8562611 Fitz et al. Oct 2013 B2
8562618 Fitz et al. Oct 2013 B2
8568479 Fitz et al. Oct 2013 B2
8568480 Fitz et al. Oct 2013 B2
8617172 Fitz et al. Dec 2013 B2
8617242 Philipp Dec 2013 B2
8623026 Wong et al. Jan 2014 B2
8634617 Tsougarakis et al. Jan 2014 B2
8638998 Steines et al. Jan 2014 B2
8641716 Fitz et al. Feb 2014 B2
8657827 Fitz et al. Feb 2014 B2
8682052 Fitz et al. Mar 2014 B2
8911447 van der Walt Dec 2014 B2
20030055502 Lang et al. Mar 2003 A1
20030153829 Sarin Aug 2003 A1
20030216669 Lang et al. Nov 2003 A1
20040092944 Penenberg May 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040147926 Iversen Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040153079 Tsougarakis et al. Aug 2004 A1
20040204644 Tsougarakis et al. Oct 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040236424 Berez et al. Nov 2004 A1
20050070897 Petersen Mar 2005 A1
20050182320 Stifter Aug 2005 A1
20050203536 Laffargue et al. Sep 2005 A1
20050209604 Penenberg Sep 2005 A1
20050234461 Burdulis et al. Oct 2005 A1
20050267584 Burdulis et al. Dec 2005 A1
20060064109 Iversen Mar 2006 A1
20060111722 Bouadi May 2006 A1
20060184177 Echeverri Aug 2006 A1
20070043375 Anissian Feb 2007 A1
20070083266 Lang Apr 2007 A1
20070100462 Lang et al. May 2007 A1
20070156171 Lang et al. Jul 2007 A1
20070157783 Chiang Jul 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070226986 Park et al. Oct 2007 A1
20070233141 Park et al. Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070250169 Lang Oct 2007 A1
20080051910 Kammerzell et al. Feb 2008 A1
20080114370 Schoenefeld May 2008 A1
20080147072 Park et al. Jun 2008 A1
20080161815 Schoenefeld et al. Jul 2008 A1
20080195216 Philipp Aug 2008 A1
20080243127 Lang et al. Oct 2008 A1
20080269757 McMinn Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080281328 Lang et al. Nov 2008 A1
20080281329 Fitz et al. Nov 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080287954 Kunz et al. Nov 2008 A1
20090024131 Metzgu et al. Jan 2009 A1
20090088753 Aram et al. Apr 2009 A1
20090088754 Aker et al. Apr 2009 A1
20090088755 Aker et al. Apr 2009 A1
20090088758 Bennett Apr 2009 A1
20090088759 Aram et al. Apr 2009 A1
20090088760 Aram et al. Apr 2009 A1
20090088761 Roose et al. Apr 2009 A1
20090088763 Aram et al. Apr 2009 A1
20090093816 Roose et al. Apr 2009 A1
20090099567 Zajac Apr 2009 A1
20090099665 Taylor Apr 2009 A1
20090110498 Park et al. Apr 2009 A1
20090131941 Park et al. May 2009 A1
20090131942 Aker et al. May 2009 A1
20090138020 Park et al. May 2009 A1
20090157083 Park et al. Jun 2009 A1
20090222014 Bojarksi et al. Sep 2009 A1
20090222016 Park et al. Sep 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090228113 Lang et al. Sep 2009 A1
20090254093 White et al. Oct 2009 A1
20090270868 Park et al. Oct 2009 A1
20090276045 Lang Nov 2009 A1
20090306676 Lang et al. Dec 2009 A1
20090307893 Burdulis, Jr. et al. Dec 2009 A1
20090312805 Lang et al. Dec 2009 A1
20100023015 Park Jan 2010 A1
20100042105 Park et al. Feb 2010 A1
