Acoustic ceiling popcorn texture materials, systems, and methods

Information

  • Patent Grant
  • 9435120
  • Patent Number
    9,435,120
  • Date Filed
    Wednesday, March 13, 2013
    11 years ago
  • Date Issued
    Tuesday, September 6, 2016
    8 years ago
Abstract
An actuator for forming a texture layer on a target surface has a housing, a trigger, and an adapter. The housing supports the trigger for pivoting movement between first and second trigger positions. The housing supports the adapter member for sliding movement between first and second adapter positions. The trigger engages the adapter to displace the adapter from the first adapter position to the second adapter position as the trigger moves from the first trigger position to the second trigger position. The adapter engages a valve assembly such that the valve assembly is in closed and open configurations when the adapter is in the first and second adapter positions.
Description
TECHNICAL FIELD

The present invention relates to aerosol systems and methods for dispensing texture material and, more specifically, aerosol systems and methods configured to dispense acoustic texture material onto ceiling surfaces.


BACKGROUND

Acoustic or “popcorn” texture material is applied to interior surfaces of structures, and typically ceiling surfaces. Acoustic texture material comprises a base material and aggregate material in the form of visible chips or beads. The aggregate material is adhered to the target surface by the base material. In new construction, the acoustic texture material is applied by a hopper gun, and the chips or beads are typically formed of polystyrene foam. The polystyrene foam chips act to dampen sound waves that would otherwise reflect off the target surface.


When acoustic texture material on a target surface or the target surface itself is damaged, a new coating of texture material is applied. For small repairs, the use of a hopper gun is not practical, and acoustic texture material is applied using an aerosol dispenser.


The need exists for improved aerosol dispensing systems and methods configured to apply acoustic texture material to a target surface such as a ceiling surface.


SUMMARY

The present invention may be embodied as an aerosol dispensing system for forming a texture layer on a target surface comprising an aerosol assembly, an actuator assembly, and at least one outlet tube. The aerosol assembly adapted to contain acoustic texture material and comprises a container assembly and a valve assembly arranged to operate in open and closed configurations. The valve assembly is biased in the closed position. The valve assembly is supported by the container assembly such that the acoustic texture material is allowed to flow out of the container assembly when the valve assembly is in the open configuration and the acoustic texture material is prevented from flowing out of the container when the valve assembly is in the closed configuration. The actuator assembly comprises a housing, a trigger, and an adapter defining an adapter opening. The housing supports the trigger for pivoting movement between first and second trigger positions. The housing supports the adapter member for sliding movement between first and second adapter positions. The trigger engages the adapter to displace the adapter from the first adapter position to the second adapter position as the trigger moves from the first trigger position to the second trigger position. The adapter engages the valve assembly such that the valve assembly is in the closed configuration when the adapter is in the first adapter position, the adapter moves the valve assembly into the open configuration when the adapter is in the second adapter position, and, when the valve assembly is in the open configuration, acoustic texture material flows from the valve assembly and through the adapter opening. The at least one outlet tube defines an outlet passageway and an outlet opening. The adapter supports the at least one outlet tube such that acoustic texture material flowing through the adapter opening when the valve assembly is in the open configuration flows into the outlet passageway. The outlet tube is arranged such that acoustic texture material flowing through the outlet passageway flows out of the outlet opening and out of the housing.


The present invention may be embodied as a method of forming a texture layer on a target surface comprising the following steps. An aerosol assembly adapted to contain acoustic texture material is provided. The aerosol assembly comprises a container assembly and a valve assembly arranged to operate in open and closed configurations. The valve assembly is biased in the closed position. The valve assembly is supported on the container assembly such that the acoustic texture material is allowed to flow out of the container assembly when the valve assembly is in the open configuration and the acoustic texture material is prevented from flowing out of the container when the valve assembly is in the closed configuration. An actuator assembly comprising a housing, a trigger, and an adapter defining an adapter opening is provided. The adapter member is supported on the housing for sliding movement between first and second adapter positions such that the valve assembly is in the closed configuration when the adapter is in the first adapter position, the adapter moves the valve assembly into the open configuration when the adapter is in the second adapter position, and, when the valve assembly is in the open configuration, acoustic texture material flows from the valve assembly and through the adapter opening. The trigger is supported on the housing for pivoting movement between first and second trigger positions such that the trigger engages the adapter to displace the adapter from the first adapter position to the second adapter position as the trigger moves from the first trigger position to the second trigger position. At least one outlet tube defining an outlet passageway and an outlet opening is provided. The at least one outlet tube is arranged such that the adapter supports the at least one outlet tube. The trigger member is displaced into the second trigger position such that valve assembly is in the open configuration to allow acoustic texture material to flow through the adapter opening, through the outlet passageway, out of the outlet opening, and out of the housing.


The present invention may also be embodied as an acoustic texture material concentrate comprising, by weight of the acoustic texture material concentrate, between 2% and 10% of a first solvent, between 2% and 20% of a second solvent, between 2% and 15% of a diluent, between 5% and 10% of a binder, between 1% and 2.5% of a thickener, between 0.1% and 1% of a dispersing agent, and between 40% and 80% of a filler.


