Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods

Information

  • Patent Grant
  • 7621334
  • Patent Number
    7,621,334
  • Date Filed
    Friday, April 29, 2005
    19 years ago
  • Date Issued
    Tuesday, November 24, 2009
    14 years ago
Abstract
In one embodiment, a method is provided comprising: providing an acidic treatment fluid that comprises a gelling agent that comprises an aqueous base fluid, an acid, and a gelling agent that comprises scleroglucan and/or diutan; and introducing the acidic treatment fluid into a subterranean formation.
Description
CROSS-REFERENCE TO A RELATED APPLICATION

This application is related to HES 2005-IP-016905U2, aplication Ser. No. 11/117,959 filed on the same day herewith.


BACKGROUND

The present invention relates to acidic treatment fluids used in industrial and oil field operations, and more particularly, to acidic treatment fluids comprising gelling agents that comprise scleroglucan and/or diutan, and their use in industrial and oil field operations. As used herein, the term “treatment fluid” refers to any fluid that may be used in a subterranean application in conjunction with a desired function and/or for a desired purpose. The term “treatment fluid” does not imply any particular action by the fluid or any component thereof.


Acidizing and fracturing procedures using acidic treatment fluids are commonly carried out in subterranean well formations to accomplish a number of purposes including, but not limited to, to facilitate the recovery of desirable hydrocarbons from the formation. One commonly used aqueous acidic treatment fluid comprises hydrochloric acid. Other commonly used acids for acidic treatment fluids include: hydrofluoric acid, acetic acid, formic acid, citric acid, ethylene diamine tetra acetic acid (“EDTA”), glycolic acid, sulfamic acid, and derivatives or combinations thereof.


Acidic treatment fluids are used in various subterranean operations. For example, formation acidizing or “acidizing” is a well known method for increasing the flow of desirable hydrocarbons from a subterranean formation. In a matrix acidizing procedure, an aqueous acidic treatment fluid is introduced into a subterranean formation via a well bore therein under pressure so that the acidic treatment fluid flows into the pore spaces of the formation and reacts with the acid-soluble materials therein. As a result, the pore spaces of that portion of the formation are enlarged, and consequently, the permeability of the formation should increase. The flow of hydrocarbons from the formation is therefore increased because of the increase in formation conductivity caused, inter alia, by dissolution of the formation material. In fracture acidizing procedures, one or more fractures are produced in the formations and an acidic treatment fluid is introduced into the fracture(s) to etch flow channels therein. Acidic treatment fluids also may be used to clean out well bores to facilitate the flow of desirable hydrocarbons. Other acidic treatment fluids may be used in diversion processes, and well bore clean-out processes. A specific example is filter cake removal.


To increase the viscosity of an aqueous acid treatment fluid, a suitable gelling agent may be included in the treatment fluid (often referred to as “gelling” the fluid). Gelling an aqueous acidic treatment fluid may be useful to prevent the acid from becoming prematurely spent and inactive. Additionally, gelling an aqueous acidic treatment fluid may enable the development of wider fractures so that live acid may be forced further into the formation from the well bore. Gelling the acidic treatment fluid may delay the interaction of the acid with an acid soluble component in the well bore or the formation. Moreover, gelling an aqueous acidic treatment fluid may permit better fluid loss control of the fluid.


Acidic treatment fluids used in subterranean operations are predominantly water-based fluids that comprise gelling agents that may increase their viscosities, inter alia, to provide viscosity to control the rate of spending of the acid. These gelling agents are usually biopolymers or synthetic polymers that, when hydrated and at a sufficient concentration, are capable of forming a more viscous fluid. Common gelling agents include polysaccharides (such as xanthan), synthetic polymers (such as polyacrylamide), and surfactant gel systems. Acidic treatment fluids comprising xanthan generally have sufficient viscosity for lower temperature operations. At elevated temperatures (e.g., those above about 120° F. to about 150° F.), however, the viscosity of such xanthan treatment fluids are diminished. Consequently, xanthan may not be a suitable gelling agent for acidic treatment fluids when those fluids are used in well bores that comprise elevated temperatures. Other gelling agents such as synthetic gelling agents (e.g., polyacrylamides) have been used, but they are often difficult to disperse and usually require considerable mixing or agitation to develop full viscosity. Additionally, most conventional gelling agents, including guar and some synthetic polymers, may form acid insoluble residues. Moreover, surfactant gel systems can be expensive, and are often sensitive to impurities. Also, surfactant gel systems often require hydrocarbon breakers.


SUMMARY OF THE INVENTION

The present invention relates to acidic treatment fluids used in industrial and oil field operations, and more particularly, to acidic treatment fluids comprising gelling agents that comprise scleroglucan and/or diutan, and their use in industrial and oil field operations.


In one embodiment, the present invention provides a method comprising: providing an acidic treatment fluid that comprises a gelling agent that comprises an aqueous base fluid, an acid, and a gelling agent that comprises scleroglucan and/or diutan; and introducing the acidic treatment fluid into a subterranean formation.


In another embodiment, the present invention provides a method of acidizing a portion of a subterranean formation comprising: providing an acidic treatment fluid that comprises a gelling agent that comprises an aqueous base fluid, an acid, and a gelling agent that comprises scleroglucan and/or diutan; contacting a portion of the subterranean formation with the acidic treatment fluid; and allowing the acidic treatment fluid to interact with a component of the subterranean formation so that the component is dissolved.


In another embodiment, the present invention provides a method of producing hydrocarbons from a subterranean formation that comprises: introducing an acidic treatment fluid comprising an aqueous base fluid, an acid, and a gelling agent that comprises scleroglucan and/or diutan into the subterranean formation; and producing hydrocarbons from the formation.


The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.



FIG. 1 illustrates viscosity data from an experiment involving an embodiment of the present invention.



FIG. 2 illustrates the viscosity data from an experiment involving an embodiment of the present invention.





DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to acidic treatment fluids used in industrial and oil field operations, and more particularly, to acidic treatment fluids comprising gelling agents that comprise scleroglucan and/or diutan, and their use in industrial and oil field operations. Such operations may involve the removal of scale, fracture acidizing, matrix acidizing, diversion, filter cake removal, or pill removal.


