The present application relates to computer-assisted surgery for hip using inertial sensors.
During orthopedic implant procedures, e.g. total hip replacement (THR), the orientation of the surgical implants has a direct impact on the postoperative function and long term operability of the implant. Conventional surgical techniques use simple “eyeballing” methods or mechanical tools to position the implant. The “eyeballing” method may be found as being insufficient to provide an accurate alignment of the implant components with the bones where the implant is attached. Studies have shown that sub-optimally positioned orthopedic implants correlate to improper loading, increased implant wear, and even implant failure.
Commercially available computer-assisted surgery systems use tracked tools using optical or magnetic tracking systems. These systems are able to track patient coordinate system accurately and reliably. However, the factors, such as high costs, limited operating range, maintaining a line of sight contact, magnetic interferences, are main issues associated with these technologies.
Inertial sensors have hence been used as tracking technology in computer-assisted surgery. Inertial sensors do not rely on signal transmission and are immune to electromagnetic disturbances during operation. Therefore, inertial sensors are well suited for applications in the OR environment containing a large amount of equipment.
It is therefore an aim of the present disclosure to provide a novel method and system to assist in positioning the acetabular cup using inertial sensors.
Therefore, in accordance with the present application, there is provided a method for assisting in positioning the acetabular cup comprising: orienting a cup positioning instrument with a cup thereon in an initial reference orientation relative to an acetabulum of a pelvis with the cup forming a joint with the acetabulum, the cup positioning instrument comprising an inertial sensor unit with pre-planned orientation data for a desired cup orientation based on at least one landmark of the pelvis; rotating the cup positioning instrument to a desired abduction angle as guided by an interface of the cup positioning instrument, based on movements relative to at least one landmark; rotating the cup positioning instrument to a desired anteversion angle as guided by the interface of the cup positioning instrument, based on movements relative to the at least one landmark; and upon reaching the desired cup orientation as indicated by the interface, impacting the cup into the acetabulum.
Still further in accordance with the present disclosure, The method according to claim 1, wherein orienting the cup positioning instrument in an initial reference orientation comprises orienting the cup positioning instrument to a vertical orientation with the patient in lateral decubitus.
Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation comprises pointing a visual guide toward the at least one landmark, and wherein rotating the cup positioning instrument comprises rotating the cup positioning instrument while the visual guide points toward the at least one landmark.
Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation comprises pointing another visual guide on a second landmark.
Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation further comprises orienting the cup positioning instrument to a vertical orientation with the patient in lateral decubitus, and wherein the at least one landmark is a frontal plane of the patient
Still further in accordance with the present disclosure, orienting the cup positioning instrument in an initial reference orientation further comprises pointing the visual guide toward the ASIS as the second landmark.
Still further in accordance with the present disclosure, a registration device is positioned to support the inertial sensor unit in a planned manner in the acetabulum of the pelvis to record a pre-operative pelvic coordinate system on the inertial sensor unit, and transferring the inertial sensor unit to the cup positioning instrument prior to orienting the cup positioning instrument.
Still further in accordance with the present disclosure, positioning the registration device in the planned manner comprises inserting a base of the registration device in the acetabulum, and abutting a patient-specific contour matching abutment surface of the registration device against the pelvis.
Still further in accordance with the present disclosure, a registration device is positioned in a planned manner in the acetabulum of the pelvis, a tracker device is secured to the pelvis using the registration device to record a pre-operative pelvic coordinate system on an inertial sensor unit of the tracker device, and transferring pelvic coordinate system to the inertial sensor unit of the cup positioning instrument prior to orienting the cup positioning instrument.
In accordance with another embodiment of the present disclosure, there is provided a cup impactor assembly comprising: a shaft; a cup coupler at a cup end of the shaft adapted to releasably connect a cup in fixed relation for subsequent impacting; a handle at an impacting end of the shaft; a visual guide mounted to at least one of the shaft and the handle, the visual guide producing visual guidance toward at least one anatomical landmark of a pelvis; an inertial sensor unit adapted to produce at least an orientation output related to an orientation of the cup impactor assembly and having a patient-specific file comprising: calibration data based on a planned geometric relation between an initial reference orientation of the cup impactor assembly and the at least one anatomical landmark of the pelvis via the visual guidance of the visual guide, the calibration data for calibrating the inertial sensor unit relative to the pelvis for the inertial sensor unit to produce said orientation output; and a desired acetabular cup orientation data based on preoperative planning.
Still further in accordance with the present disclosure, the visual guide is a light projector.
Still further in accordance with the present disclosure, the light projector projects two light beams angled relative to each other by a patient-specific angle based on a position of landmarks relative to one another, the planned geometric relation including the patient-specific angle.
Still further in accordance with the present disclosure, the initial reference orientation of the cup impactor assembly comprises a vertical orientation of the shaft with the patient in lateral decubitus with the visual guide pointing to two landmarks, the orientation output requiring that one of the two landmarks be pointed during movement to the desired acetabular cup orientation.