The present invention may also be embodied as acoustic texture material concentrate comprising, by weight of the acoustic texture material concentrate, between 15% and 60% of a solvent, between 0.31% and 10.0% of a thickener, between 0.0% and 3.0% of a de-foamer, between 0% and 5.0% of a corrosion inhibitor, between 0% and 6% of a biocide, between 1.0% and 10.0% of a binder, between 0.0% and 3.0% of a dispersing agent, and between 20% and 90% of a filler.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a first example aerosol dispensing system of the present invention;



FIG. 2 is a side elevation view illustrating the use of the first example aerosol dispensing system to apply acoustic texture material to a target surface;



FIG. 3 is a top plan view of the first example aerosol dispensing system;



FIG. 4 is a partial section view illustrating an aerosol assembly, actuator assembly, and outlet tubes of the first example aerosol dispensing system;



FIG. 5 is a horizontal section view taken along lines 5-5 in FIG. 4;



FIG. 6 is a vertical section view of the actuator housing of the actuator assembly of the first example aerosol dispensing system;



FIG. 7 is a vertical section view depicting the interaction between the actuator housing and a trigger of the actuator assembly of the first example aerosol dispensing system;



FIG. 8 is a front elevation view of a first example adapter of the actuator assembly of the first example aerosol dispensing system;



FIG. 9 is a top plan view of the first example adapter;



FIG. 10 is a bottom plan view of the first example adapter;



FIG. 11 is a section view illustrating the engagement of the first example adapter with the outlet tubes;



FIG. 12 is a perspective view of a lock member of the actuator assembly of the first example aerosol dispensing system;



FIG. 13 is a partial section view illustrating interaction of the actuator assembly of the first example aerosol dispensing system with a valve assembly of the aerosol assembly;



FIG. 14 is a partial section view illustrating operation of the actuator assembly;



FIG. 15 is a front elevation view of a second example adapter that may be used by an actuator assembly of the first example aerosol dispensing system;



FIG. 16 is a top plan view of the second example adapter;



FIG. 17 is a bottom plan view of the second example adapter;



FIG. 18 is a top plan view of a third example adapter; and



FIG. 19 is a bottom plan view of the third example adapter.





DETAILED DESCRIPTION


FIGS. 1, 3, and 4 illustrate a first example aerosol dispensing system 20 constructed in accordance with, and embodying, the principles of the present invention. The first example aerosol dispensing system 20 comprises an aerosol assembly 22, an actuator assembly 24, and at least one outlet tube 26 defining an outlet opening 28. The first example aerosol dispensing system 20 comprises first and second outlet tubes 26a and 26b defining first and second outlet passageways 28a and 28b.


The example outlet passageways 28a and 28b are circular and have a substantially consistent diameter. The outlet tubes 26a and 26b are flexible to allow slight bending but are sufficiently rigid to substantially maintain their shape during normal use as will be described in further detail below.



FIG. 2 illustrates that the first example aerosol dispensing system 20 is adapted to dispense acoustic texture material 30 onto a target surface 32 to form a texture layer 34. Typically, the target surface will be a downward facing, horizontal surface such as a ceiling surface. In this case, the first example aerosol dispensing system 20 is configured to spray the texture material 30 upwardly with the aerosol assembly 22 in a generally vertical orientation.


The texture material 30 is typically arranged within the aerosol assembly 22 along with a propellant material. The propellant material may be a compressed inert gas such as air or nitrogen that pressurizes the texture material 30. More commonly, however, the propellant material is formed by a material that exists in both liquid and gas forms within the aerosol assembly 22. The gas form of the propellant material pressurizes the texture material 30 such that at least a portion of the texture material 30 is forced out of the aerosol assembly 22 when the valve assembly 42 is opened as described elsewhere herein. As the volume of texture material 30 within the aerosol assembly 22 decreases, the liquid propellant material gasifies to rebuild pressure within the aerosol assembly 22.


The texture material 30 may be formulated in accordance with a first example formulation as set forth in the following Tables A-1, A-2, A-3, and A-4 or a second example formulation as set forth in the following Tables B-1, B-2, B-2, and B-4. While these formulations are particularly suitable for use with an aerosol assembly such as the example aerosol assembly 22 described herein, these formulations may be used with other texture material dispensing systems such as hand pumps, hopper guns, and pump spray bottles.


The following Table A-1 contains a generic example of the first example formulation of a concentrate portion of a solvent-based texture material that may be used to form the texture material 30 in the example aerosol dispensing system 20. The values in the second and third columns of the following Table A-1 are measured as percentage weight of a concentrate portion of the texture material.













TABLE A-1







Material
First Range
Second Range









First solvent
2-10%
0-15%



Second solvent
2-20%
0-30%



Diluent
2-15%
0-20%



Binder
5-10%
2-15%



Thickener
 1-2.5%
0.5-3%  



Wetting/dispersing agent
0.1-1%  
0.1-2%  



Pigment/Filler
40-80% 
30-90% 










The choice of solvents is dictated by solubility parameter and vapor pressure. The solubility parameter must be close to that of the binder, so that the binder is easily dissolved. To prompt fast dry, a vapor pressure>0.5 mm Hg is recommended, although not necessary. The diluent is a low-cost liquid with a vapor pressure greater than that of the lowest vapor pressure solvent.