In certain embodiments, the present invention provides fluids and methods that are especially suitable for use in well bores comprising a borehole temperature (“BHT”) of up to about 500° F. A preferred temperature range is a treating temperature below about 250° F. One should note that the ability of the acidic treatment fluids of the present invention to maintain a degree of viscosity at such elevated temperatures may be affected by the time a particular fluid is exposed to such temperatures. For example, in some fracture acidizing applications, there may be a considerable fracture cool-down, which may enable utilization of an acidic treatment fluid of the present invention at BHT above the temperature limit at which the fluid demonstrates viscosity. One of the many advantages of the gelling agents of the present invention is that they typically do not leave undesirable residues in the formation once the fluid has been broken. Another advantage is that the gelling agents are environmentally acceptable in some sensitive environments (such as the North Sea). Additionally, the gelling agents of the present invention may present a cost savings over some conventional gelling agents (like many surfactant-based gelling agents) for acidic treatment fluid applications. The acidic treatment fluids of the present invention may be useful in a wide variety of subterranean treatment operations in which acidic treatment fluids may be suitable.


The acidic treatment fluids of the present invention generally comprise an aqueous base fluid, an acid, and a gelling agent of the present invention that comprises scleroglucan and/or diutan. When used in diversion applications, the treatment fluid may or may not comprise an acid. One of ordinary skill in the art with the benefit of this disclosure will be able to determine whether an acid is appropriate. Generally speaking, the fluids of the present invention have a pH of less than about 4. In preferred embodiments comprising hydrochloric acid, the treatment fluids may have a pH of about 1 or less. In embodiments comprising an organic acid, the treatment fluids may have a pH of about 1 to about 4.


The aqueous base fluids of the treatment fluids of the present invention generally comprise fresh water, salt water, or a brine (e.g., a saturated salt water). Other water sources may be used, including those comprising divalent or trivalent cations, e.g., magnesium, calcium, zinc, or iron. Monovalent brines are preferred and, where used, may be of any weight. One skilled in the art will readily recognize that an aqueous base fluid containing a high level of multi-valent ions should be tested for compatibility prior to use. Salts optionally may be added to the water source, inter alia, to produce a treatment fluid having a desired density or other characteristics. One of ordinary skill in the art with the benefit of this disclosure will recognize the particular type of salt appropriate for particular application, given considerations such as protection of the formation, the presence or absence of reactive clays in the formation adjacent to the well bore, compatibility with the other acidic treatment fluid additives, and the factors affecting wellhead control. A wide variety of salts may be suitable. Examples of suitable salts include, inter alia, potassium chloride, sodium bromide, ammonium chloride, cesium formate, potassium formate, sodium formate, sodium nitrate, calcium bromide, zinc bromide, and sodium chloride. A preferred aqueous base fluid is a 5% ammonium chloride brine with hydrofluoric acid or an organic acid. An artisan of ordinary skill with the benefit of this disclosure will recognize the appropriate concentration of a particular salt to achieve a desired density given factors such as the environmental regulations that may pertain. Also, the composition of the water used also will dictate whether and what type of salt is appropriate. The amount of the base fluid in an acidic treatment fluid of the present invention will vary depending on the purpose of the fluid, the formation characteristics, and whether the fluid will be foamed.


Suitable acids for inclusion in the treatment fluids of the present invention include any acid suitable for use in a subterranean application. Examples include hydrochloric acid, hydrofluoric acid, acetic acid, formic acid, citric acid, ethylene diamine tetra acetic acid (“EDTA”), glycolic acid, sulfamic acid, and derivatives or a combination thereof. Hydrochloric acid, acetic acid, or formic acid may be preferred in certain applications. One should note that the choice of aqueous base fluid and acid should be chosen vis-à-vis the other so that the proper synergistic effect is achieved. The concentration and type of acid selected may be based upon the function of the acid (e.g., scale removal, fracture acidizing, matrix acidizing, removal of fluid loss filter cakes and pills, and the like) and the mineralogy of the formation. It is well known that certain concentrations of acids will form precipitates upon spending. See Gdanski, R. D.: “Kinetics of the Tertiary Reaction of HF on Alumino-Silicates”, SPE 31076 presented at the SPE Formation Damage Symposium, Lafayette, La., Feb. 14-15, 1996. Such tendency to form precipitates should be taken into consideration when choosing an acid. A precipitation control additive (e.g., aluminum chloride) may be desirable to include as well depending on the acid and the formation.


The gelling agents of the present invention may comprise scleroglucan and/or diutan. The gelling agent may be present in an acidic treatment fluid of the present invention in an amount of from about 10 lb/Mgal to about 200 lb/Mgal. Generally speaking, an acidic treatment fluid containing an organic acid may require less of a gelling agent of the present invention than an acidic treatment fluid containing hydrochloric acid.


As noted in the text BIOPOLYMERS, VOLUME 6, POLYSACCHARIDES II: POLYSACCHARIDES FROM EUKARYOTES, by E. J. Vandamme (Editor), S. De Baets (Editor), Alexander Steinbüchel (Editor), ISBN: 3-527-30227-1; published by Wiley 2002, specifically Chapters 2 and 3, scleroglucan is a neutral fungal polysaccharide. Scleroglucan is a hydrophilic polymer, which is believed to have a tendency to thicken and stabilize water-based systems by conferring on them a relatively high viscosity, generally higher than that obtained in the case of xanthan, for example, at temperatures at or above about 200° F., for identical concentrations of active compounds. Scleroglucan also appears to be more resistant to pH and temperature changes than xanthan, and therefore, may impart more stable viscosity in such conditions. In certain aspects, the viscosity of a scleroglucan fluid may be virtually independent of pH between a pH of about 1 and about 12.5 up to a temperature limit of about 270° F. Generally, the main backbone polymer chain of scleroglucan comprises (1→3)β-D-glucopyranosyl units with a single β-D-glucopyranosyl group attached to every third unit on the backbone. Scleroglucan is thought to be resistant to degradation, even at high temperatures such as those at or above about 200° F., even after, e.g., 500 days in seawater. Viscosity data (see Table 1 and Table 2) show that dilute solutions (e.g., about 0.5%) may be shear thinning and stable to at least 250° F. Note that these solutions are not acidic. These viscosities illustrate, inter alia, scleroglucan's suitability for viscosifying fluids. In embodiments wherein the gelling agent of the present invention comprises scleroglucan, one may include about 10 to about 200 lb/Mgal scleroglucan. In an acidic treatment fluid that comprises hydrochloric acid, a more preferred range may be from about 40 to about 120 lb/Mgal of scleroglucan.