In accordance with another embodiment of the present disclosure, there is provided a kit comprising the cup impactor assembly as defined above, further comprising a registration device having a base adapted to be received in the acetabulum, a patient-specific contour matching abutment surface adapted to be abutted against the pelvis in accordance with a planned pelvic coordinate system, the registration device having a coupler adapted to be coupled to the inertial sensor unit to transfer the planned pelvic coordinate system prior to being used with the cup impactor assembly.
Referring to the drawings, there is shown a sequence of steps to assist in positioning the acetabular cup using inertial sensors, to a planned orientation. The proposed method and system and method have minimum modifications on standard surgical techniques and instruments. For instance, instrumentation described hereinafter can be adaptable to surgeons' current practice, in that the instruments used are similar to standard surgical instruments that surgeons typically use in their daily practice. Moreover, surgical techniques using the proposed instrument are similar to the standard surgical techniques.
Pre-Operative Planning
The method of the present disclosure assists in orienting an acetabular cup implant as a function of a pre-operatively planned orientation. It is known that the orientation of the cup implant in the acetabulum has an abduction component and an anteversion component. The abduction (a.k.a., inclination) is the angle between the longitudinal axis (cranial-caudal axis) and the projection of the axis of the cup (i.e., the axis being normal to a rim of the cup) on the frontal plane. The anteversion is the angle between the acetabular axis and the frontal plane. Hence, often times the orientation of the cup is at a 3D angle relative to the standard patient planes (i.e., transverse plane, frontal plane, sagittal plane). Other definitions could be used for the anteversion and abduction, for instance based on anatomical or operative standpoints.
According to an embodiment, referring to
Intra-Operative Steps
According to an embodiment, the patient is physically positioned in a strict lateral decubitus, i.e., one ASIS above the other, such that the axis passing through the ASIS is aligned with gravity. A pelvic positioning instrument such as shown in
The femoral head may then be dislocated to expose the acetabulum. Reaming may be performed by the surgeon. The reaming may be guided by the pre-operative planning, for instance with respect to the reamer size, etc. After these steps, it may be required to verify that the hip remains in strict lateral decubitus, with repositioning of the hip being performed as needed.
Referring to
The instrument 10 further comprises a light projector (e.g., laser projector) as shown at 14 and an inertial sensor unit as shown at 20, both mounted to the arm or handle of the instrument in a known orientation, to track the instrument 10. The light projector 14 is arranged to produce light beams such that the light beams lie in the same plane as the axis of the instrument 10. Alternatively, visual guides such as pointing rods or like visual guides may be used.
The inertial sensor unit 20 is shown in greater detail in
When maintaining the implant cup in the acetabulum, prior to impacting, the instrument 10 is arranged to be vertical (i.e., an initial reference orientation). According to an embodiment, the inertial sensor unit 20 is used to guide the operator in achieving verticality of the instrument 10. For instance, LEDs may be provided on inertial sensor unit 20 to provide visual indication when appropriate verticality is reached. When the patient is in strict lateral decubitus, the verticality has the shaft axis of the instrument 10 lying in the frontal plane of the patient.
Then, as in
The instrument 10 is then rotated within the pelvic frontal plane, i.e., with the light beam #2 remaining in orientation. It is contemplated to draw a continuation of the light beam #2 on the drape or use any like visual marker prior to this rotation, and use such visual marker during the rotation to ensure that the light beam #2 remains aligned with the frontal plane. As the abduction angle was pre-planned, the inertial sensor unit 20 has been calibrated for indication of desired abduction angle. Hence, this abduction-adjusting rotation is guided by the inertial sensor unit 20, for instance by a LED being lit on the inertial sensor unit 20 (e.g. from a 1st array of LEDs on the inertial sensor unit 20), which indicates the target abduction angle is achieved, or by way of numerical data being provided to indicate the abduction angle.
The instrument 10 may also be rotated to a target anteversion angle. This is done by rotating the instrument 10 orthogonally relative to the light beam #2, i.e., by ensuring that the laser beam #2 remains relatively fixed during this articulation. Similarly to abduction, this anteversion-adjusting rotation is guided by the inertial sensor unit 20, for instance by a LED being lit on the inertial sensor unit 20 (e.g. from a 2nd array of LEDs on the inertial sensor unit 20), which indicates the target anteversion angle is reached, or by way of numerical data being provided to indicate the anteversion angle.
The abduction-adjusting and anteversion-adjusting rotations can be combined as one single movement. The target abduction and anteversion angles can be constantly lit on the inertial sensor unit 20 (e.g., indicated separately on the two arrays of LEDs that are orthogonal to each other), or the two sets of numerical angles may be provided simultaneously. In such an arrangement of arrays, the current cup orientation may be given by two red LEDs which display the real-time orientation. As the instrument 10 approaches the target abduction and anteversion orientations, the red LEDs should converge to the target LEDs (green). The actually position of the target LEDs will be displayed differently, in accordance with pre-operative planning by which the inertial sensor unit is configured with target anteversion and abduction angle. When the inertial sensor unit 20 indicates that the target angles are reached (for instance with the numerical display or light indicator), the implant cup is oriented as planned in anteversion and abduction, and impaction can be performed. As mentioned above, the interface 25 may be a miniature LED screen showing both the target cup orientation and instrument's current orientation in numerical value, which provides visual guidance of the instrument 10 during the cup navigation.