The example first solvent is a medium-evaporating solvent appropriate for use with the selected binder. The example second solvent is a fast evaporating solvent that is also appropriate for use with the example binder. At least one of the first and second solvents must be used to obtain a workable texture material according to Table A-1. The example diluent is a fast evaporating diluent. The example binder is an acrylic resin capable of air drying and binding the solid components of the texture material to the target surface 32 when the texture material dries. Any wetting/dispersing material compatible with the other components of the texture material may be used as the example wetting/dispersing agent.


The thickener is typically at least one of a clay thickener and a fumed silica thickener. In one example, the first example concentrate uses first and second thickeners, where the example first thickener is a clay thickener and the example second thickener is a fumed silica thickener. In this case, the example concentrate described in Table A-1 contains the first thickener is in a first range of 1-2% or in a second range of 0.5-2.0% and the second thickener is in a first range of 0-0.5% or in a second range of 0-1%.


The pigment/filler is selected to provide a desired color to the dried texture material on the target surface and function as a filler to provide bulk to the texture material at low cost. In one example, the first example concentrate uses first and second pigment/fillers, where the example first pigment/filler is in a first range of 20-40% or in a second range of 0-60% and the second pigment/filler is in a first range of 20-40% or in a second range of 0-60%.


An aerosol material is formed by combining the concentrate portion as set forth in Table A-1 with a propellant material and foaming agent as set forth in the following Table A-2. The values in the second and third columns of the following Table A-2 are measured as percentage weight of the aerosol material that is arranged within the aerosol assembly 22.













TABLE A-2







Material
First Range
Second Range









Concentrate portion
85-93%
80-95%



Foaming agent
0.1-3%
0.1-5%



Propellant material
 7-13%
 1-20%










The foaming agent of Table A-2 may be water or another very polar solvent. The propellant material is any hydrocarbon propellant material compatible with the remaining components of the aerosol material.


The following Table A-3 contains a specific example of the first example formulation of a concentrate portion of a solvent-based texture material that may be used to form the texture material 30 in the example aerosol dispensing system 20. The values in the second and third columns of the following Table A-3 are measured as percentage weight of a concentrate portion of the texture material.













TABLE A-3








First
Second


Material
Function
Example
Range
Range



















Diacetone alcohol
First Solvent
5.2%
 2-10%
0-15%


Denatured ethanol
Second Solvent
12.30%
 2-20%
0-30%


Hexane
Diluent
8.44%
 2-15%
0-20%


TB-044 (Dai)
Binder
8.65%
 5-10%
2-15%


Bentone SD-2
First thickener
0.65%
1-2%
0.5-2.0% 


(Elementis)


DeGussa R972
Second thickener
0.14%

0-0.5%

0-1% 


Byk Antiterra
Wetting/
0.26%
0.1-1.0%
0.1-2.0% 


204
Dispersant


Calcium
First
32.18%
20-40%
0-60%


carbonate
Pigment/Filler


Minex 4
Second
32.18%
20-40%
0-60%



Pigment/Filler









At least one of the first and second solvents must be used to obtain a workable texture material according to Table A-3.


An aerosol material is formed by combining the concentrate portion as set forth in Table A-3 with a propellant material and foaming agent as set forth in the following Table A-4. The values in the second and third columns of the following Table A-4 are measured as percentage weight of the aerosol material that is arranged within the aerosol assembly 22.













TABLE A-4








First
Second


Material
Function
Example
Range
Range



















Concentrate
Texture Base
89.00%
85-93%
80-95%


portion


Water
Foaming agent
2.00%
0.1-3.0%
0.1-5%


Hydrocarbon
Propellant
9.00%
 7-13%
 1-20%


Propellant
Material









The hydrocarbon propellant is one or more propellant materials selected from the following group of materials: propane, iso-butane, n-butane, and mixtures thereof.


The following Table B-1 contains a generic example of the second example formulation of a concentrate portion of a water-based texture material that may be used to form the texture material 30 in the example aerosol dispensing system 20. The values in the second and third columns of the following Table B-1 are measured as percentage weight of a concentrate portion of the texture material.













TABLE B-1







Material
First Range
Second Range









Solvent
20-40%
15-60%



Thickener
0.55-4.5% 
0.31-10.0%



De-foamer
0.1-1%
0.0-3%



Corrosion inhibitor
0.2-3.0%

0-5.0%




Biocide
0.2-2.2%

0-6.0%




Binder
2.0-7.0%
 1.0-10.0%



Wetting/dispersing agent
0.02-1.0% 

0-3.0%




Filler
35.2-80.0%
20-80%










The example solvent is water. The example de-foamer is any material capable of performing that function in the context of the entire concentrate formulation. The example binder is a material or mixture of materials that can hold the pigment to the surface. Alkyd resins are the most common resins to be used in solvent-based pigment. Alkyd resins are basically polyesters and are used for both air-drying and heat-cured paints. Vinyl and acrylic are normally in water emulsion forms and used mostly as water-based binders. In any event, the resin should be capable of binding the solid components of the texture material to the target surface 32 when the texture material dries. Any wetting/dispersing material compatible with the other components of the texture material may be used as the example wetting/dispersing agent.