TABLE 1







Viscosities (cP) of 1% Scleroglucan, Measured at


Various Temperatures (° C.) and Shear Rates


(s−1), using a Brookfield PVS Rheometer













Shear Rate








(s−1)
70° C.
80° C.
99° C.
108° C.
118° C.
127° C.
















8.5
1500
1450
1480
1460
1330
1540


25
520
540
540
550
500



85
180
180
178
175
165



170
100
98
99
93
92

















TABLE 2







Elastic Moduli G′ (Pa) Measured Using a Haake RS 150


Controlled Stress Rheometer at 25° C.;


Measurements Made at 1 Hz in the Linear Viscoelastic Region.










Xanthan
Scleroglucan













1.0%
38
35


0.5%
9
13









As noted in the text BIOPOLYMERS, VOLUME 6, POLYSACCHARIDES II: POLYSACCHARIDES FROM Eukaryotes, by E. J. Vandamme (Editor), S. De Baets (Editor), Alexander Steinbüchel (Editor), ISBN: 3-527-30227-1; published by Wiley 2002, specifically Chapters 2 and 3, and BIOPOLYMERS; (1999) vol 50; p.496; Authors: B. H. Falch; A. Elgsaeter & B. T. Stokke, diutan gum is a polysaceharide designated as “S-657,” which is prepared by fermentation of a strain of sphingomonas. Diutan's structure has been elucidated as a hexasaccharide having a tetrasaccharide repeat unit in the backbone that comprises glucose and rhamnose units and di-rhamnose side chain. It is believed to have thickening, suspending, and stabilizing properties in aqueous solutions. Diutan is composed principally of carbohydrates, about 12% protein, and about 7% (calculated as O-acetyl) acyl groups, the carbohydrate portion containing about 19% glucuronic acid, and the neutral sugars rhamnose and glucose in the approximate molar ratio of about 2:1. Details of the diutan gum structure may be found in an article by Diltz et al., “Location of O-acetyl Groups in S-657 Using the Reductive-Cleavage Method,” CARBOHYDRATE RESEARCH, Vol. 331, p. 265-270 (2001), which is hereby incorporated by reference in its entirety. Details of preparing diutan gum may be found in U.S. Pat. No. 5,175,278, which is hereby incorporated by reference in its entirety. A suitable source of diutan is “GEOVIS XT,” which is commercially available from Kelco Oil Field Group, Houston, TX. The elastic moduli of some diutan solutions as compared to xanthan solutions are shown in Table 3. Note that these are not acidic solutions. In embodiments wherein the gelling agent of the present invention comprises diutan, one may include about 10 to about 200 lb/Mgal diutan. In an acidic treatment fluid that comprises about 15% hydrochloric acid, a more preferred range may be from about 100 to about 200 lb/Mgal of diutan.









TABLE 3







Elastic Moduli (G′) of Diutan and Xanthan Solutions










Solution Composition
G′ (Pa)







0.5% Diutan in water
15.0



0.5% Xanthan in water
11.8



0.5% Diutan in 6% NaCl
19.0



0.5% Xanthan in 6% NaCl
12.8



0.75% Diutan in water
33.0



0.75% Diutan in 20% KCl
29.0










In some embodiments, the gelling agents may be at least partially crosslinked through a crosslinking reaction comprising a suitable crosslinking agent. Suitable crosslinking agents include zirconium-based crosslinking agents, chrome-based crosslinking agents, and iron-based crosslinking agents. Crosslinking the gelling agent may be desirable where it is desirable to make a certain acidic treatment fluid more viscous. One of ordinary skill in the art with the benefit of this disclosure will recognize when such crosslinkers are appropriate and what particular crosslinker will be most suitable. Things to take into consideration when choosing a suitable crosslinking agent include the pH range of the fluid, activity of the crosslinking agent, the desired viscosity of the treatment fluid, the temperature sensitivity of the crosslinking agent, and the sheer sensitivity of the fluid in the environment. It should be noted that suitable viscosities could be obtained for acidic treatment fluids that comprise gelling agents that comprise diutan without using crosslinkers. Typically, a crosslinking agent may be included in an amount of from about 0.01 lb/Mgal to about 15 lb/Mgal.


Typical cross-linking agents are transitional metals and/or transition metal complexes such as iron, titanium, chromium and zirconium including reaction products of organic acids including polyfunctional acids including dicarboxylic acids, hydroxy-carboxylic acids, amine-carboxylic acids (including for example acetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, lactic acid, aspartic acid, malic acid, mandelic acid, citric acid, and the like). Particularly useful are the hydroxy-carboxylic acids such as lactic, maleic and citric acids. Also useful are the complexes formed with these compounds and ammonia alkyli metals, including methyl amine, propyl amine, diethylamine, triethylene tetramine, isopropyl amine, and the like; and hydroxylamines such as triethanolamine, diethanol amine, and the like. Typical compounds include ferric chloride, titanium lactate, titanium malate, titanium citrate, zirconium lactate, zirconium oxychloride, zirconium hydroxychloride, zirconium citrate, zirconium complex of hydroxyethyl glycine, ammonium zirconium fluoride, zirconium 2-ethylhexanoate, zirconium acetate, zirconium neodecanoate, zirconium acetylacetonate, tetrakis(triethanolamine)zirconate, zirconium carbonate, ammonium zirconium carbonate, zirconyl ammonium carbonate, zirconium lactate, titanium acetylacetonate, titanium ethylacetoacetate, titanium citrate, titanium triethanolamine, ammonium titanium lactate, aluminum citrate, chromium citrate, chromium acetate, chromium propionate, chromium malonate, zirconium malate, ammonium, sodium zirconium lactate, zirconium lactate in combination with isopropylamine or triethanolamine, mixtures thereof and the like. Also useful is the use of crosslinking retarders include tartaric acid, sodium glucoheptonate, glucono-delta lactone, sodium lignosulfonate, combinations there of, and the like.