The above is one sequence of steps among others that can be performed in any appropriate order to reach a desired orientation for the implant cup. The sequence of steps may be modified where appropriate. For instance, the anteversion-adjusting rotation may be done prior to the abduction-adjusting rotation.
As alternative to the method described above, another approach is defined below.
Pre-Operative Planning
During planning, several landmarks are chosen on the pelvis or on the spine, e.g. ASIS, landmarks on the acetabular rim, landmarks on the sacrum, or any other identifiable landmarks on the spine, using the images and/or model.
A pelvic coordinate system or a local coordinate system containing the pelvis is built using the known angular and geometrical measurements from the 3D model, using the chosen landmarks. The target cup orientation (with anteversion and abduction angles) may be calculated with respect to this coordinate system. It is considered to use a registration device 30 as in
Intra-Operative Steps
During the intra-operative steps, the landmarks measured/identified in the pre-operative planning with model are identified intraoperatively and the known angular and geometrical measurements acquired in the model will be applied to find the pelvic coordinate system or the coordinate system containing the pelvis.
This can be achieved by the registration device 30 shown in
By way of the above-referred configuration, the device 30 identifies several pelvic landmarks simultaneously, whereby it may be used to secure one of the inertial sensor units 20 to the pelvis in such a way that the orientation of the inertial sensor unit 20 is known relative to the pelvic coordinate system. More specifically, knowing the geometrical & angular relation of these landmarks that was established in preoperative planning and used by contact with the base 31 and the patient-specific abutment 32 with the pelvis, the device 30 is in a known orientation relative to the pelvic coordinate system intra-operatively. For this purpose, the registration device 30 has an arm 33 projecting away from the base 31, and having an interface 34. The interface 34 may be a coupler to receive in a known manner one of the inertial sensor units 20 thereon, or may alternatively be provided with a pair of guides 35. In this alternative embodiment, the pair of guides 35 may be used to drive Steinmann pins or equivalent support into the pelvis, to attach one of the inertial sensor units 20 thereto, which inertial sensor unit 20 is part of a tracking device. The geometry of the arm 33 and interface 34 is selected based on the planning data to drive the pins into a desired location of the pelvis, in a desired orientation, such that the pelvic coordinate system may be transferred to an inertial sensor unit 20 that is rigidly attached to the pins or like support.
Depending on the nature of the registration device 30 (i.e., having either a coupler for inertial sensor unit 20 or a pair of guides 35), the subsequent steps are performed.
According to a 1st option, the inertial sensor unit 20 directly on the coupler of the registration device 30 is turned on when the registration device 30 is mounted to the pelvis in the manner shown in
According to a 2nd option, using the registration device 30 with the guides 35, the registration device 30 is used as a guide to attach the tracking device with inertial sensor unit 20 on the pelvic at the location preoperatively determined (e.g., with the Steinmann pins). This tracking device will keep track of pelvic movement and update the target cup orientation in the local coordinate system of the inertial sensor unit 20 on the instrument 10 placed in the reamed acetabulum. The target cup orientation is programmed into and indicated by the inertial sensor unit 20 attached to the instrument 10, with the constraint that the two inertial sensor units (on the tracker device secured to the Steinmann pins and on the instrument 10) must be linked by a common reference. For example, this common reference can be achieved by laser beams or a mechanical linkage that provide constraint between the two inertial sensor units 20. Therefore, the inertial sensor unit on the instrument 10 gives the target cup orientation without the need for light projectors 14.
Similar approaches may be taken based on other patient positions, for instance in supine decubitus.
The present application is a divisional application of Ser. No. 14/301,877 filed on Jul. 11, 2014 which claims the priority of U.S. Provisional Application Ser. No. 61/833,654, filed on Jun. 11, 2013 and incorporated herein SPE by reference.