The thickener is typically at least one of a clay thickener and a polymer thickener. In one example, the second example concentrate uses first and second thickeners, where the example first thickener is a clay thickener and the example second thickener is a polymer thickener. In this case, the example concentrate described in Table B-1 contains the first thickener in a first range of 0.5-2.5% or in a second range of 0.3-5.0% and the second thickener is in a first range of 0.05-2.0% or in a second range of 0.01-5.0%.


The corrosion inhibitor is provided to inhibit corrosion of one or more steel components of the aerosol assembly 22. In one example as shown in Table B-1, the second example concentrate uses first and second corrosion inhibitors, where the example first corrosion inhibitor is sodium nitrite and the second corrosion inhibitor an anionic phosphate ester. In this case, the example first corrosion inhibitor is in a first range of 0.1-1.0% or in a second range of 0.0-2.0% and the second corrosion inhibitor is in a first range of 0.1-2.0% or in a second range of 0.0-3.0%.


The filler is selected to provide a desired color to the dried texture material on the target surface and function as a filler to provide bulk to the texture material at low cost. In one example, the second example concentrate uses first and second pigment/fillers, where the example first pigment/filler is calcium carbonate (for example Imasco 200-X) and is in a first range of 35-70.0% or in a second range of 20-80% and the second pigment/filler is talc in a first range of 0.2-10% or in a second range of 0.0-20%.


A texture material of the present invention may be alternatively be defined by viscosity, shear thinning index (STI), and surface tension of the concentrate portion.


The viscosity of a fluid is a measure of the resistance of the fluid to gradual deformation by shear stress or tensile stress. In the case of an example texture material concentrate of the present invention, viscosity may be defined with reference to resistance (coefficient) to flow when the concentrate is subject to a shearing stress. In this context, flow viscosity can be increased by addition of any one or more chemicals called thickeners. Thickeners can be either water soluble or water insoluble but water swellable. Thickeners can also be organic polymers or inorganic clays. The combination of two or more thickeners normally has a synergetic thickening effect. In the example texture material concentrate of the present invention, an organic polymer and an inorganic clay are used together to obtain a desired viscosity as will be described in further detail below, thus yielding a desired performance.


A flow system that has a low viscosity at a high shear yet high viscosity at low shear is said to be shearing thinning. The extent and strength of shearing thinning is characterized by shearing thinning index. The shearing thinning index (STI) can be defined as the ratio of viscosity at 1 RPM and 10 RPM. A texture material concentrate of the present invention should stay on a ceiling surface without flowing, neither flatting nor sagging after it is delivered at the surface. Therefore, the texture material concentrate of the present invention should have a property of viscosity that is sufficiently high to prevent the material from flowing or flatting or sagging, also called zero shearing, at a still condition (e.g., on the ceiling after application). During delivery onto a ceiling surface using, as examples, an aerosol dispensing system or a trigger spray, the texture material concentrate of the present invention should have low viscosity, yielding good flow. Accordingly, the texture material concentrate of the present invention should have a viscosity that is sufficiently low to enable flow through the dispensing system.


Surface tension is a contractive tendency of the surface of a liquid that allows the liquid to resist an external force. In the context of a texture material concentrate of the present invention, surface tension may be defined as a force that resists surface area expansion of the texture material concentrate. When a bulk flow is broken into small droplets by a breaking force or pressure, a total area of the flow increases. This increase in area is resisted by the surface tension of the flowing texture material. The surface tension of a flow thus is proportional to the size of the droplets formed by a given breaking force. In particular, if the flow has a relatively lower surface tension, the same breaking force yields can be broken into smaller droplets by the same breaking force. Further, when the droplets combine on a surface, droplets of material having a relatively large surface tension have a high tendency to aggregate into larger droplets. On the other hand, droplets of material having a relatively low surface tension exhibit a lower tendency to aggregate. Low surface tension of a fluid thus yields small droplets that do not tend to aggregate when in contact on a surface. In the context of the texture material concentrate of the present invention, a concentrate having relatively low surface tension flow tends to form a more featured texture pattern after the concentrate has been delivered onto a ceiling surface.


With these general considerations in mind, a texture material concentrate should have the following viscosity, shear thinning index, and surface tension:


A composition of one example water-based texture material formulation of the present invention should have a viscosity, at 1 RPM with using spindle #7 of Brookfield viscometer, in a first range of approximately between 30,000 and 65,000 cP, a second range of approximately between 20,000 and 80,000 cP, and in any event should be within a third range of approximately between 1000 and 1,000,000 cP.


A composition of one example water-based texture material formulation of the present invention should have a STI value in a first range of approximately between 9 and 12, a second range of approximately between 5 and 20, and in any event should be within a third range approximately between 2 and 30.


A composition of one example water-based texture material formulation of the present invention should have a surface tension of texture flow in concentrate form in a first range of approximately between 30 and 40 mN/m, a second range of approximately between 25 and 60 mN/m, and in any event should be within a third range approximately between 20 and 70 mN/m, more preferred in and most preferred in.