In certain embodiments, the acidic treatment fluids of the present invention also may comprise suitable: hydrate inhibitor, corrosion inhibitors, pH control additives, surfactants, breakers, fluid loss control additives, scale inhibitors, asphaltene inhibitors, paraffin inhibitors, salts, foamers, defoamers, emulsifiers, demulsifiers, iron control agents, solvents, mutual solvents, particulate diverters, gas phase, carbon dioxide, nitrogen, other biopolymers, synthetic polymers, friction reducers combinations thereof, or the like. The acidic treatment fluids of the present invention also may include other additives that may be suitable for a given application.


In alternative embodiments, the acidic treatment fluids of the present invention may be foamed. In such embodiments, the acidic treatment fluids also comprise a gas, and a foaming agent. While various gases can be utilized for foaming the acidic treatment fluids of this invention, nitrogen, carbon dioxide, and mixtures thereof are preferred. In examples of such embodiments, the gas may be present in an acidic treatment fluid in an amount in the range of from about 5% to about 95% by volume of the treatment fluid, and more preferably in the range of from about 20% to about 80%. The amount of gas to incorporate into the fluid may be affected by factors including the viscosity of the fluid and welihead pressures involved in a particular application. Examples of preferred foaming agents that can be utilized to foam and stabilize the acidic treatment fluids of this invention include, but are not limited to, alkylamidobetaines such as cocoamidopropyl betaine, aipha-olefin sulfonate, trimethyltallowammonium chloride, C8 to C22 alkylethoxylate sulfate and trimethylcocoammonium chloride. Cocoamidopropyl betaine is especially preferred. Other suitable surfactants available from Halliburton Energy Services include: “19N” (cationic surfactant); “G-SPERSE DISPERSANT™” (anionic surfactant); “MORFLO III®” (anionic/nonionic blend surfactant); “HYFLO(R) IV M™” (anionic/nonionic blend surfactant); “PEN-88M™” (nonionic microemulsion surfactant); “HC-2 AGENT™” (amphoteric surfactant); “PEN-88 HT™” (nonionic microemulsion surfactant); “SEM7™” (cationic surfactant); “HOWCO-SUDS™” foaming agent (anionic surfactant); “HOWCO STICKS™” surfactant (anionic surfactant); “A-SPERSE™” (nonionic surfactant); “SSO-21E” surfactant (nonionic microemulsion surfactant); and “SSO-21MW™” (nonionic microemulsion surfactant). Other suitable foaming agents and foam stabilizing agents may be included as well, which will be known to those skilled in the art with the benefit of this disclosure. The foaming agent is generally present in an acidic treatment fluid of the present invention in an amount in the range of from about 0.1% to about 2.0% by weight, more preferably in the amount of from about 0.2% to about 1.0% and most preferably about 0.6%.


Examples of suitable corrosion inhibitors include acetylenic alcohols, Mannich condensation products (such as those formed by reacting an aldehyde, a carbonyl containing compound and a nitrogen containing compound), unsaturated carbonyl compounds, unsaturated ether compounds, formamide, formic acid, formates, other sources of carbonyl, iodides, terpenes, and aromatic hydrocarbons, coffee, tobacco, gelatin, cinnamaldehyde, cinnamaldehyde derivatives, acetylenic alcohols, fluorinated surfactants, quatemary derivatives of heterocyclic nitrogen bases, quaternary derivatives of halomethylated aromatic compounds, formamides, combinations of such compounds used in conjunction with iodine; quaternary ammonium compounds; and combinations thereof. Suitable corrosion inhibitors and intensifiers are available from Halliburton Energy Services and include : “MSA-II™” corrosion inhibitor, “MSA-III” corrosion inhibitor, “HAI-25 E+” environmentally friendly low temp corrosion inhibitor, “HAI-404™” acid corrosion inhibitor, “HAI-50™” Inhibitor, “HAI-60 ™” Corrosion inhibitor, “HAI-62™” acid corrosion inhibitor, “HAI-65™” Corrosion inhibitor, “HAI-72E+™” Corrosion inhibitor, “HAI-75™” High temperature acid inhibitor, “HAI-81M™” Acid corrosion inhibitor, “HAI-85™” Acid corrosion inhibitor, “HAI-85M™” Acid corrosion inhibitor, “HAI- 202 Environmental Corrosion Inhibitor,” “HAI-OS” Corrosion Inhibitor, “HAI-GE” Corrosion Inhibitor, “FDP-S692-03” Corrosion inhibitor for organic acids, “FDP-S656AM-02” and “FDP- S656BW-02” Environmental Corrosion Inhibitor System, “HII-500” Corrosion inhibitor intensifier, “HII-500M” Corrosion inhibitor intensifier, “HII-124” Acid inhibitor intensifier, “HII-124B” Acid inhibitor intensifier, “HII-124C™” Inhibitor intensifier, and “HII-124F™” corrosion inhibitor intensifier. Suitable iron control agents are available from Halliburton Energy Services and include: “FE-2™” Iron sequestering agent, “FE-2A™” Common Law Fe-2A Buffering agent, “FE-3™” Common Law Fe-3 Iron control agent, “FE-3A™” Common Law Fe-3a Iron control agent, “FE-4™” Common Law Fe-4 Iron control agent, “FE-5™” Common Law Fe-5™” Iron control agent, “FE-5A™” Common Law Fe-5a Iron control agent, “FERCHEK®” Ferric iron inhibitor, “FERCHEK (R)” A Reducing agent, and “FERCHEK (R)” SC Iron control process or system. Other suitable iron control agents include those described in U.S. Pat. Nos. 6,315,045, 6,525,011, 6,534,448, and 6,706,668. Examples of corrosion inhibitor activators that may be included include, but are not limited to, cuprous iodide; cuprous chloride; antimony compounds such as antimony oxides, antimony halides, antimony tartrate, antimony citrate, alkali metal salts of antimony tartrate and antimony citrate, alkali metal salts of pyroantimonate and antimony adducts of ethylene glycol; bismuth compounds such as bismuth oxides, bismuth halides, bismuth tartrate, bismuth citrate, alkali metal salts of bismuth tartrate and bismuth citrate; iodine; iodide compounds; formic acid; and mixtures of the foregoing activators such as a mixture of formic acid and potassium iodide. The amount of any corrosion inhibitor to include in an acidic treatment fluid of the present invention will depend on many factors, including but not limited to, the metallurgy the acid will contact, contact time, temperature, etc. Generally, the amount of a corrosion inhibitor to include will range from about 0.1% to about 3% by volume.