Number | Name | Date | Kind |
---|---|---|---|
4841975 | Woolson | Jun 1989 | A |
5098383 | Hemmy et al. | Mar 1992 | A |
5490854 | Fisher et al. | Feb 1996 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5871018 | Delp et al. | Feb 1999 | A |
5916219 | Matsuno et al. | Jun 1999 | A |
6991655 | Iversen | Jan 2006 | B2 |
7357057 | Chiang | Apr 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7510557 | Bonutti | Mar 2009 | B1 |
7534263 | Burdulis | May 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7717956 | Lang | May 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7806896 | Bonutti | Oct 2010 | B1 |
7806897 | Bonutti | Oct 2010 | B1 |
7967868 | White et al. | Jun 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8070752 | Metzger et al. | Dec 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8092465 | Metzger et al. | Jan 2012 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8122582 | Burdulis, Jr. et al. | Feb 2012 | B2 |
8133234 | Meridew et al. | Mar 2012 | B2 |
8160345 | Pavlovskaia et al. | Apr 2012 | B2 |
8167823 | Nycz | May 2012 | B2 |
8175683 | Roose | May 2012 | B2 |
8221430 | Park et al. | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8241293 | Stone et al. | Aug 2012 | B2 |
8282646 | Schoenefeld et al. | Oct 2012 | B2 |
8298237 | Schoenefeld | Oct 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337507 | Lang et al. | Dec 2012 | B2 |
8343218 | Lang et al. | Jan 2013 | B2 |
8366771 | Burdulis et al. | Feb 2013 | B2 |
8377129 | Fitz et al. | Feb 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8460304 | Fitz et al. | Jun 2013 | B2 |
8480754 | Bojarski et al. | Jul 2013 | B2 |
8500740 | Bojarski et al. | Aug 2013 | B2 |
8529568 | Bouadi | Sep 2013 | B2 |
8529630 | Bojarski | Sep 2013 | B2 |
8585708 | Fitz et al. | Sep 2013 | B2 |
8545569 | Fitz et al. | Oct 2013 | B2 |
8551099 | Lang | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8551103 | Fitz et al. | Oct 2013 | B2 |
8551169 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8556907 | Fitz et al. | Oct 2013 | B2 |
8556971 | Lang | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8562611 | Fitz et al. | Oct 2013 | B2 |
8562618 | Fitz et al. | Oct 2013 | B2 |
8568479 | Fitz et al. | Oct 2013 | B2 |
8568480 | Fitz et al. | Oct 2013 | B2 |
8617172 | Fitz et al. | Dec 2013 | B2 |
8617242 | Philipp | Dec 2013 | B2 |
8623026 | Wong et al. | Jan 2014 | B2 |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8638998 | Steines et al. | Jan 2014 | B2 |
8641716 | Fitz et al. | Feb 2014 | B2 |
8657827 | Fitz et al. | Feb 2014 | B2 |
8682052 | Fitz et al. | Mar 2014 | B2 |
8911447 | van der Walt | Dec 2014 | B2 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20030153829 | Sarin | Aug 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20040092944 | Penenberg | May 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040147926 | Iversen | Jul 2004 | A1 |
20040147927 | Tsougarakis et al. | Jul 2004 | A1 |
20040153079 | Tsougarakis et al. | Aug 2004 | A1 |
20040204644 | Tsougarakis et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040236424 | Berez et al. | Nov 2004 | A1 |
20050070897 | Petersen | Mar 2005 | A1 |
20050182320 | Stifter | Aug 2005 | A1 |
20050203536 | Laffargue et al. | Sep 2005 | A1 |
20050209604 | Penenberg | Sep 2005 | A1 |
20050234461 | Burdulis et al. | Oct 2005 | A1 |
20050267584 | Burdulis et al. | Dec 2005 | A1 |
20060064109 | Iversen | Mar 2006 | A1 |
20060111722 | Bouadi | May 2006 | A1 |
20060184177 | Echeverri | Aug 2006 | A1 |
20070043375 | Anissian | Feb 2007 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070156171 | Lang et al. | Jul 2007 | A1 |
20070157783 | Chiang | Jul 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070226986 | Park et al. | Oct 2007 | A1 |
20070233141 | Park et al. | Oct 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070250169 | Lang | Oct 2007 | A1 |
20080051910 | Kammerzell et al. | Feb 2008 | A1 |
20080114370 | Schoenefeld | May 2008 | A1 |