An aerosol material is formed by combining the concentrate portion as set forth in Table B-1 with a propellant material and foaming agent as set forth in the following Table B-2. The values in the second and third columns of the following Table B-2 are measured as percentage weight of the aerosol material that is arranged within the aerosol assembly 22.













TABLE B-2







Material
First Range
Second Range









Concentrate portion

80-89.5

75-92



First Propellant material
10-18
 8-20



Second Propellant material
0.5-2.0
0-5










The propellant material is any hydrocarbon propellant material compatible with the remaining components of the aerosol material. The hydrocarbon propellant is typically one or more liquidized gases either organic (such as dimethyl ether, alkanes that contain carbons less than 6, either straight chain or branched structure, or any organic compounds that are gaseous in normal temperature), or inorganic (such as carbon dioxide, nitrogen gas, or compressed air). The propellants used in current formulations are dimethyl ether (DME) and A-70.


The following Table B-3 contains a specific example of the first example formulation of a concentrate portion of a solvent-based texture material that may be used to form the texture material 30 in the example aerosol dispensing system 20. The values in the second and third columns of the following Table B-3 are measured as percentage weight of a concentrate portion of the texture material.













TABLE B-3








First
Second


Material
Function
Example
Range
Range



















Water
Solvent
34.38%
20-40%
15-60%


Optigel WX
First thickener
1.12%
0.5-2.5%
0.3-5.0%



(clay type)


Rhoboline
De-foamer
0.08%
0.1-1%
0.0-3%


675


Ticagel
Second thickener
0.11%
0.05-2.0% 
0.01-5.0% 


Konjac
(polymer type)


High


Viscosity


Sodium
First corrosion
0.25%
0.1-1.0%

0-2.0%



nitrite
inhibitor


Bioban
Biocide
0.21%
0.1-1.1%

0-3.0%



Mergal 174
Biocide
0.20%
0.1-1.1%

0-3.0%



Walpol
Binder
4.66%
2.0-7.0%
 1.0-10.0%


DX-101


KTTP
Wetting/
0.50%
0.02-1.0% 

0-3.0%




dispersing agent


Afilan
Second corrosion
0.36%
0.1-2.0%
0-3%


AKT 300
inhibitor


Imasco
First filler
53.83%
35-70%
20-80%


200-X


CaCO3


Nicron 403
Second filler
4.66%
 0.2-10.0%
 0-20%


talc









An aerosol material is formed by combining the concentrate portion as set forth in Table B-3 with a propellant material and foaming agent as set forth in the following Table B-4. The values in the second and third columns of the following Table B-4 are measured as percentage weight of the aerosol material that is arranged within the aerosol assembly 22.













TABLE B-4








First
Second


Material
Function
Example
Range
Range



















Concentrate portion
Texture Base
85

80-89.5

75-92


DME
First Propellant
14
10-18
 8-20


A-70
Second Propellant
1.0
0.5-2.0
0-5









The propellant material is any hydrocarbon propellant material compatible with the remaining components of the aerosol material. The hydrocarbon propellant is typically one or more liquidized gases either organic (such as dimethyl ether, alkanes that contain carbons less than 6, either straight chain or branched structure, or any organic compounds that are gaseous in normal temperature), or inorganic (such as carbon dioxide, nitrogen gas, or compressed air). The propellants used in current formulations are dimethyl ether (DME) and A-70.


Turning now to FIG. 4, the example aerosol assembly 22 will now be described in further detail. The example aerosol assembly 22 comprises a container assembly 40, a valve assembly 42, and a dip tube 44. FIGS. 2 and 4 illustrate that the container assembly 40 comprises a container 50, a cap 52, a cup 54, and a bottom plate 56. The cap 52 is connected to the container 50 at a crimp portion 58. The bottom plate 56 is attached to the container 50. The cup 54 is supported by the cap 52 to form the container assembly 40. The valve assembly 42 comprises a valve housing 60 and a valve stem 62. The valve housing 60 is supported by the cup 54 such that fluid may flow into and out of the container assembly 40 only through the valve assembly 42. The valve assembly 42 is normally resiliently biased into a closed configuration in which fluid flow into and out of the container assembly 40 is substantially prevented. Displacing the valve stem 62 towards the valve housing 60 places the valve assembly 42 in an open configuration to allow fluid flow into and out of the container assembly 40. The dip tube 44 extends from the valve housing 60 to a bottom portion of the container assembly 40.


A valve assembly such as Model No. SV-77, vertical action valve, from Summit Packaging Systems, with a male valve stem may be used as the valve assembly 42. Other aerosol valves such as Model AR83 from Aptar Group, Inc. or valves from Clayton Valve Corporation such as Model No. 1001000703, may be used, perhaps with slight modification to the actuator assembly to accommodate fluid communication between the valve assembly 42 and the outlet tube(s) 26.



FIG. 4 further illustrates that the actuator assembly 24 comprises an actuator housing 120, a trigger 122, an adapter 124, an outlet member 126, and a lock member 128.


