This application claims the priority benefit of Taiwan application serial no. 97106515, filed on Feb. 25, 2008. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
1. Field of the Invention
The present invention relates to an array substrate and a display panel, and in particular, to an active device array substrate having a testing device and to a liquid crystal display panel having the active device array substrate.
2. Description of Related Art
The thin film transistor liquid crystal display (TFT-LCD) has become the mainstream among various flat panel displays for its superior characteristics such as high resolution, good space usage, low power consumption and free of radiation. Particularly, when fabricating the TFT-LCD, the electrode line has to be tested to ensure that the TFT-LCD can function normally.
However, after the inspection on the TFT-LCD is completed, an additional cutting process has to be performed to remove the additional shorting bars 150. Therefore, process time and a process cost are increased.
After the inspection on the TFT-LCD 102 is completed, a laser cutting process has to be performed to cut off the electrical connection between the shorting bars 152 and the TFT-LCD 102. Thus, the process time and the process cost are increased.
In order to avoid the additional cutting process or the laser cutting process, another conventional TFT-LCD is provided.
Switch elements 168 are disposed in the testing device 160. The switch elements 168 are disposed in the conjunction between each scan line 162 and a testing line 166, and disposed in the conjunction between each data line 164 and the testing line 166′. In the process of inspection, the switch elements 168 are switched on, so that the scan lines 162 and the data lines 164 are respectively connected to the respect testing and 166′. After the inspection is completed, the switch elements 168 are switched off, and thereby the scan lines 162 and the data lines 164 can be driven normally.
However, the TFT-LCD 104 can only be applied to designing a single-side gate/source driving circuit (1G1S) and can not be applied to designing a both-side gate/source driving circuit (2G2S). Although the testing device 160 can be disposed outside of the gate driving circuit 172 or the source driving circuit 174, the area of the entire peripheral circuit region is increased, and thereby an incompatible problem among panels occurs.
In solution, the present invention is directed to an active device array substrate having a testing device. After inspection, no additional cutting process is required, and in particular, an area of the peripheral circuit region is prevented from increasing. Therefore, the compatibility of the panel is superior.
The present invention is further directed to a liquid crystal display panel having the above-mentioned active device array substrate.
As embodied and broadly discussed herein, the present invention provides an active device array substrate. The active device array substrate has a display region, a peripheral circuit region outside of the display region, wherein the peripheral circuit region has a terminal region and a narrow-edge region between the terminal region and the display region. The active device array substrate includes a pixel array, a plurality of electrode lines and a testing device. The pixel array is disposed in the display region. A plurality of electrode lines disposed in the peripheral circuit region and electrically connected with the pixel array. The testing device is disposed in the narrow-edge region for inspecting the active device array substrate.
The present invention also provides a liquid crystal display panel, including the active device array substrate, a color filter substrate, and a liquid crystal layer. The color filter substrate is disposed in an opposite side of the active device array substrate, and the liquid crystal layer is disposed between the color filter substrate and the active device array substrate.
According to one embodiment of the present invention, the testing device includes a plurality of testing lines, a plurality of switch lines, a plurality of switch elements and a testing switch line. The testing lines are perpendicular to the electrode lines. The testing lines are electrically connected with the electrode lines respectively. The switch lines are parallel to the electrode lines. Each of the switch lines is disposed between adjacent two electrode lines. A plurality of switch elements is respectively disposed on each of the switch lines. Each of the testing lines is electrically connected with each of the electrode lines through each of the switch elements, and an electrode connection point is between each of the electrode lines and each of the testing lines. The testing switch line is electrically connected with the switch lines in order to switch on/off the switch elements.
According to one embodiment of the present invention, the electrode connection point is, for example, a contact window, so that the testing line is electrically connected with the corresponding electrode line through the contact window.
According to one embodiment of the present invention, the switch element includes at least one thin film transistor, wherein the thin film transistor includes a gate, a first source/drain and a second source/drain. The gate is electrically connected with the corresponding switch line. The first source/drain is electrically connected with the corresponding electrode line. The second source/drain is electrically connected with the corresponding testing line.
According to one embodiment of the present invention, the switch element includes a thin film transistor and a diode, wherein the diode is electrically connected between the testing line and the switch line.
According to one embodiment of the present invention, the active device array substrate further comprises at least one shorting bar disposed in the peripheral circuit region and electrically connected with the testing lines.
According to one embodiment of the present invention, the electrode lines are scan lines or data lines.
According to one embodiment of the present invention, the active device array substrate or the liquid crystal display panel further comprises at least one driver pad connected with the electrode lines. The driver pad is suitable for transmitting a driving signal provided by a driving circuit. Further, the active device array substrate or the liquid crystal display panel further includes at least one panel detecting pad disposed besides the corresponding driver pad, wherein the panel detecting pads with the same driving signal are electrically connected together.
In summary, according to the present invention, by adopting the testing device in the active device array device and the liquid crystal display panel, and by disposing the testing device in the narrow-edge region of the peripheral circuit region, the area of the peripheral circuit region of the panel is prevented from increasing. Moreover, the present invention can be applied to designing a both-side gate/source driving circuit (2G2S). In addition, when the display is normal, the switch elements of the testing device are in a high resistance state (close to a cut-off state), so that the cutting process for cutting off an electrical connection between the testing device and the electrode lines is omitted after the implementation of the inspection. Further, the switch elements are disposed on the switch lines separated from the electrode lines, and thereby, when the display is normal, the switch elements in a switched-off state do not prevent the transmission of the signal in the electrode lines. Moreover, the active device array substrate can prevent the substrate from electric static discharge (ESD) damage.