20080147072 | Park et al. | Jun 2008 | A1 |
20080161815 | Schoenefeld et al. | Jul 2008 | A1 |
20080195216 | Philipp | Aug 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080269757 | McMinn | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080281328 | Lang et al. | Nov 2008 | A1 |
20080281329 | Fitz et al. | Nov 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20080287954 | Kunz et al. | Nov 2008 | A1 |
20090024131 | Metzgu et al. | Jan 2009 | A1 |
20090088753 | Aram et al. | Apr 2009 | A1 |
20090088754 | Aker et al. | Apr 2009 | A1 |
20090088755 | Aker et al. | Apr 2009 | A1 |
20090088758 | Bennett | Apr 2009 | A1 |
20090088759 | Aram et al. | Apr 2009 | A1 |
20090088760 | Aram et al. | Apr 2009 | A1 |
20090088761 | Roose et al. | Apr 2009 | A1 |
20090088763 | Aram et al. | Apr 2009 | A1 |
20090093816 | Roose et al. | Apr 2009 | A1 |
20090099567 | Zajac | Apr 2009 | A1 |
20090099665 | Taylor | Apr 2009 | A1 |
20090110498 | Park et al. | Apr 2009 | A1 |
20090131941 | Park et al. | May 2009 | A1 |
20090131942 | Aker et al. | May 2009 | A1 |
20090138020 | Park et al. | May 2009 | A1 |
20090157083 | Park et al. | Jun 2009 | A1 |
20090222014 | Bojarksi et al. | Sep 2009 | A1 |
20090222016 | Park et al. | Sep 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090228113 | Lang et al. | Sep 2009 | A1 |
20090254093 | White et al. | Oct 2009 | A1 |
20090270868 | Park et al. | Oct 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090307893 | Burdulis, Jr. et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100042105 | Park et al. | Feb 2010 | A1 |
20100049195 | Park et al. | Feb 2010 | A1 |
20100054572 | Tsougarakis et al. | Mar 2010 | A1 |
20100082035 | Keefer | Apr 2010 | A1 |
20100087829 | Metzger et al. | Apr 2010 | A1 |
20100137869 | Borja | Jun 2010 | A1 |
20100152741 | Park et al. | Jun 2010 | A1 |
20100152782 | Stone et al. | Jun 2010 | A1 |
20100160917 | Fitz et al. | Jun 2010 | A1 |
20100168754 | Fitz et al. | Jul 2010 | A1 |
20100174376 | Lang et al. | Jul 2010 | A1 |
20100185202 | Lester et al. | Jul 2010 | A1 |
20100191244 | White et al. | Jul 2010 | A1 |
20100212138 | Carroll et al. | Aug 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100217338 | Carroll et al. | Aug 2010 | A1 |
20100228257 | Bonutti | Sep 2010 | A1 |
20100234849 | Bouadi | Sep 2010 | A1 |
20100249657 | Nycz | Sep 2010 | A1 |
20100256479 | Park et al. | Oct 2010 | A1 |
20100262150 | Lian | Oct 2010 | A1 |
20100274534 | Steines et al. | Oct 2010 | A1 |
20100281678 | Burdulis, Jr. et al. | Nov 2010 | A1 |
20100286700 | Snider et al. | Nov 2010 | A1 |
20100298894 | Bojarski et al. | Nov 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305573 | Fitz et al. | Dec 2010 | A1 |
20100305574 | Fitz et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20110015636 | Katrana et al. | Jan 2011 | A1 |
20110015637 | De Smedt et al. | Jan 2011 | A1 |
20110015639 | Metzger et al. | Jan 2011 | A1 |
20110029091 | Bojarski et al. | Feb 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110040168 | Arnaud et al. | Feb 2011 | A1 |
20110054478 | Vanasse et al. | Mar 2011 | A1 |
20110060341 | Angibaud et al. | Mar 2011 | A1 |
20110066193 | Lang et al. | Mar 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071533 | Metzger et al. | Mar 2011 | A1 |
20110071581 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110092977 | Salehi et al. | Apr 2011 | A1 |
20110093108 | Ashby et al. | Apr 2011 | A1 |
20110106093 | Romano et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110152871 | Park | Jun 2011 | A1 |
20110160736 | Meridew et al. | Jun 2011 | A1 |
20110160867 | Meridew et al. | Jun 2011 | A1 |
20110166578 | Stone et al. | Jul 2011 | A1 |
20110172672 | Dubeau et al. | Jul 2011 | A1 |
20110184419 | Meridew et al. | Jul 2011 | A1 |
20110196377 | Hodorek et al. | Aug 2011 | A1 |
20110213368 | Fitz et al. | Sep 2011 | A1 |
20110213373 | Fitz et al. | Sep 2011 | A1 |
20110213374 | Fitz et al. | Sep 2011 | A1 |
20110213376 | Maxson et al. | Sep 2011 | A1 |