As shown in FIGS. 4 and 6, the actuator housing 120 comprises first and second rail portions 130a and 130b, a plurality of clip projections 132, a plurality of stop projections 134, and a pair of outlet projections 138 (only one visible). The actuator housing 120 further defines a trigger opening 140, first and second pivot openings 142a and 142b, an outlet channel 144, a lock opening 146, and a locating recess 148.


The example trigger 122 defines a finger wall 150, first and second lever portions 152a and 152b, and first and second pivot portions 154a and 154b, a return portion 156, and a lock portion 158. The finger wall 150 is arranged between the biasing portion 156 and the lock portion 158. The lever portions 152a and 152b are offset in a first direction from a trigger reference plane defined by the first and second pivot portions 154a and 154b and the stop portion 156. The biasing portion 156 is offset in a second direction from the trigger reference plane.


The adapter 124 comprises a stem portion 160, an outlet portion 162, an outlet divider 164, and first and second slot projections 166a and 166b. The adapter 124 defines an adapter opening 170. The stem portion 160 defines a stem cavity 172. The outlet portion 162 defines an outlet cavity 174 that is divided into first and second outlet cavity portions 174a and 174b by the outlet divider 164. First and second lever projections 176a and 176b extend from the adapter 124. First and second rail slots 178a and 178b are formed in the slot projections 166a and 166b, respectively. Although the example stem portion 160 defines a stem cavity 172 configured to engage the example valve stem 62, the stem portion 160 may be configured as a projection adapted to engage a valve assembly using a female actuator. The size and dimensions of the stem portion 160 may thus be altered as necessary to accommodate different valve assemblies having different dimensions and actuator configurations.


The outlet member 126 comprises a perimeter wall 180 defining an outlet passage 182 and a pair of attachment projections 184 (only one visible).


As perhaps best shown in FIGS. 4 and 12, the example lock member 128 comprises a handle portion 190, lock portion 192, spacing portion 194, and locating projection 196. The lock portion 192 is inserted through the lock opening 146 such that the lock portion 192 is inside the actuator housing 120 and the handle portion 190 is outside of the actuator housing 120. The spacing portion 194 is approximately the same dimension as a thickness of the actuator housing 120 around the lock opening 146. Rotation of the handle portion 190 places the lock member 128 in a latched position as shown in FIG. 4 and an unlatched position as shown in FIGS. 13 and 14. The lock portion 192 engages the trigger 122 when the trigger 122 is in the first position and the lock member 128 is in the latched position to prevent movement of the trigger 122 out of the first position. When the lock member 128 is in the unlatched position, the lock portion 192 no longer engages the trigger 122, and the trigger 122 may be displaced out of the first position. The locking projection 196 engages one of the locating recesses 148 to secure the lock member 128 in either the latched position or the unlatched position.


To assemble the actuator assembly 24, the adapter 124 is detachably attached to the outlet tubes 26a and 26b as shown, for example, in FIGS. 4, 7, 11, 13, and 14. At the same time, the outlet projections 138 receive the attachment projections 184 to detachably attach the outlet member 126 to the actuator housing 120 such that the outlet member 126 is located within the outlet channel 144. The adapter 124 is then arranged such that the rail slots 178a and 178b receive the rail portions 130a and 130b to allow limited linear movement of the adapter 124 relative to the actuator housing 120. The outlet tubes 26a and 26b are inserted into the outlet passage 182 such that outlet passageways 28a and 28b are substantially flush with the surface of the actuator housing 120 surrounding the outlet opening 144.


The trigger 122 is next arranged within the trigger opening 140 such that the finger wall 150 is located outside the actuator housing 120, the lever portions 152a and 152b engage the lever projections 176a and 176b, and the pivot portions 154a and 154b engage the pivot openings 142a and 142b, respectively. In this configuration, the trigger 122 is rotatable relative to the actuator housing 120 between a first position as shown in FIG. 4 and a second position as shown in FIGS. 13 and 14. In the first example aerosol dispensing system 20, the return portion 156 engages the actuator housing 120 such that the return portion 156 is un-deformed when the trigger 122 is in the first position and deforms when the trigger 122 is pivoted into the second position. The return portion 156 is resiliently deformable such that the return portion 156 biases the trigger 122 from the second position towards the first position.


As generally described above, the lock member 128 is supported by the actuator housing 120 for rotation between the latched position as shown in FIGS. 1, 3, 4, and 7 and the unlatched position as shown in FIGS. 2, 13, and 14. With the lock member 128 in the locked position and the trigger member 122 in the first position, the lock member 128 engages the lock portion 158 of the trigger member 122 to inhibit movement of the trigger member 122 out of the first position. With the lock member 128 in the unlocked position, the lock member 128 does not engage the lock portion 158, and the trigger member 122 may be moved from the first position towards the second position.


With the actuator assembly 24 formed as described above, the actuator assembly 24 is next attached to the aerosol assembly 22 to form the aerosol dispensing system 20. In particular, the actuator assembly 24 and outlet tubes 26a and 26b supported thereby are displaced such that the crimp portion 58 of the container assembly 40 is arranged between the clip projections 132 and the stop projections 134. At the same time, the valve stem 62 enters the stem cavity 172 defined by the adapter 124. At this point, a dispensing path is defined that extends from the interior of the container assembly 40, through the dip tube 44, through the valve housing 60, through the valve stem 62, through the adapter opening 170, through the outlet tubes 26a and 26b, and out through the outlet passageways 28a and 28b.