20100049195 Park et al. Feb 2010 A1
20100054572 Tsougarakis et al. Mar 2010 A1
20100082035 Keefer Apr 2010 A1
20100087829 Metzger et al. Apr 2010 A1
20100137869 Borja Jun 2010 A1
20100152741 Park et al. Jun 2010 A1
20100152782 Stone et al. Jun 2010 A1
20100160917 Fitz et al. Jun 2010 A1
20100168754 Fitz et al. Jul 2010 A1
20100174376 Lang et al. Jul 2010 A1
20100185202 Lester et al. Jul 2010 A1
20100191244 White et al. Jul 2010 A1
20100212138 Carroll et al. Aug 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100217338 Carroll et al. Aug 2010 A1
20100228257 Bonutti Sep 2010 A1
20100234849 Bouadi Sep 2010 A1
20100249657 Nycz Sep 2010 A1
20100256479 Park et al. Oct 2010 A1
20100262150 Lian Oct 2010 A1
20100274534 Steines et al. Oct 2010 A1
20100281678 Burdulis, Jr. et al. Nov 2010 A1
20100286700 Snider et al. Nov 2010 A1
20100298894 Bojarski et al. Nov 2010 A1
20100303313 Lang et al. Dec 2010 A1
20100303317 Tsougarakis et al. Dec 2010 A1
20100303324 Lang et al. Dec 2010 A1
20100305573 Fitz et al. Dec 2010 A1
20100305574 Fitz et al. Dec 2010 A1
20100305708 Lang et al. Dec 2010 A1
20100305907 Fitz et al. Dec 2010 A1
20100329530 Lang et al. Dec 2010 A1
20110015636 Katrana et al. Jan 2011 A1
20110015637 De Smedt et al. Jan 2011 A1
20110015639 Metzger et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110040168 Arnaud et al. Feb 2011 A1
20110054478 Vanasse et al. Mar 2011 A1
20110060341 Angibaud et al. Mar 2011 A1
20110066193 Lang et al. Mar 2011 A1
20110066245 Lang et al. Mar 2011 A1
20110071533 Metzger et al. Mar 2011 A1
20110071581 Lang et al. Mar 2011 A1
20110071645 Bojarski et al. Mar 2011 A1
20110071802 Bojarski et al. Mar 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110092977 Salehi et al. Apr 2011 A1
20110093108 Ashby et al. Apr 2011 A1
20110106093 Romano et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110152871 Park Jun 2011 A1
20110160736 Meridew et al. Jun 2011 A1
20110160867 Meridew et al. Jun 2011 A1
20110166578 Stone et al. Jul 2011 A1
20110172672 Dubeau et al. Jul 2011 A1
20110184419 Meridew et al. Jul 2011 A1
20110196377 Hodorek et al. Aug 2011 A1
20110213368 Fitz et al. Sep 2011 A1
20110213373 Fitz et al. Sep 2011 A1
20110213374 Fitz et al. Sep 2011 A1
20110213376 Maxson et al. Sep 2011 A1
20110213377 Lang et al. Sep 2011 A1
20110213427 Fitz et al. Sep 2011 A1
20110213428 Fitz et al. Sep 2011 A1
20110213429 Lang et al. Sep 2011 A1
20110213430 Lang et al. Sep 2011 A1
20110213431 Fitz et al. Sep 2011 A1
20110214279 Park et al. Sep 2011 A1
20110218539 Fitz et al. Sep 2011 A1
20110218545 Catanzarite et al. Sep 2011 A1
20110218584 Fitz et al. Sep 2011 A1
20110224674 White et al. Sep 2011 A1
20110230888 Lang et al. Sep 2011 A1
20110238073 Lang et al. Sep 2011 A1
20110245835 Dodds et al. Oct 2011 A1
20110266265 Lang Nov 2011 A1
20110295329 Fitz et al. Dec 2011 A1
20110295378 Bojarski et al. Dec 2011 A1
20110313423 Lang et al. Dec 2011 A1
20110313424 Bono et al. Dec 2011 A1
20110319897 Lang et al. Dec 2011 A1