20110213377 | Lang et al. | Sep 2011 | A1 |
20110213427 | Fitz et al. | Sep 2011 | A1 |
20110213428 | Fitz et al. | Sep 2011 | A1 |
20110213429 | Lang et al. | Sep 2011 | A1 |
20110213430 | Lang et al. | Sep 2011 | A1 |
20110213431 | Fitz et al. | Sep 2011 | A1 |
20110214279 | Park et al. | Sep 2011 | A1 |
20110218539 | Fitz et al. | Sep 2011 | A1 |
20110218545 | Catanzarite et al. | Sep 2011 | A1 |
20110218584 | Fitz et al. | Sep 2011 | A1 |
20110224674 | White et al. | Sep 2011 | A1 |
20110230888 | Lang et al. | Sep 2011 | A1 |
20110238073 | Lang et al. | Sep 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110266265 | Lang | Nov 2011 | A1 |
20110295329 | Fitz et al. | Dec 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20110313423 | Lang et al. | Dec 2011 | A1 |
20110313424 | Bono et al. | Dec 2011 | A1 |
20110319897 | Lang et al. | Dec 2011 | A1 |
20110319900 | Lang et al. | Dec 2011 | A1 |
20120010711 | Antonyshyn et al. | Jan 2012 | A1 |
20120022406 | Hladio | Jan 2012 | A1 |
20120029520 | Lang et al. | Feb 2012 | A1 |
20120041445 | Roose et al. | Feb 2012 | A1 |
20120041446 | Wong et al. | Feb 2012 | A1 |
20120065640 | Metzger et al. | Mar 2012 | A1 |
20120066892 | Lang et al. | Mar 2012 | A1 |
20120071881 | Lang et al. | Mar 2012 | A1 |
20120071882 | Lang et al. | Mar 2012 | A1 |
20120071883 | Lang et al. | Mar 2012 | A1 |
20120072185 | Lang et al. | Mar 2012 | A1 |
20120078254 | Ashby et al. | Mar 2012 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120078259 | Meridew | Mar 2012 | A1 |
20120093377 | Tsougarakis et al. | Apr 2012 | A1 |
20120101503 | Lang et al. | Apr 2012 | A1 |
20120109138 | Meridew et al. | May 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120116562 | Agnihotri et al. | May 2012 | A1 |
20120123422 | Agnihotri et al. | May 2012 | A1 |
20120123423 | Fryman | May 2012 | A1 |
20120130382 | Iannotti et al. | May 2012 | A1 |
20120130687 | Otto et al. | May 2012 | A1 |
20120136402 | Burroughs | May 2012 | A1 |
20120141034 | Iannotti et al. | Jun 2012 | A1 |
20120143197 | Lang et al. | Jun 2012 | A1 |
20120151730 | Fitz et al. | Jun 2012 | A1 |
20120157887 | Fanson | Jun 2012 | A1 |
20120158001 | Burdulis, Jr. et al. | Jun 2012 | A1 |
20120165820 | De Smedt et al. | Jun 2012 | A1 |
20120172884 | Zheng et al. | Jul 2012 | A1 |
20120191205 | Bojarski et al. | Jul 2012 | A1 |
20120191420 | Bojarski et al. | Jul 2012 | A1 |
20120192401 | Pavlovskaia et al. | Aug 2012 | A1 |
20120197260 | Fitz et al. | Aug 2012 | A1 |
20120197408 | Lang et al. | Aug 2012 | A1 |
20120201440 | Steines et al. | Aug 2012 | A1 |
20120209276 | Schuster | Aug 2012 | A1 |
20120209394 | Bojarski et al. | Aug 2012 | A1 |
20120215226 | Bonutti | Aug 2012 | A1 |
20120221008 | Carroll et al. | Aug 2012 | A1 |
20120226283 | Meridew et al. | Sep 2012 | A1 |
20120232669 | Bojarski et al. | Sep 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120232671 | Bojarski | Sep 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120245647 | Kunz et al. | Sep 2012 | A1 |
20120245699 | Lang et al. | Sep 2012 | A1 |
20120265208 | Smith | Oct 2012 | A1 |
20120271366 | Katrana et al. | Oct 2012 | A1 |
20120276509 | Iannotti et al. | Nov 2012 | A1 |
20120277751 | Catanzarite et al. | Nov 2012 | A1 |
20120289966 | Fitz et al. | Nov 2012 | A1 |
20120296337 | Fitz et al. | Nov 2012 | A1 |
20120323247 | Bettenga | Dec 2012 | A1 |
20120330319 | Birkbeck | Dec 2012 | A1 |
20130018379 | Fitz et al. | Jan 2013 | A1 |
20130018380 | Fitz et al. | Jan 2013 | A1 |
20130018464 | Fitz et al. | Jan 2013 | A1 |
20130023884 | Fitz et al. | Jan 2013 | A1 |
20130024000 | Bojarski et al. | Jan 2013 | A1 |
20130030419 | Fitz et al. | Jan 2013 | A1 |
20130030441 | Fitz et al. | Jan 2013 | A1 |
20130046310 | Ranawat | Feb 2013 | A1 |
20130079781 | Fitz et al. | Mar 2013 | A1 |
20130079876 | Fitz et al. | Mar 2013 | A1 |
20130081247 | Fitz et al. | Apr 2013 | A1 |
20130096562 | Fitz et al. | Apr 2013 | A1 |