With the lock member 128 in the unlocked position, applying pressure on the finger wall 150 as shown by the arrow in FIG. 13 causes the trigger 122 to rotate from the first position towards the second position. The geometry of the trigger 122 and the arrangement of the lever portions 152a and 152b relative to the pivot portions 154a and 154b translates the pivoting movement of the trigger 122 into linear movement adapter 124 towards the valve housing 60. When the trigger 122 is in the first position, the valve assembly 42 is in its closed configuration. When the trigger 122 is in the second position, the valve assembly 42 is in its open configuration. The internal biasing force applied between the valve housing 60 and the valve stem 62 is added to the biasing force applied by the return portion 156 on the trigger 122 to bias the trigger 122 into the first position.


Turning now to FIGS. 8-11 of the drawing, it can be seen that an effective cross-sectional area of the dispensing path at the adapter opening 170 is smaller than an effective cross-sectional area of the dispensing path created by the cumulative cross-sectional areas of the outlet passageways 28a and 28b defined by the outlet tubes 26a and 26b. Further, the adapter opening 170 is offset from the outlet tubes 26a and 26b such that a restriction is formed at the juncture of the adapter opening and the outlet passageway 28a and 28b. The following Table C-1 contains the cross-sectional area of the example adapter opening 170 and the cumulative cross-sectional area of the outlet passageways 28a and 28b:












TABLE C-1







First Preferred
Second Preferred


Dimension
Example
Range
Range







adapter opening
12.97 mm2
6 mm2-13 mm2

12 mm-32 mm2



outlet passageways
19.24 mm2
2 mm2-20 mm2
13 mm2-80 mm2









Turning now to FIGS. 15-17 of the drawing, depicted therein is a second example adapter 220 that may be used in place of the first example adapter 124 described above. The second example adapter 220 comprises a stem portion 230, an outlet portion 232, and first and second slot projections 234a and 234b. The second example adapter 220 defines an adapter opening 240. The stem portion 230 defines a stem cavity 242. The outlet portion 232 defines an outlet cavity 244. First and second lever projections 246a and 246b extend from the adapter 220. First and second rail slots 248a and 248b are formed in the slot projections 246a and 246b, respectively.


The second example adapter 220 is configured to engage only a single outlet tube 26, which defines an outlet passageway 28. Accordingly, an effective cross-sectional area of the dispensing path at the adapter opening 240 is similar to the cross-sectional area of the dispensing path created by the outlet passageway 28 defined by the single outlet tube 26. The adapter opening 240 is offset from the single outlet tube 26 such that a restriction is formed at the juncture of the adapter opening 240 and the outlet passageway 28. The following Table C-2 contains the cross-sectional area of the example adapter opening 240 and the cross-sectional area of the outlet passageway 28:












TABLE C-2







First Preferred
Second Preferred


Dimension
Example
Range
Range







adapter opening
12.97 mm2
6 mm2-13 mm2
12 mm2-32 mm2


outlet passageway
 9.62 mm2
1 mm2-10 mm2
 8 mm2-40 mm2









Turning now to FIGS. 18 and 19 of the drawing, depicted therein is a third example adapter 250 that may be used in place of the first example adapter 124 described above. The third example adapter 250 comprises a stem portion 260, an outlet portion 262, an outlet divider 264, and first and second slot projections 266a and 266b. The third example adapter 250 defines an adapter opening 270. The stem portion 260 defines a stem cavity 172. The outlet portion 262 defines an outlet cavity 274 that is divided into first, second, and third outlet cavity portions 174a, 174b, and 174c by the outlet divider 264. First and second lever projections 276a and 276b extend from the adapter 250. First and second rail slots 278a and 278b are formed in the slot projections 266a and 266b, respectively.


The third example adapter 250 is configured to engage only three outlet tubes 26a, 26b, and 26c, each defining an outlet passageway 28a, 28g, and 28c. Accordingly, an effective cross-sectional area of the dispensing path at the adapter opening 270 is less than the cumulative cross-sectional area of the dispensing path created by the outlet passageways 28a, 28b, and 28c defined by the three outlet tubes 26a, 26b, and 26c. The adapter opening 270 is offset from the outlet tubes 26a, 26b, and 26c such that a restriction is formed at the juncture of the adapter opening 270 and the outlet passageways 28a, 28b, and 28c. The following Table C-3 contains examples of the cross-sectional area of the example adapter opening 270 and the cumulative cross-sectional areas of the outlet passageways 28a, 28b, and 28c:












TABLE C-3







First Preferred
Second Preferred


Dimension
Example
Range
Range







adapter opening
12.97 mm2
6 mm2-13 mm2
12 mm2-32 mm2


outlet passageways
25.65 mm2
6 mm2-26 mm2
25 mm2-100 mm2









From the foregoing, it should be apparent that the present invention may be embodied in forms other than those specifically discussed above. The scope of the present invention should thus be determined by the claims appended hereto and not the foregoing detailed description of examples of the invention.