Suitable pH control additives, in certain embodiments, may comprise bases, chelating agents, acids, or combinations of chelating agents and acids or bases. A pH control additive may be necessary to maintain the pH of the treatment fluid at a desired level, e.g., to improve the dispersion of the gelling agent in the aqueous base fluid. In some instances, it may be beneficial to maintain the below 3. Suitable pH control additives are those additives that assist in maintaining the pH of an acidic treatment fluid very low, and may include glycolic acids, acetic acids, lactone derivatives, formic acid, carbonic acid, sulfamic acid, and the like.


In some embodiments, the acidic treatment fluids of the present invention may include surfactants, e.g., to improve the compatibility of the acidic treatment fluids with other fluids (like any formation fluids) that may be present in the well bore. Examples of suitable surfactants include ethoxylated nonyl phenol phosphate esters, nonionic surfactants, cationic surfactants, anionic surfactants, alkyl phosphonate surfactants, linear alcohols, nonylphenol compounds, alkyoxylated fatty acids, alkylphenol alkoxylates, ethoxylated amides, ethoxylated alkyl amines, amphoteric surfactants (such as betaines), and mixtures thereof. Suitable surfactants may be used in a liquid or powder form. In an embodiment where liquid surfactants are used, the surfactants are generally present in an amount in the range of from about 0.0 1% to about 5.0% by volume of the acidic treatment fluid. In one embodiment, the liquid surfactants are present in an amount in the range of from about 0.1% to about 2.0% by volume of the acidic treatment fluid. In embodiments where powdered surfactants are used, the surfactants may be present in an amount in the range of from about 0.00 1% to about 0.5% by weight of the acidic treatment fluid. Examples of suitable surfactants are non-emulsifiers commercially available from Halliburton Energy Services, Inc., of Duncan, Oklahoma, under the tradenames “LOSURF-259™” solid surfactant, “LOSURF-300™” nonionic surfactant, “LOSURF-357™” nonionic surfactant, and “LOSURF-400™,” surfactant, “LOSURF-2000S™” solid surfactant, and “LOSURF-2000M” solid surfactant, “LOSURLF-357” nonionic surfactant, “LOSURF-400” surfactant, “LOSURF-2000S” surfactant, “LOSURF-259” nonionic non-emulsifier, and “LOSURF-300” nonionic surfactant. Another example of a suitable surfactant is a non-emulsifier commercially available from Halliburton Energy Services, Inc., of Duncan, Oklahoma, under the tradename “NEA-96M™” Surfactant. Other examples of suitable surfactants that are commercially available from Halliburton Energy Services in Duncan, Oklahoma are tradenamed products “SGA-1,” “EFS-1,” “EFS-2,” “EFS-3,” and “EFS-4.”


While typically not required, the acidic treatment fluids of the present invention also may comprise breakers capable of reducing the viscosity of the acidic treatment fluid at a desired time. Examples of such suitable breakers for acidic treatment fluids of the present invention include, but are not limited to, sodium chlorite, hypochlorite, perborate, persulfates, peroxides, including organic peroxides. Other suitable breakers include suitable acids. Preferred examples of suitable breakers for acidic treatment fluids of the present invention that include a gelling agent that comprises diutan include peroxide breakers. Preferred examples include tert-butyl hydroperoxide and tert-amyl hydroperoxide. Sodium persulfate and sodium chlorite are not preferred breakers for acidic treatment fluids of the present invention that include a gelling agent that comprises diutan because optimal degradation generally may not occur within a desirable time period. A breaker may be included in an acidic treatment fluid of the present invention in an amount and form sufficient to achieve the desired viscosity reduction at a desired time. The breaker may be formulated to provide a delayed break, if desired. For example, a suitable breaker may be encapsulated if desired. Suitable encapsulation methods are known to those skilled in the art. One suitable encapsulation method that may be used involves coating the chosen breakers with a material that will degrade when downhole so as to release the breaker when desired. Resins that may be suitable include, but are not limited to, polymeric materials that will degrade when downhole. The terms “degrade,” “degradation,” or “degradable” refer to both the two relatively extreme cases of hydrolytic degradation that the degradable material may undergo, i.e., heterogeneous (or bulk erosion) and homogeneous (or surface erosion), and any stage of degradation in between these two. This degradation can be a result of, inter alia, a chemical or thermal reaction or a reaction induced by radiation. Suitable examples of materials that can undergo such degradation include polysaccharides such as dextran or cellulose; chitins; chitosans; proteins; aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); aliphatic polycarbonates; orthoesters, poly(orthoesters); poly(amino acids); poly(ethylene oxides); and polyphosphazenes. If used, a breaker should be included in a composition of the present invention in an amount sufficient to facilitate the desired reduction in viscosity in a viscosifier treatment fluid. For instance, peroxide concentrations that may be used vary from about 0.1 to about 10 gallons of peroxide per 1000 gallons of the acidic treatment fluid. Optionally, the acidic treatment fluid may contain an activator or a retarder, inter alia, to optimize the break rate provided by the breaker.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.


EXAMPLES

Fluid preparation: Acidic treatment fluids comprising scleroglucan were prepared by making a 15% HCl fluid containing 83.5 lb/Mgal of scleroglucan in a Waring blender. The fluid was mixed (hydrated) for 30 minutes. Acidic treatment fluids comprising a diutan gelling agent and a xanthan gelling agent were prepared in a similar manner using 164.9 lb/Mgal and 83.5 lb/Mgal, respectively. A comparative xanthan fluid was prepared using the same process.