20130103363 | Lang et al. | Apr 2013 | A1 |
20130110471 | Lang et al. | May 2013 | A1 |
20130123792 | Fitz et al. | May 2013 | A1 |
20130184713 | Bojarski et al. | Jul 2013 | A1 |
20130197870 | Steines et al. | Aug 2013 | A1 |
20130211409 | Burdulis, Jr. et al. | Aug 2013 | A1 |
20130211410 | Landes et al. | Aug 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245803 | Lang | Sep 2013 | A1 |
20130253522 | Bojarski et al. | Sep 2013 | A1 |
20130261632 | Livorsi | Oct 2013 | A1 |
20130289570 | Chao | Oct 2013 | A1 |
20130296874 | Chao | Nov 2013 | A1 |
20130297031 | Hafez | Nov 2013 | A1 |
20130317511 | Bojarski et al. | Nov 2013 | A1 |
20130331850 | Bojarski et al. | Dec 2013 | A1 |
20140005792 | Lang et al. | Jan 2014 | A1 |
20140029814 | Fitz et al. | Jan 2014 | A1 |
20140031826 | Bojarski et al. | Jan 2014 | A1 |
20140039631 | Bojarski et al. | Feb 2014 | A1 |
20140052149 | van der Walt | Feb 2014 | A1 |
20140058396 | Fitz et al. | Feb 2014 | A1 |
20140058397 | Fitz et al. | Feb 2014 | A1 |
20140066935 | Fitz et al. | Mar 2014 | A1 |
20140066936 | Fitz et al. | Mar 2014 | A1 |
20140074441 | Fitz et al. | Mar 2014 | A1 |
20140086780 | Miller et al. | Mar 2014 | A1 |
20140094925 | Satterthwaite | Apr 2014 | A1 |
20140276871 | Sherman | Sep 2014 | A1 |
20140276889 | Head | Sep 2014 | A1 |
20140303631 | Thornberry | Oct 2014 | A1 |
20150305891 | Bergin | Oct 2015 | A1 |
20150313723 | Jansen | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2004293091 | Jun 2005 | AU |
2004293104 | Jun 2005 | AU |
2005309692 | Jun 2006 | AU |
2005311558 | Jun 2006 | AU |
2002310193 | Mar 2007 | AU |
2006297137 | Apr 2007 | AU |
2002310193 | May 2007 | AU |
2007202573 | Jun 2007 | AU |
2007212033 | Aug 2007 | AU |
2007226924 | Sep 2007 | AU |
2009221773 | Sep 2009 | AU |
2009246474 | Nov 2009 | AU |
2010201200 | Apr 2010 | AU |
2011203237 | Jul 2011 | AU |
2010217903 | Sep 2011 | AU |
2010236263 | Nov 2011 | AU |
2010264466 | Feb 2012 | AU |
2010289706 | Mar 2012 | AU |
2010315099 | May 2012 | AU |
2010327987 | Jun 2012 | AU |
2011203237 | Oct 2012 | AU |
2012216829 | Oct 2012 | AU |
2012217654 | Oct 2013 | AU |
2007212033 | Jan 2014 | AU |
2014200073 | Jan 2014 | AU |
2012289973 | Mar 2014 | AU |
2012296556 | Mar 2014 | AU |
2501041 | Apr 2004 | CA |
2505371 | May 2004 | CA |
2505419 | Jun 2004 | CA |
2506849 | Jun 2004 | CA |
2546958 | Jun 2005 | CA |
2546965 | Jun 2005 | CA |
2804883 | Jun 2005 | CA |
2588907 | Jun 2006 | CA |
2590534 | Jun 2006 | CA |
2623834 | Apr 2007 | CA |
2641241 | Aug 2007 | CA |
2646288 | Sep 2007 | CA |
2717760 | Sep 2009 | CA |
2736525 | Mar 2010 | CA |
2765499 | Dec 2010 | CA |
2771573 | Mar 2011 | CA |
2779283 | May 2011 | CA |
2782137 | Jun 2011 | CA |
2546965 | Mar 2013 | CA |
1728976 | Feb 2006 | CN |
1729483 | Feb 2006 | CN |
1729484 | Feb 2006 | CN |
1913844 | Feb 2007 | CN |
101111197 | Jan 2008 | CN |
101384230 | Mar 2009 | CN |
101442960 | May 2009 | CN |
100502808 | Jun 2009 | CN |
102006841 | Apr 2011 | CN |
102125448 | Jul 2011 | CN |
102405032 | Apr 2012 | CN |
102448394 | May 2012 | CN |
101420911 | Jul 2012 | CN |
102599960 | Jul 2012 | CN |
1913844 | Sep 2012 | CN |
102711670 | Oct 2012 | CN |
102724934 | Oct 2012 | CN |
102805677 | Dec 2012 | CN |
1729483 | Oct 2013 | CN |
103476363 | Dec 2013 | CN |
60336002 D1 | Mar 2011 | DE |
60239674 D1 | May 2011 | DE |
602004032166 D1 | May 2011 | DE |
602005027391 D1 | May 2011 | DE |
1555962 | Jul 2005 | EP |
1558181 | Aug 2005 | EP |
1563810 | Aug 2005 | EP |
1567985 | Aug 2005 | EP |
1575460 | Sep 2005 | EP |
1686930 | Aug 2006 | EP |
1686931 | Aug 2006 | EP |
1389980 | Apr 2007 | EP |
1814491 | Aug 2007 | EP |
1833387 | Sep 2007 | EP |
1686930 | Oct 2007 | EP |
1686931 | Jan 2008 | EP |
1928359 | Jun 2008 | EP |
1951136 | Aug 2008 | EP |
1981409 | Oct 2008 | EP |
1996121 | Dec 2008 | EP |
2114312 | Nov 2009 | EP |
2124764 | Dec 2009 | EP |
1928359 | Oct 2010 | EP |
2259753 | Dec 2010 | EP |
2265199 | Dec 2010 | EP |
1555962 | Feb 2011 | EP |
2292188 | Mar 2011 | EP |