20110319900 Lang et al. Dec 2011 A1
20120010711 Antonyshyn et al. Jan 2012 A1
20120022406 Hladio Jan 2012 A1
20120029520 Lang et al. Feb 2012 A1
20120041445 Roose et al. Feb 2012 A1
20120041446 Wong et al. Feb 2012 A1
20120065640 Metzger et al. Mar 2012 A1
20120066892 Lang et al. Mar 2012 A1
20120071881 Lang et al. Mar 2012 A1
20120071882 Lang et al. Mar 2012 A1
20120071883 Lang et al. Mar 2012 A1
20120072185 Lang et al. Mar 2012 A1
20120078254 Ashby et al. Mar 2012 A1
20120078258 Lo et al. Mar 2012 A1
20120078259 Meridew Mar 2012 A1
20120093377 Tsougarakis et al. Apr 2012 A1
20120101503 Lang et al. Apr 2012 A1
20120109138 Meridew et al. May 2012 A1
20120116203 Vancraen et al. May 2012 A1
20120116562 Agnihotri et al. May 2012 A1
20120123422 Agnihotri et al. May 2012 A1
20120123423 Fryman May 2012 A1
20120130382 Iannotti et al. May 2012 A1
20120130687 Otto et al. May 2012 A1
20120136402 Burroughs May 2012 A1
20120141034 Iannotti et al. Jun 2012 A1
20120143197 Lang et al. Jun 2012 A1
20120151730 Fitz et al. Jun 2012 A1
20120157887 Fanson Jun 2012 A1
20120158001 Burdulis, Jr. et al. Jun 2012 A1
20120165820 De Smedt et al. Jun 2012 A1
20120172884 Zheng et al. Jul 2012 A1
20120191205 Bojarski et al. Jul 2012 A1
20120191420 Bojarski et al. Jul 2012 A1
20120192401 Pavlovskaia et al. Aug 2012 A1
20120197260 Fitz et al. Aug 2012 A1
20120197408 Lang et al. Aug 2012 A1
20120201440 Steines et al. Aug 2012 A1
20120209276 Schuster Aug 2012 A1
20120209394 Bojarski et al. Aug 2012 A1
20120215226 Bonutti Aug 2012 A1
20120221008 Carroll et al. Aug 2012 A1
20120226283 Meridew et al. Sep 2012 A1
20120232669 Bojarski et al. Sep 2012 A1
20120232670 Bojarski et al. Sep 2012 A1
20120232671 Bojarski Sep 2012 A1
20120239045 Li Sep 2012 A1
20120245647 Kunz et al. Sep 2012 A1
20120245699 Lang et al. Sep 2012 A1
20120265208 Smith Oct 2012 A1
20120271366 Katrana et al. Oct 2012 A1
20120276509 Iannotti et al. Nov 2012 A1
20120277751 Catanzarite et al. Nov 2012 A1
20120289966 Fitz et al. Nov 2012 A1
20120296337 Fitz et al. Nov 2012 A1
20120323247 Bettenga Dec 2012 A1
20120330319 Birkbeck Dec 2012 A1
20130018379 Fitz et al. Jan 2013 A1
20130018380 Fitz et al. Jan 2013 A1
20130018464 Fitz et al. Jan 2013 A1
20130023884 Fitz et al. Jan 2013 A1
20130024000 Bojarski et al. Jan 2013 A1
20130030419 Fitz et al. Jan 2013 A1
20130030441 Fitz et al. Jan 2013 A1
20130046310 Ranawat Feb 2013 A1
20130079781 Fitz et al. Mar 2013 A1
20130079876 Fitz et al. Mar 2013 A1
20130081247 Fitz et al. Apr 2013 A1
20130096562 Fitz et al. Apr 2013 A1
20130103363 Lang et al. Apr 2013 A1
20130110471 Lang et al. May 2013 A1
20130123792 Fitz et al. May 2013 A1
20130184713 Bojarski et al. Jul 2013 A1
20130197870 Steines et al. Aug 2013 A1
20130211409 Burdulis, Jr. et al. Aug 2013 A1
20130211410 Landes et al. Aug 2013 A1
20130211531 Steines et al. Aug 2013 A1
20130245803 Lang Sep 2013 A1
20130253522 Bojarski et al. Sep 2013 A1
20130261632 Livorsi Oct 2013 A1
20130289570 Chao Oct 2013 A1
20130296874 Chao Nov 2013 A1