Fluid evaluation: The fluids were then evaluated under two different temperature profiles on a Nordman Model 50 viscometer using a modified API2 test. The results are shown in FIG. 1 and FIG. 2. In FIG. 1, the apparent viscosity is given on the major Y-axis and the sample temperature is given on the minor Y-axis. FIG. 1 demonstrates that fluids comprising a gelling agent that comprises scleroglucan or diutan can maintain higher viscosities at higher temperatures than a fluid comprising a gelling agent that comprises xanthan. Similarly, FIG. 2 demonstrates that a fluid comprising a gelling agent that comprises scleroglucan has a higher viscosity than a fluid that comprises a gelling agent that comprises xanthan.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims
  • 1. A method comprising: providing an acidic treatment fluid comprising a gelling agent that comprises diutan, wherein the pH of the acidic treatment fluid is less than about 4 and wherein the acidic treatment fluid is not foamed; andintroducing the acidic treatment fluid into a subterranean formation.
  • 2. The method of claim 1 wherein the subterranean formation comprises a borehole temperature of up to about 500° F.
  • 3. The method of claim 1 wherein the acidic treatment fluid comprises at least one aqueous base fluid chosen from the group consisting of: fresh water; salt water; a brine; a salt; potassium chloride; sodium bromide; ammonium chloride; cesium formate; potassium formate; sodium formate; sodium nitrate; calcium bromide; zinc bromide; sodium chloride; hydrochloric acid; hydrofluoric acid; acetic acid; formic acid; citric acid; ethylene diamine tetra acetic acid; glycolic acid; and sulfamic acid.
  • 4. The method of claim 1 wherein the acidic treatment fluid is introduced into the formation in an operation that involves a technique chosen from the group consisting of: the removal of scale, fracture acidizing, matrix acidizing, diversion, filter cake removal, and pill removal.
  • 5. The method of claim 1 wherein the gelling agent is present in the acidic treatment fluid in an amount of from about 10 lb/Mgal to about 200 lb/Mgal.
  • 6. The method of claim 1 wherein the gelling agent is at least partially crosslinked through a crosslinking reaction that comprises a crosslinking agent.
  • 7. The method of claim 1 wherein the acidic treatment fluid comprises at least one additive selected from the group consisting of: a hydrate inhibitor; a corrosion inhibitor; a pH control additive; a surfactant; a breaker; a fluid loss control additive; a scale inhibitor; an asphaltene inhibitor; a paraffin inhibitor; a defoamer; an emulsifier; a demulsifier; an iron control agent; a solvent; a mutual solvent; a particulate diverter; a biopolymer other than scleroglucan or diutan; a synthetic polymer; and a friction reducer.
  • 8. The method of claim 1 further comprising producing hydrocarbons from the formation.
  • 9. The method of claim 8 wherein the subterranean formation comprises a borehole temperature of up to about 500° F.
  • 10. The method of claim 8 wherein the acidic treatment fluid comprises at least one additive selected from the group consisting of: a hydrate inhibitor; a corrosion inhibitor; a pH control additive; a surfactant; a breaker; a fluid loss control additive; a scale inhibitor; an asphaltene inhibitor; a paraffin inhibitor; a defoamer; an emulsifier; a demulsifier; an iron control agent; a solvent; a mutual solvent; a particulate diverter; a biopolymer other than scleroglucan or diutan; a synthetic polymer; and a friction reducer.
  • 11. The method of claim 8 wherein the acidic treatment fluid comprises an aqueous base fluid chosen from the group consisting of: fresh water; salt water; a brine; a salt; potassium chloride; sodium bromide; ammonium chloride; cesium formate; potassium formate; sodium formate; sodium nitrate; calcium bromide; zinc bromide; sodium chloride; hydrochloric acid; hydrofluoric acid; acetic acid; formic acid; citric acid; ethylene diamine tetra acetic acid; glycolic acid; and sulfamic acid.
  • 12. A method comprising: providing an acidic treatment fluid that comprises an aqueous base fluid, an acid, and a gelling agent that comprises diutan, wherein the pH of the acidic treatment fluid is less than about 4 and wherein the acidic treatment fluid is not foamed; andintroducing the acidic treatment fluid into a subterranean formation.
  • 13. The method of claim 12 wherein the gelling agent is present in the acidic treatment fluid in an amount of from about 10 lb/Mgal to about 200 lb/Mgal.
  • 14. The method of claim 12 wherein the acidic treatment fluid comprises at least one additive selected from the group consisting of: a hydrate inhibitor; a corrosion inhibitor; a pH control additive; a surfactant; a breaker; a fluid loss control additive; a scale inhibitor; an asphaltene inhibitor; a paraffin inhibitor; a defoamer; an emulsifier; a demulsifier; an iron control agent; a solvent; a mutual solvent; a particulate diverter; a biopolymer other than scleroglucan or diutan; a synthetic polymer; and a friction reducer.
  • 15. The method of claim 12 wherein the acidic treatment fluid comprises at least one aqueous base fluid chosen from the group consisting of: fresh water; salt water; a brine; a salt; potassium chloride; sodium bromide; ammonium chloride; cesium formate; potassium formate; sodium formate; sodium nitrate; calcium bromide; zinc bromide; sodium chloride; hydrochloric acid; hydrofluoric acid; acetic acid; formic acid; citric acid; ethylene diamine tetra acetic acid; glycolic acid; and sulfamic acid.
  • 16. A method comprising: providing an acidic treatment fluid that comprises an aqueous base fluid, an acid, and a gelling agent that comprises diutan, wherein the pH of the acidic treatment fluid is about 1 or less; andintroducing the acidic treatment fluid into a subterranean formation.