2292189 | Mar 2011 | EP |
1389980 | Apr 2011 | EP |
1686930 | Apr 2011 | EP |
1833387 | Apr 2011 | EP |
2303193 | Apr 2011 | EP |
2316357 | May 2011 | EP |
2324799 | May 2011 | EP |
2335654 | Jun 2011 | EP |
2403434 | Jan 2012 | EP |
2405865 | Jan 2012 | EP |
2419035 | Feb 2012 | EP |
2265199 | Mar 2012 | EP |
2303193 | Mar 2012 | EP |
2259753 | Apr 2012 | EP |
2292188 | May 2012 | EP |
2292189 | May 2012 | EP |
2445451 | May 2012 | EP |
2470126 | Jul 2012 | EP |
2496183 | Sep 2012 | EP |
2509539 | Oct 2012 | EP |
2512381 | Oct 2012 | EP |
2324799 | Jan 2013 | EP |
2419035 | Jan 2013 | EP |
2445451 | Mar 2013 | EP |
2403434 | Apr 2013 | EP |
2591756 | May 2013 | EP |
2496183 | Dec 2013 | EP |
2512381 | Dec 2013 | EP |
2649951 | Dec 2013 | EP |
2649951 | Dec 2013 | EP |
2671520 | Dec 2013 | EP |
2671521 | Dec 2013 | EP |
2671522 | Dec 2013 | EP |
2114312 | Jan 2014 | EP |
2710967 | Mar 2014 | EP |
2484042 | Mar 2012 | GB |
2489884 | Oct 2012 | GB |
201213674 | Oct 2012 | GB |
2484042 | Mar 2014 | GB |
1059882 | Aug 2011 | HK |
1072710 | Aug 2011 | HK |
1087324 | Nov 2011 | HK |
1104776 | Nov 2011 | HK |
2005-224613 | Aug 2005 | JP |
2006510403 | Mar 2006 | JP |
2007514470 | Jun 2007 | JP |
2011519713 | Jul 2011 | JP |
2011224384 | Nov 2011 | JP |
2012091033 | May 2012 | JP |
2012176318 | Sep 2012 | JP |
5053515 | Oct 2012 | JP |
2012187415 | Oct 2012 | JP |
2012523897 | Oct 2012 | JP |
5074036 | Nov 2012 | JP |
2012531265 | Dec 2012 | JP |
2013503007 | Jan 2013 | JP |
5148284 | Feb 2013 | JP |
5198069 | May 2013 | JP |
2014000425 | Jan 2014 | JP |
20050072500 | Jul 2005 | KR |
20050084024 | Aug 2005 | KR |
20120090997 | Aug 2012 | KR |
20120102576 | Sep 2012 | KR |
2012007140 | Jan 2013 | MX |
597261 | Nov 2013 | NZ |
173840 | Sep 2011 | SG |
175229 | Nov 2011 | SG |
176833 | Jan 2012 | SG |
178836 | Apr 2012 | SG |
193484 | Oct 2013 | SG |
200509870 | Mar 2005 | TW |
1231755 | May 2005 | TW |
200800123 | Jan 2008 | TW |
1330075 | Sep 2010 | TW |
2004049981 | Jun 2004 | WO |
2004051301 | Jun 2004 | WO |
2004112640 | Dec 2004 | WO |
2005051239 | Jun 2005 | WO |
2005051240 | Jun 2005 | WO |
2006058057 | Jun 2006 | WO |
2006060795 | Jun 2006 | WO |
2006058057 | Jul 2006 | WO |
2007041375 | Apr 2007 | WO |
2007062103 | May 2007 | WO |
2007092841 | Aug 2007 | WO |
2007109641 | Sep 2007 | WO |
2007092841 | Nov 2007 | WO |
2007109641 | Dec 2007 | WO |
2008101090 | Aug 2008 | WO |
2008112996 | Sep 2008 | WO |
2008101090 | Nov 2008 | WO |
2008157412 | Dec 2008 | WO |
2007041375 | Apr 2009 | WO |
2008157412 | Apr 2009 | WO |
2009111626 | Sep 2009 | WO |
2009111639 | Sep 2009 | WO |
2009111656 | Sep 2009 | WO |
2009140294 | Nov 2009 | WO |
2009111626 | Jan 2010 | WO |
2010030809 | Mar 2010 | WO |
2010099231 | Sep 2010 | WO |
2010099353 | Sep 2010 | WO |
2010121147 | Oct 2010 | WO |
2010099231 | Nov 2010 | WO |
2011028624 | Mar 2011 | WO |
2011056995 | May 2011 | WO |
2011072235 | Jun 2011 | WO |
2011075697 | Jun 2011 | WO |
2011056995 | Sep 2011 | WO |
2011075697 | Oct 2011 | WO |
2011072235 | Dec 2011 | WO |
2012112694 | Aug 2012 | WO |
2012112694 | Aug 2012 | WO |
2012112698 | Aug 2012 | WO |
2012112701 | Aug 2012 | WO |
2012112702 | Aug 2012 | WO |
2012112694 | Jan 2013 | WO |
2012112701 | Jan 2013 | WO |
2012112702 | Jan 2013 | WO |
2013020026 | Feb 2013 | WO |
2013025814 | Feb 2013 | WO |
2012112698 | Mar 2013 | WO |
2013056036 | Apr 2013 | WO |
2013119790 | Aug 2013 | WO |
2013119865 | Aug 2013 | WO |
2013131066 | Sep 2013 | WO |
2013152341 | Oct 2013 | WO |
2013155500 | Oct 2013 | WO |
2013155501 | Oct 2013 | WO |
2014008444 | Jan 2014 | WO |
2014035991 | Mar 2014 | WO |
2014047514 | Mar 2014 | WO |
Entry |
---|
Hofmann et al, “Natural-Knee II System”, Intermedics Orthopedics, Austin, TX, 1995. |
Number | Date | Country | |
---|---|---|---|
20180250144 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
61833654 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14301877 | Jun 2014 | US |
Child | 15968868 | US |