20130297031 Hafez Nov 2013 A1
20130317511 Bojarski et al. Nov 2013 A1
20130331850 Bojarski et al. Dec 2013 A1
20140005792 Lang et al. Jan 2014 A1
20140029814 Fitz et al. Jan 2014 A1
20140031826 Bojarski et al. Jan 2014 A1
20140039631 Bojarski et al. Feb 2014 A1
20140052149 van der Walt Feb 2014 A1
20140058396 Fitz et al. Feb 2014 A1
20140058397 Fitz et al. Feb 2014 A1
20140066935 Fitz et al. Mar 2014 A1
20140066936 Fitz et al. Mar 2014 A1
20140074441 Fitz et al. Mar 2014 A1
20140086780 Miller et al. Mar 2014 A1
20140094925 Satterthwaite Apr 2014 A1
20140276871 Sherman Sep 2014 A1
20140276889 Head Sep 2014 A1
20140303631 Thornberry Oct 2014 A1
20150305891 Bergin Oct 2015 A1
20150313723 Jansen Nov 2015 A1
Foreign Referenced Citations (225)
Number Date Country
2004293091 Jun 2005 AU
2004293104 Jun 2005 AU
2005309692 Jun 2006 AU
2005311558 Jun 2006 AU
2002310193 Mar 2007 AU
2006297137 Apr 2007 AU
2002310193 May 2007 AU
2007202573 Jun 2007 AU
2007212033 Aug 2007 AU
2007226924 Sep 2007 AU
2009221773 Sep 2009 AU
2009246474 Nov 2009 AU
2010201200 Apr 2010 AU
2011203237 Jul 2011 AU
2010217903 Sep 2011 AU
2010236263 Nov 2011 AU
2010264466 Feb 2012 AU
2010289706 Mar 2012 AU
2010315099 May 2012 AU
2010327987 Jun 2012 AU
2011203237 Oct 2012 AU
2012216829 Oct 2012 AU
2012217654 Oct 2013 AU
2007212033 Jan 2014 AU
2014200073 Jan 2014 AU
2012289973 Mar 2014 AU
2012296556 Mar 2014 AU
2501041 Apr 2004 CA
2505371 May 2004 CA
2505419 Jun 2004 CA
2506849 Jun 2004 CA
2546958 Jun 2005 CA
2546965 Jun 2005 CA
2804883 Jun 2005 CA
2588907 Jun 2006 CA
2590534 Jun 2006 CA
2623834 Apr 2007 CA
2641241 Aug 2007 CA
2646288 Sep 2007 CA
2717760 Sep 2009 CA
2736525 Mar 2010 CA
2765499 Dec 2010 CA
2771573 Mar 2011 CA
2779283 May 2011 CA
2782137 Jun 2011 CA
2546965 Mar 2013 CA
1728976 Feb 2006 CN
1729483 Feb 2006 CN
1729484 Feb 2006 CN
1913844 Feb 2007 CN
101111197 Jan 2008 CN
101384230 Mar 2009 CN
101442960 May 2009 CN
100502808 Jun 2009 CN
102006841 Apr 2011 CN
102125448 Jul 2011 CN
102405032 Apr 2012 CN
102448394 May 2012 CN
101420911 Jul 2012 CN
102599960 Jul 2012 CN
1913844 Sep 2012 CN
102711670 Oct 2012 CN
102724934 Oct 2012 CN
102805677 Dec 2012 CN
1729483 Oct 2013 CN
103476363 Dec 2013 CN
60336002 D1 Mar 2011 DE
60239674 D1 May 2011 DE
602004032166 D1 May 2011 DE
602005027391 D1 May 2011 DE
1555962 Jul 2005 EP
1558181 Aug 2005 EP
1563810 Aug 2005 EP
1567985 Aug 2005 EP
1575460 Sep 2005 EP
1686930 Aug 2006 EP
1686931 Aug 2006 EP
1389980 Apr 2007 EP
1814491 Aug 2007 EP
1833387 Sep 2007 EP
1686930 Oct 2007 EP
1686931 Jan 2008 EP
1928359 Jun 2008 EP
1951136 Aug 2008 EP
1981409 Oct 2008 EP
1996121 Dec 2008 EP
2114312 Nov 2009 EP
2124764 Dec 2009 EP
1928359 Oct 2010 EP
2259753 Dec 2010 EP
2265199 Dec 2010 EP
1555962 Feb 2011 EP
2292188 Mar 2011 EP
2292189 Mar 2011 EP
1389980 Apr 2011 EP
1686930 Apr 2011 EP
1833387 Apr 2011 EP
2303193 Apr 2011 EP
2316357 May 2011 EP
2324799 May 2011 EP
2335654 Jun 2011 EP
2403434 Jan 2012 EP
2405865 Jan 2012 EP
2419035 Feb 2012 EP