To make the above and other objectives, features, and advantages of the present invention more comprehensible, several embodiments accompanied with figures are detailed as follows.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Hereinafter, a testing method for a single-side source driving circuit is taken as an example to describe the embodiments of the present invention. However, the present invention can also be applied to the inspection of a single-side gate driving circuit and a both-side gate/source driving circuit (2G2S). The arrangement of the driving circuit is not limited to the present invention.
Referring to
It should be noted that the conventional testing device 160 (as shown in
The electrode lines 270 and testing lines 282 are different film layers. The electrode lines 270 are, for example, a first metal layer (metal 1), and the testing lines 282 are, for example, a second metal layer (metal 2). However, the film layers used to fabricate the electrode lines 270, the testing lines 282, the switch lines 284 and the testing switch line 287 are not limited to the present invention. The present invention can incorporate the metal 1, the metal 2 and a pixel electrode layer into a circuit layout. Accordingly, a contact window H is utilized to electrically connect the both layers to each other. That is to say, the electrode connection point 289 is, for example, the contact window H, and thereby the testing lines 282 are electrically connected with the corresponding electrode lines 270 through the contact window H. Therefore, the electrode lines 270 can be inspected through the testing lines 282.
Referring to
In the thin film transistor 286, the gate 286a is electrically connected with the corresponding switch line 284. The first source/drain 286b is electrically connected with the corresponding electrode line 270. The second source/drain 286c is electrically connected with the corresponding testing line 282. Particularly, the first source/drain 286b is electrically connected with the corresponding electrode line 270 through the contact window H. In addition, in other embodiments, the switch element 285 can be constituted by multiple thin film transistors 286 or other active elements. The present invention is not intended to limit the switch element 285 to include only one thin film transistor.
It should be noted that, the switch elements 285 are respectively disposed on each of the switch lines 284, but not directly disposed on the electrode lines 270. During inspection, an inputted voltage is provided from the testing switch line 287 to the switch lines 284. Therefore, each of the switch elements 285 is turned on by the inputted voltage so that the electrode lines 270 can be inspected through the testing lines 282. After the inspection is completed, the switch elements 285 are switched off to disconnect the electrode lines 270 from the testing lines 282.
Therefore, when performing the display, each of the electrode lines 270 can function normally and the electrode lines 270 are prevented from being electrically connected through the testing lines 282. Further, the switch elements 285 are separated from the electrode lines 270 and disposed on the switch lines 284, and thereby, when the display is in normal operation, the switch elements 285 in a switched-off state do not obstruct the transmission of the signal in the electrode lines 270. The above-mentioned technical effect can not be achieved by using a conventional thin film transistor liquid crystal display 104 as shown in
Referring to
More specifically, assuming that the testing device 160 is disposed between the gate driving circuit 172 and the display region 170 (or between the source driving circuit 174 and the display region 170), the thin film transistor liquid crystal display 104 can be inspected when the switch element 168 is electrically connected.
However, when it is intended to enter a display state, the switch element 168 has to be switched off. Thus, because the switch element 168 is switched off, the signal outputted from the gate driving circuit 172 or source driving circuit 174 is obstructed from being transmitted to the display region 170, and thereby an image can not be displayed.
In addition, electrostatic accumulation often occurs in the process of fabricating the active device array substrate 200. When the accumulation of static charges exceeds a certain amount, an electric static discharge (ESD) occurs, and thereby the circuit on the active device array substrate 200 is damaged. In order to prevent the above-mentioned ESD damage, the present invention provides another active device array substrate.
Referring to
Particularly, the shorting bar 290 can also be not required, which is achieved by directly making all panel detecting pads with the same signal electrically connected together (not shown). The panel detecting pad is disposed besides the corresponding driver pad 260. As shown in
Please referring to
Furthermore, the present invention further provides a testing device 380 in order to prevent the switch elements 285 in the testing device 280 from being damaged by the accumulation of the static charges and thereby to prevent a shortage problem of the electrode lines 270.
The diode 288 and the thin film transistor 286 are connected in parallel. Therefore, when a current of the electrode lines 270 is overly large, electric charges flow through the corresponding diode and not through the thin film transistor 286. Thus, the electric charges are transmitted to the corresponding switch line 284, and then the electric charges converge in the testing switch line 287 and are discharged. Thereby, the thin film transistor 286 is prevented from being damaged by an overly-large current, so that an abnormal display caused by a signal shortage between the electrode lines 270 is prevented.
Similarly, because the active device array substrate 410 has the aforementioned testing device 280 or 380, the cutting process is not required to be performed on the active device array substrate 410 during a process of fabricating the liquid crystal display panel 400. Therefore, the process time and the process cost can be reduced.
In summary, the active device array substrate of the present invention has at least the following advantages:
(1) The testing device can be directly disposed in the narrow-edge region; however, the testing device of the conventional thin film transistor liquid crystal display can only be disposed in the opposite side of the driving circuit. Therefore, according to the present invention, the area of the peripheral circuit region of the panel is prevented from increasing, so that the present invention can be utilized in the both-side gate/source driving circuit arragement.
(2) By disposing the switch elements in the testing device, the additional cutting process for cutting off the electrical connection between the testing device and the electrode lines is not required after the inspection is performed on the active device array substrate. Thereby, the process time and the process cost can be reduced.
(3) The switch element is disposed on the switch lines separated from the electrode lines. Thereby, when transmitting the signal in the display state, the switched-off switch element does not obstruct the signal transmitting in the electrode lines.
(4) By using the shorting bars, the diodes or connecting the panel detecting pads with the same driving signal to one another, the active device array substrate or the liquid crystal display panel is effectively prevented from being damaged by the ESD.
Although the present invention has been described with reference to the above embodiments, it will be apparent to one of the ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims not by the above detailed descriptions.
Number | Date | Country | Kind |
---|---|---|---|
97106515 | Feb 2008 | TW | national |