  • 17. The method of claim 16 further comprising: producing hydrocarbons from the subterranean formation.
US Referenced Citations (368)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Palmer Mar 1955 A
3173484 Huitt et al. Mar 1965 A
3195635 Fast Jul 1965 A
3272650 MacVittie Sep 1966 A
3302719 Fischer Feb 1967 A
3364995 Atkins et al. Jan 1968 A
3366178 Malone et al. Jan 1968 A
3455390 Gallus Jul 1969 A
3668137 Gardner Jun 1972 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3836465 Rhudy et al. Sep 1974 A
3868998 Lybarger et al. Mar 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
3968840 Tate Jul 1976 A
3986355 Klaeger Oct 1976 A
3998272 Maly Dec 1976 A
3998744 Arnold et al. Dec 1976 A
4010071 Colegrove Mar 1977 A
4068718 Cooke, Jr. et al. Jan 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4261421 Watanabe Apr 1981 A
4265673 Pace et al. May 1981 A
4299825 Lee Nov 1981 A
4387769 Erbstoesser et al. Jun 1983 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4498995 Gockel Feb 1985 A
4502540 Byham Mar 1985 A
4506734 Nolte Mar 1985 A
4521316 Sikorski Jun 1985 A
4526695 Erbstoesser et al. Jul 1985 A
4614236 Watkins et al. Sep 1986 A
4632876 Laird et al. Dec 1986 A
4694905 Armbruster Sep 1987 A
4703797 Djabbarah Nov 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4767706 Levesque Aug 1988 A
4772346 Anderson et al. Sep 1988 A
4784694 Lemanczyk et al. Nov 1988 A
4785884 Armbruster Nov 1988 A
4793416 Mitchell Dec 1988 A
4797262 Dewitz Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4822500 Dobson, Jr. et al. Apr 1989 A
4829100 Murphey et al. May 1989 A
4836940 Alexander Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4863980 Cowan et al. Sep 1989 A
4886354 Welch et al. Dec 1989 A
4887670 Lord et al. Dec 1989 A
4894231 Moreau et al. Jan 1990 A
4957165 Cantu et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5034139 Reid et al. Jul 1991 A
5076364 Hale et al. Dec 1991 A
5082056 Tackett, Jr. Jan 1992 A
5142023 Gruber et al. Aug 1992 A
5152781 Tang et al. Oct 1992 A
5161615 Hutchins et al. Nov 1992 A
5175278 Peik et al. Dec 1992 A
5203834 Hutchins et al. Apr 1993 A
5213446 Dovan May 1993 A
5216050 Sinclair Jun 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadja Oct 1993 A
5251697 Shuler Oct 1993 A
5295542 Cole et al. Mar 1994 A
5304620 Holtmyer et al. Apr 1994 A
5314031 Hale et al. May 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5386874 Laramay et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5439055 Card et al. Aug 1995 A
5458197 Chan Oct 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5487897 Polson et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5496557 Feijen et al. Mar 1996 A
5497830 Boles et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501276 Weaver et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5536807 Gruber et al. Jul 1996 A
5555936 Pirri et al. Sep 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5602083 Gabrysch et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5607905 Dobson, Jr. et al. Mar 1997 A
5613558 Dillenbeck Mar 1997 A
5670473 Scepanski Sep 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5723416 Liao Mar 1998 A
5759964 Shuchart et al. Jun 1998 A
5765642 Surjaatmadja Jun 1998 A
5783527 Dobson, Jr. et al. Jul 1998 A
5785747 Vollmer et al. Jul 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5833000 Weaver et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5916849 House Jun 1999 A
5924488 Nguyen et al. Jul 1999 A
5964291 Bourne et al. Oct 1999 A
5977030 House Nov 1999 A
5979557 Card et al. Nov 1999 A
5996693 Heathman Dec 1999 A
5996694 Dewprashad et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6047772 Weaver et al. Apr 2000 A
6100222 Vollmer et al. Aug 2000 A
6110875 Tjon-Joe-Pin et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123159 Brookey et al. Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148917 Brookey et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6189615 Sydansk Feb 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6260622 Blok et al. Jul 2001 B1
6291013 Gibson et al. Sep 2001 B1
6300286 Dobson, Jr. et al. Oct 2001 B1
6302209 Thompson et al. Oct 2001 B1
6308788 Patel et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6315045 Brezinski Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6357527 Norman et al. Mar 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6380138 Ischy et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394185 Constien May 2002 B1
6422314 Todd et al. Jul 2002 B1
6422326 Brookey et al. Jul 2002 B1
6432155 Swazey et al. Aug 2002 B1
6444316 Reddy et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6508305 Brannon et al. Jan 2003 B1
6509301 Vollmer et al. Jan 2003 B1
6525011 Brezinski Feb 2003 B2
6527051 Reddy et al. Mar 2003 B1
6534448 Brezinski Mar 2003 B1
6547871 Chatterji et al. Apr 2003 B2
6554071 Reddy et al. Apr 2003 B1
6566310 Chan May 2003 B2
6569814 Brady et al. May 2003 B1
6578630 Simpson et al. Jun 2003 B2
6599863 Palmer et al. Jul 2003 B1
6640898 Lord et al. Nov 2003 B2
6667279 Hessert et al. Dec 2003 B1
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6691780 Nguyen et al. Feb 2004 B2
6702023 Harris et al. Mar 2004 B1
6706668 Brezinski Mar 2004 B2
6710019 Sawdon et al. Mar 2004 B1
6716797 Brookey Apr 2004 B2
6737385 Todd et al. May 2004 B2
6761218 Nguyen et al. Jul 2004 B2
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6767869 DiLullo et al. Jul 2004 B2
6793018 Dawson et al. Sep 2004 B2
6793730 Reddy et al. Sep 2004 B2
6806235 Mueller et al. Oct 2004 B1
6817414 Lee Nov 2004 B2
6818594 Freeman et al. Nov 2004 B1
6837309 Boney et al. Jan 2005 B2
6840318 Lee et al. Jan 2005 B2
6852173 Banerjee et al. Feb 2005 B2
6861394 Ballard et al. Mar 2005 B2
6877563 Todd et al. Apr 2005 B2
6883608 Parlar et al. Apr 2005 B2