2265199 Mar 2012 EP
2303193 Mar 2012 EP
2259753 Apr 2012 EP
2292188 May 2012 EP
2292189 May 2012 EP
2445451 May 2012 EP
2470126 Jul 2012 EP
2496183 Sep 2012 EP
2509539 Oct 2012 EP
2512381 Oct 2012 EP
2324799 Jan 2013 EP
2419035 Jan 2013 EP
2445451 Mar 2013 EP
2403434 Apr 2013 EP
2591756 May 2013 EP
2496183 Dec 2013 EP
2512381 Dec 2013 EP
2649951 Dec 2013 EP
2649951 Dec 2013 EP
2671520 Dec 2013 EP
2671521 Dec 2013 EP
2671522 Dec 2013 EP
2114312 Jan 2014 EP
2710967 Mar 2014 EP
2484042 Mar 2012 GB
2489884 Oct 2012 GB
201213674 Oct 2012 GB
2484042 Mar 2014 GB
1059882 Aug 2011 HK
1072710 Aug 2011 HK
1087324 Nov 2011 HK
1104776 Nov 2011 HK
2005-224613 Aug 2005 JP
2006510403 Mar 2006 JP
2007514470 Jun 2007 JP
2011519713 Jul 2011 JP
2011224384 Nov 2011 JP
2012091033 May 2012 JP
2012176318 Sep 2012 JP
5053515 Oct 2012 JP
2012187415 Oct 2012 JP
2012523897 Oct 2012 JP
5074036 Nov 2012 JP
2012531265 Dec 2012 JP
2013503007 Jan 2013 JP
5148284 Feb 2013 JP
5198069 May 2013 JP
2014000425 Jan 2014 JP
20050072500 Jul 2005 KR
20050084024 Aug 2005 KR
20120090997 Aug 2012 KR
20120102576 Sep 2012 KR
2012007140 Jan 2013 MX
597261 Nov 2013 NZ
173840 Sep 2011 SG
175229 Nov 2011 SG
176833 Jan 2012 SG
178836 Apr 2012 SG
193484 Oct 2013 SG
200509870 Mar 2005 TW
1231755 May 2005 TW
200800123 Jan 2008 TW
1330075 Sep 2010 TW
2004049981 Jun 2004 WO
2004051301 Jun 2004 WO
2004112640 Dec 2004 WO
2005051239 Jun 2005 WO
2005051240 Jun 2005 WO
2006058057 Jun 2006 WO
2006060795 Jun 2006 WO
2006058057 Jul 2006 WO
2007041375 Apr 2007 WO
2007062103 May 2007 WO
2007092841 Aug 2007 WO
2007109641 Sep 2007 WO
2007092841 Nov 2007 WO
2007109641 Dec 2007 WO
2008101090 Aug 2008 WO
2008112996 Sep 2008 WO
2008101090 Nov 2008 WO
2008157412 Dec 2008 WO
2007041375 Apr 2009 WO
2008157412 Apr 2009 WO
2009111626 Sep 2009 WO
2009111639 Sep 2009 WO
2009111656 Sep 2009 WO
2009140294 Nov 2009 WO
2009111626 Jan 2010 WO
2010030809 Mar 2010 WO
2010099231 Sep 2010 WO
2010099353 Sep 2010 WO
2010121147 Oct 2010 WO
2010099231 Nov 2010 WO
2011028624 Mar 2011 WO
2011056995 May 2011 WO
2011072235 Jun 2011 WO
2011075697 Jun 2011 WO
2011056995 Sep 2011 WO
2011075697 Oct 2011 WO
2011072235 Dec 2011 WO
2012112694 Aug 2012 WO
2012112694 Aug 2012 WO
2012112698 Aug 2012 WO
2012112701 Aug 2012 WO
2012112702 Aug 2012 WO
2012112694 Jan 2013 WO
2012112701 Jan 2013 WO
2012112702 Jan 2013 WO
2013020026 Feb 2013 WO
2013025814 Feb 2013 WO
2012112698 Mar 2013 WO
2013056036 Apr 2013 WO
2013119790 Aug 2013 WO
2013119865 Aug 2013 WO
2013131066 Sep 2013 WO
2013152341 Oct 2013 WO
2013155500 Oct 2013 WO
2013155501 Oct 2013 WO
2014008444 Jan 2014 WO
2014035991 Mar 2014 WO
2014047514 Mar 2014 WO
Non-Patent Literature Citations (1)
Entry
Hofmann et al, “Natural-Knee II System”, Intermedics Orthopedics, Austin, TX, 1995.
Related Publications (1)
Number Date Country
20180250144 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
61833654 Jun 2013 US
Divisions (1)
Number Date Country
Parent 14301877 Jun 2014 US
Child 15968868 US