The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with Tables 1-20. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
Two initial systems were tested to achieve the suspension of orange pulp within an acidified milk drink (See Example 1, supra). System 1, high acyl gellan gum blended with a sodium cellulose gum, and system 2, high methoxy pectin, were compared in an ultra high temperature sterilized acidified milk drink. The results unexpectedly demonstrated that gellan gum had significant value as a suspension aid in directly acidified milk drinks with another hydrocolloid.
Samples were prepared to evaluate the suspension of fruit pulp and protein in an acidified milk drink containing 1% protein at pH 4.0. A comparison was made between a high acyl gellan gum and cellulose gum stabilizing blend and a high acyl gellan gum and high methoxy pectin stabilizing blend.
The process to prepare the samples follows:
All samples were stored at 5° C. After one week, stored samples were evaluated at 5° C. and 25° C. (the room temperature samples were taken out of refrigerated conditions, were held at room temperature for three days, and then observed). Visual observations were made on the stability of protein and orange pulp at both temperatures. These observations are set forth in Table 2. The viscosity of the drinks (without orange pulp) was measured at 5° and 25° C. using a LV Brookfield® viscometer with spindle 1, after 1 minute of rotation at both 6 and 60 rpm. pH values are also reported at 25° C. See Table 3.
According to this specific process, the various use levels of high methoxy pectin in combination with different use levels of high acyl gellan gum were not effective in suspending orange pulp, and the stability of the drinks was not satisfactory.
The two combinations of acidified milk drinks using cellulose gum in combination with high acyl gellan gum exhibited improved stability and suspension of orange pulp. The cellulose gum added some viscosity to the beverages compared to the pectin based system, however, this was not as significant at room temperature compared to 5° C. The viscosity of the 0.35% cellulose gum concentration in sample 5(5/12) was higher than the 0.40% concentration in sample 6(5/12), however, both of these concentrations of cellulose gum in combination with gellan gum produced stable fruit pulp and protein in the beverage.
Samples were prepared to determine the stability of fruit pulp and protein in acidified milk drinks stabilized with cellulose gum and high acyl gellan gum using different hydration methods of the cellulose gum, and to assess the optimum cellulose gum to high acyl gellan gum ratio.
Process A is the same as the process set forth in Example 1.
Process B is set forth below.
Acidified milk drinks were prepared to compare the suspension performance of protein and orange pulp using different ratios of cellulose gum to high acyl gellan gum. The beverages were formulated to provide 1.0% protein at pH 4.0. See Tables 4 and 5.
Two different methods were employed to incorporate the cellulose gum into the drink. A separate hot solution of cellulose gum was prepared, similar to a preparation method for pectin (Process A). The second method involved adding dry cellulose gum directly to a 50° C. non-fat dry milk powder solution and hydrating in this system (Process B). In both methods no attempt was made to hydrate the native gellan gum at the gum inclusion stage.
After filling, all of the drinks were stored at 5° C. The finished drinks were observed after one week at 5 and 25° C. (the ambient temperature samples were taken out of refrigerated conditions, were held at room temperature for three days, and then observed). See Tables 6 and 7.
For the Process A batches, batch 5 and 5a provided good stability, but batch 6 had some slight settling, which could be attributed to an insufficient concentration of high acyl gellan gum. See Table 6. Process B also gave good stability in batches 7-9, suggesting that both methods are sufficient for hydrating the cellulose gum and either can be used for stabilizing acidified milk drinks.
The viscosities of batches 10-15 were significantly lower than batches 5-9, and were not stable. See Tables 6, 7, 8 and 9. It may be assumed that the use levels of high acyl gellan gum in batches 10-15 were too low for these samples and should be at least 0.03% high acyl gellan gum.
Samples were prepared to demonstrate the stability of acidified dairy drinks (1.5% protein) using various ratios of cellulose gum in combination with 0.03% high acyl gellan gum compared to stabilization with 0.40% high methoxyl pectin in combination with 0.03% high acyl gellan gum.