6886635 Hossaini et al. May 2005 B2
6896058 Munoz, Jr. et al. May 2005 B2
6904971 Brothers et al. Jun 2005 B2
6949491 Cooke, Jr. Sep 2005 B2
6959767 Horton et al. Nov 2005 B2
6978838 Parlar et al. Dec 2005 B2
6981552 Reddy et al. Jan 2006 B2
6983801 Dawson et al. Jan 2006 B2
6987083 Phillippi et al. Jan 2006 B2
6997259 Nguyen Feb 2006 B2
7000701 Todd et al. Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7021337 Todd et al. Apr 2006 B2
7021383 Todd et al. Apr 2006 B2
7032663 Nguyen Apr 2006 B2
7036586 Roddy et al. May 2006 B2
7036587 Munoz, Jr. et al. May 2006 B2
7044220 Nguyen et al. May 2006 B2
7044224 Nguyen May 2006 B2
7049272 Sinclair et al. May 2006 B2
7063151 Nguyen et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7066260 Sullivan et al. Jun 2006 B2
7069994 Cooke, Jr. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7093664 Todd et al. Aug 2006 B2
7096947 Todd et al. Aug 2006 B2
7101829 Guichard et al. Sep 2006 B2
7131491 Blauch et al. Nov 2006 B2
7132389 Lee Nov 2006 B2
7140438 Frost et al. Nov 2006 B2
7147067 Getzlaf et al. Dec 2006 B2
7151077 Prud'homme et al. Dec 2006 B2
7153902 Altes et al. Dec 2006 B2
7156174 Roddy et al. Jan 2007 B2
7159659 Welton et al. Jan 2007 B2
7165617 Lord et al. Jan 2007 B2
7166560 Still et al. Jan 2007 B2
7168489 Frost et al. Jan 2007 B2
7172022 Reddy et al. Feb 2007 B2
7178596 Blauch et al. Feb 2007 B2
7195068 Todd Mar 2007 B2
7204312 Roddy et al. Apr 2007 B2
7205264 Boles Apr 2007 B2
7216705 Saini et al. May 2007 B2
7219731 Sullivan May 2007 B2
7228904 Todd et al. Jun 2007 B2
7256159 Guichard et al. Aug 2007 B2
7261156 Nguyen et al. Aug 2007 B2
7264051 Nguyen et al. Sep 2007 B2
7265079 Wilbert et al. Sep 2007 B2
7267170 Mang et al. Sep 2007 B2
7276466 Todd et al. Oct 2007 B2
7299869 Kalman Nov 2007 B2
7299876 Lord et al. Nov 2007 B2
7303014 Reddy et al. Dec 2007 B2
7306037 Nguyen et al. Dec 2007 B2
7322412 Badalamenti et al. Jan 2008 B2
7345013 Fraser Mar 2008 B2
7353876 Savery et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7448450 Luke et al. Nov 2008 B2
7497278 Schriener et al. Mar 2009 B2
20010016562 Muir et al. Aug 2001 A1
20010027880 Brookey Oct 2001 A1
20020031525 Kobzeff et al. Mar 2002 A1
20020036088 Todd Mar 2002 A1
20020092652 Chatterji et al. Jul 2002 A1
20020119169 Angel et al. Aug 2002 A1
20020125012 Dawson et al. Sep 2002 A1
20030054962 England et al. Mar 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030147965 Bassett et al. Aug 2003 A1
20030166472 Pursley et al. Sep 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030230407 Vijn et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20030236174 Fu et al. Dec 2003 A1
20040014606 Parlar et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040023812 England et al. Feb 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040070093 Mathiowitz et al. Apr 2004 A1
20040094300 Sullivan et al. May 2004 A1
20040099416 Vijn et al. May 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040129459 Guichard et al. Jul 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040152601 Still et al. Aug 2004 A1
20040152602 Boles Aug 2004 A1
20040162386 Altes et al. Aug 2004 A1
20040170836 Bond et al. Sep 2004 A1
20040206498 Phillippi et al. Oct 2004 A1
20040214724 Todd et al. Oct 2004 A1
20040216876 Lee Nov 2004 A1
20040216882 Horton et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040238169 Todd et al. Dec 2004 A1
20050000734 Getzlaf et al. Jan 2005 A1
20050028976 Nguyen Feb 2005 A1
20050028978 Parlar et al. Feb 2005 A1
20050034861 Saini et al. Feb 2005 A1
20050059556 Munoz, Jr., et al. Mar 2005 A1
20050059557 Todd et al. Mar 2005 A1
20050059558 Blauch et al. Mar 2005 A1
20050103496 Todd et al. May 2005 A1
20050126785 Todd et al. Jun 2005 A1
20050130848 Todd et al. Jun 2005 A1
20050183741 Surjaatmadja et al. Aug 2005 A1
20050205266 Todd et al. Sep 2005 A1
20050252659 Sullivan et al. Nov 2005 A1
20050261138 Robb et al. Nov 2005 A1
20050272613 Cooke, Jr. Dec 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20060014648 Milson et al. Jan 2006 A1
20060016596 Pauls et al. Jan 2006 A1
20060032633 Nguyen Feb 2006 A1
20060046938 Harris et al. Mar 2006 A1
20060048938 Kalman Mar 2006 A1
20060054324 Sullivan et al. Mar 2006 A1
20060065397 Nguyen et al. Mar 2006 A1
20060105917 Munoz, Jr., et al. May 2006 A1
20060105918 Munoz, Jr., et al. May 2006 A1
20060108150 Luke et al. May 2006 A1
20060166836 Pena et al. Jul 2006 A1
20060169182 Todd et al. Aug 2006 A1
20060169450 Mang et al. Aug 2006 A1
20060172891 Todd et al. Aug 2006 A1
20060172893 Todd et al. Aug 2006 A1
20060172894 Mang et al. Aug 2006 A1
20060172895 Mang et al. Aug 2006 A1
20060180309 Welton et al. Aug 2006 A1
20060180310 Welton et al. Aug 2006 A1
20060183646 Welton et al. Aug 2006 A1
20060185847 Saini et al. Aug 2006 A1
20060185848 Surjaatmadja et al. Aug 2006 A1
20060234873 Ballard Oct 2006 A1
20060258543 Saini Nov 2006 A1
20060258544 Saini Nov 2006 A1
20060276345 Todd et al. Dec 2006 A1
20060278437 Guichard et al. Dec 2006 A1
20060283597 Schreiner et al. Dec 2006 A1
20070100029 Reddy et al. May 2007 A1
20070235190 Lord et al. Oct 2007 A1
20080070810 Mang Mar 2008 A1
Foreign Referenced Citations (30)
Number Date Country
0 146 981 Nov 1984 EP
0 510 762 Oct 1992 EP
0 879 935 Nov 1998 EP
1 413 710 Apr 2004 EP
2 570 753 Sep 1984 FR
2 570 754 Sep 1984 FR
2 570 755 Sep 1984 FR
2 570 756 Sep 1984 FR
2 600 664 Jun 1986 FR
2 354 541 Mar 2001 GB
2 412 389 Mar 2004 GB
2004181820 Jul 2004 JP
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9512741 May 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0057022 Sep 2000 WO
WO 0102698 Jan 2001 WO
WO 0187797 Nov 2001 WO
WO 0194744 Dec 2001 WO
WO 0255843 Jan 2002 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 2004007905 Jan 2004 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
Related Publications (1)
Number Date Country
20060243449 A1 Nov 2006 US