The process included dispersing milk solids non-fat powder into 25° C. DI-water to make up a 20% skim milk solution. The milk solids non-fat powder and water were mixed using a high speed mixer, at a temperature of 50° C. for 5 min, and then cooled to ambient temperature. Pectin or cellulose gum powder was dispersed into 50° C. Dl water using a high speed mixer to make a 2% solution. The Pectin or cellulose gum was then mixed for 5 minutes and allow to cool. The pectin or cellulose gum solution was added to the skim milk solution and stirred for a few minutes. The temperature of the combined solution was verified to be at about 25° C. and juice was added. Sugar and high acyl gellan gum were dry-blended prior to adding to the combined solution. Orange juice concentrate was added while stirring, and the pH was adjusted to 4.0 using a 50% (w/v) citric acid solution while stirring. The beverage was then processed with 70° C. pre-heat temperature, homogenization at 2600 psi (2100 first stage, 500 second stage) and a final heat of 121° C. for 4 seconds followed by cooling to ambient temperature. The beverage was aseptically filled into polyethylene terephthalate copolyester Nalgene® bottles at 30° C. and the samples were stored at room temperature.
After 4 days of storage at room temperature, the samples were visually and orally evaluated. The high methoxy pectin control showed signs of sedimentation at the bottom of the container, even in the presence of high acyl gellan gum, however it tasted very smooth, notwithstanding evident sedimentation. For the 0.25% cellulose gum based drink there was no sedimentation evident, but the mouthfeel was objectionably grainy, which indicated that there was an insufficient amount of cellulose gum coating the protein during the acidification step. Upon increasing the cellulose gum concentration to 0.32%, the sample continued to demonstrate stable suspension and good mouthfeel. With 0.40% cellulose gum and 0.03% high acyl gellan gum, the samples were completely stable and smooth.
Viscosity and elastic modulus measurements were carried out at 20° C. to test the performance of the stabilizer under these conditions. See Table 11. The pectin stabilized sample had a very low elastic modulus value of 0.01 dynes/cm2, which explains the poor suspension that was evident as observed with this stabilizing system. Meanwhile, the cellulose gum stabilized samples had much higher modulus values, with the improved stabilizer systems (0.32% and 0.4% cellulose gum with 0.03% high acyl gellan gum) having values close to 1.0 dynes/cm2. The high modulus in the cellulose gum/high acyl gellan gum system provided adequate suspension of the protein. The cellulose gum/high acyl gellan gum stabilized samples also had slightly higher viscosity values than the high methoxy pectin/high acyl gellan gum stabilized samples, however these values did not exceed 15 cP.
The effects of fill temperature on the stability of a cellulose gum/high acyl gellan gum stabilized acidified dairy drink at 1.5% protein were determined.
The process included dispersing milk solids non-fat powder into 25° C. DI-water to make a 20% skim milk solution. Using a high speed mixer, a temperature of 50° C. was held for 5 min and then cooled to ambient temperature. Cellulose gum powder was dispersed into 50° C. DI water using high speed mixer to make 2% solution, mixed for 5 minutes and allowed to cool. cellulose gum solution was added to the skim milk solution and stirred for about 2-3 minutes. The temperature of the combined solution was verified to be at about 25° C. and juice was added. Dry blend sugar and high acyl gellan gum were then added to the combined solution. Orange juice concentrate was added while stirring, and the pH was adjusted to 4.0 using a 50% (w/v) citric acid solution while stirring. The beverage was processed with 70° C. pre-heat temperature, homogenization at 2600 psi (2100 first stage, 500 second stage) and a final heat of 121° C. The beverage was then filled aseptically into polyethylene terephthatate copolyester Nalgene® bottles at 30° C. or hot-fill into glass bottles at 85° C. for 2 minutes. The samples were stored at room temperature for four days and evaluated.
Visual inspection after four days showed that both samples demonstrated good stability. See Table 14. Both the ambient and hot-filled samples were smooth in texture. Elastic modulus data comparing the two samples demonstrated high modulus values capable of keeping the proteins in suspension, though the hot-filled sample was higher in modulus than the ambient filled sample. Similarly, the hot-filled sample was higher in viscosity than the ambient filled sample. These data suggested that both fill temperatures are suitable for filling cellulose gum/high acyl gellan gum stabilized acidified dairy drinks.
The process comprised dispersing milk solids non-fat powder into 25° C. DI-water to make up a 20% skim milk solution. Using a high speed mixer, the solution was heated to a temperature of 50° C. which was held for 5 min and then the temperature was cooled to ambient temperature. Cellulose gum powder was dispersed into 50° C. DI water using a high speed mixer to make a 2% solution, mixed for 5 minutes and allowed to cool. A cellulose gum slurry was added to the skim milk solution and stirred for a few minutes. The temperature of the combined solution was verified to be at about 25° C. and juice was added. Dry blended sugar and high acyl gellan gum were added to the combined solution. Orange juice concentrate was added while stirring, and the pH was adjusted to the respective pH (3.5, 3.8, 4.0, 4.2 or 4.4) using a 50% (w/v) citric acid solution while stirring. The beverage was processed with 70° C. pre-heat temperature, homogenization at 2600 psi (2100 first stage, 500 second stage) and a final heat of 121° C. for 4 seconds, then cooled. The beverage was aseptically filled into polyethylene terephthalate copolyester Nalgene® bottles at 30° C. The samples were stored at room temperature for four days and evaluated.
After 4 days, the sample processed at pH 3.5 had large particulates suspended throughout the beverage. These beverages were considered to be extremely grainy upon oral evaluation. With an increase in pH, the protein particles became much smaller, giving a smooth texture to the beverages at pH 3.8 and higher. See Table 16.
Elastic modulus data indicated that the samples at pH 3.8 and higher were stable. The viscosity increased upon increasing the pH from 3.8 to 4.4. These samples were completely stable with no sign of visible sedimentation, suggesting that the working pH range for the cellulose gum/high acyl gellan gum stabilized acid milk drinks was 3.8-4.4. See Table 16
The process comprised dispersing milk solids non-fat powder or soy protein isolate into 25° C. DI-water to make up a 20% skim milk solution or 5% soy protein isolate solution. Using a high speed mixer, the skim milk solution or soy protein isolate solution was heated to 50° C. or 70° C., respectively, held for 5 min at either 50° C. or 70° C., respectively, and then cooled to ambient temperature. Cellulose gum powder was dispersed into 50° C. DI water using high speed mixer to make 2% solution, mixed for 5 minutes, and allowed to cool. Cellulose gum solution was added to the skim milk solution and stirred for a few minutes. The temperature of the combined solution was verified to be at about 25° C. and juice was added. Dry blended sugar and high acyl gellan gum were added to the combined solution. Orange juice concentrate was added while stirring, and the pH was adjusted to 4.0 using a 50% (w/v) citric acid solution while stirring. The beverage was processed with 70° C. pre-heat temperature, homogenization at 2600 psi (2100 first stage, 500 second stage), and a final heat of 121° C. for 4 seconds, then cooled to ambient temperature. The beverage was filled aseptically into polyethylene terephthatate copolyester Nalgene® bottles at 30° C. and the samples were stored at room temperature for four days and evaluated. See table 17.
All of the trials tested tasted smooth and had excellent stability. See Table 18. This indicated that the concentrations of cellulose gum used were sufficient for protein stability during processing. This is in agreement with the elastic modulus values obtained. Viscosity increased when switching from a dairy to a soy protein system.
Samples were prepared to determine how changes in protein content effect the stability of a 0.40% cellulose gum and 0.03% high acyl gellan gum stabilized acidified milk drink when using 0.5%, 1.0%, 2.0%, and 3.0% protein concentrations. The process comprised dispersing milk solids non-fat powder or soy protein isolate into 25° C. DI-water to make up a 20% skim milk solution or 5% soy protein isolate solution. Using a high speed mixer, the skim milk solution or soy protein isolate solution was heated to 50° C. or 70° C., respectively, held for 5 min at either 50° C. or 70° C., respectively, and then cooled to ambient temperature. Cellulose gum powder was dispersed into 50° C. DI water using high speed mixer to make 2% solution, mixed for 5 minutes, and allowed to cool. Cellulose gum solution was added to the skim milk solution and stirred for a few minutes. The temperature of the combined solution was verified to be at about 25° C. and juice was added. Dry blended sugar and high acyl gellan gum was added to the combined solution. Orange juice concentrate was added while stirring, and the pH was adjusted to 4.0 using a 50% (w/v) citric acid solution while stirring. The beverage was processed with 70° C. pre-heat temperature, homogenization at 2600 psi (2100 first stage, 500 second stage) and a final heat of 121° C. for 4 seconds, then cooled to ambient temperature. The beverage was filled aseptically into polyethylene terephthalate copolyester Nalgene® bottles at 30° C. and the samples were stored at room temperature for four days and evaluated. See tables 19 and 20.
Upon tasting the samples, the 0.5% protein sample had slightly more perceived mouthfeel than the higher protein concentrations. The 1.0% and 2.0% protein samples tasted smooth, while 3.0% protein was grainy in texture. These data suggested that the 0.5% protein sample would require less cellulose gum to stabilize this protein content, while the 3.0% protein sample would require more cellulose gum to stabilize the protein. All samples were completely stable, with no signs of sedimentation, which was in agreement with the elastic modulus values of greater than 1.0 dynes/cm2. Viscosity values were lowest with 1.0% and 2.0% protein samples.