Claims
  • 1. An aerosol dispensing system for forming a texture layer on a target surface, comprising: an aerosol assembly adapted to contain acoustic texture material, where the aerosol assembly comprises a container assembly, anda valve assembly arrange to operate in open and closed configurations, wherethe valve assembly is biased in the closed position, andthe valve assembly is supported by the container assembly such that the acoustic texture material is allowed to flow out of the container assembly when the valve assembly is in the open configuration and the acoustic texture material is prevented from flowing out of the container when the valve assembly is in the closed configuration;an actuator assembly comprising a housing,at least one rail portion secured relative to the housing,a trigger, andan adapter defining an adapter opening and at least one rail slot, wherethe housing supports the trigger for pivoting movement between first and second trigger positions,the at least one rail portion engages the at least one rail slot such that the housing supports the adapter for linear movement between first and second adapter positions,the trigger engages the adapter to displace the adapter from the first adapter position to the second adapter position as the trigger moves from the first trigger position to the second trigger position, andthe adapter engages the valve assembly such that the valve assembly is in the closed configuration when the adapter is in the first adapter position,the adapter moves the valve assembly into the open configuration when the adapter is in the second adapter position, andwhen the valve assembly is in the open configuration, acoustic texture material flows from the valve assembly and through the adapter opening; andat least one outlet tube defining an outlet passageway and an outlet opening; wherethe adapter supports the at least one outlet tube such thatacoustic texture material flowing through the adapter opening when the valve assembly is in the open configuration flows into the outlet passageway, andthe outlet tube is arranged such that acoustic texture material flowing through the outlet passageway flows out of the outlet opening and out of the housing.
  • 2. An aerosol dispensing system as recited in claim 1, in which: the actuator assembly further comprises a lock member supported by the housing for movement between first and second lock positions;the lock member prevents movement of the trigger out of the first trigger position when the lock member is in the first lock position; andthe lock member allow of the trigger from the first trigger position to the second trigger position when the lock member is in the second lock position.
  • 3. An aerosol dispensing system as recited in claim 1, in which: the housing defines an outlet channel;the actuator assembly further comprises an outlet member supported by the housing within the outlet channel; andthe outlet member supports the at least one outlet tube such that acoustic texture material flowing out of the outlet opening passes through the outlet channel.
  • 4. An aerosol dispensing system as recited in claim 1, in which the adapter defines: a stem portion adapted to engage the valve assembly; andan outlet portion adapted to engage the at least one outlet tube.
  • 5. An aerosol dispensing system as recited in claim 4, in which: the stem portion defines a stem cavity for receiving a stem of the valve assembly; andthe outlet portion defines an outlet cavity for receiving an end of the at least one outlet tube.
  • 6. An aerosol dispensing system as recited in claim 1, comprising one outlet tube.
  • 7. An aerosol dispensing system as recited in claim 1, comprising a plurality of the outlet tubes, where the adapter supports the plurality of the outlet tubes such that: acoustic texture material flowing through the adapter opening when the valve assembly is in the open configuration flows into the outlet passageways of the plurality of outlet tubes, andthe outlet tubes are arranged such that acoustic texture material flowing through the outlet passageways flows out of the outlet openings and out of the housing.
  • 8. An aerosol dispensing system as recited in claim 7, comprising two outlet tubes.
  • 9. An aerosol dispensing system as recited in claim 7, comprising three outlet tubes.
  • 10. An dispensing system as recited in claim 1, in which a return portion of the trigger engages the housing such that return portion resiliently deforms when the trigger moves from the first position to the second position to bias the trigger towards the first position.
  • 11. An aerosol dispensing system as recited in claim 1, in which the acoustic texture material comprises: a first solvent, where the first solvent comprises between 0% and 15% by weight of a concentrate portion of the acoustic texture material;a second solvent, where the second solvent comprises between 0% and 30% by weight of the concentrate portion of the acoustic texture material;a diluent, where the diluent comprises between 0% and 20% by weight of the concentrate portion of the acoustic texture material;a binder, where the binder comprises between 2% and 15% by weight of the concentrate portion of the acoustic texture material;a thickener, where the thickener comprises between 0.5% and 3% by weight of the concentrate portion of the acoustic texture material;a dispersing agent, where the dispersing agent comprises between 0.1% and 2% by weight of the concentrate portion of the acoustic texture material; anda filler, where the filler comprises between 30% and 90% by weight of the concentrate portion of the acoustic texture material.
  • 12. An aerosol dispensing system as recited in claim 1, in which the acoustic texture material comprises: a first solvent, where the first solvent comprises between 2% and 10% by weight of a concentrate portion of the acoustic texture material;a second solvent, where the second solvent comprises between 2% and 20% by weight of the concentrate portion of the acoustic texture material;a diluent, where the diluent comprises between 2% and 15% by weight of the concentrate portion of the acoustic texture material;a binder, where the binder comprises between 5% and 10% by weight of the concentrate portion of the acoustic texture material;a thickener, where the thickener comprises between 1% and 2.5% by weight of the concentrate portion of the acoustic texture material;a dispersing agent, where the dispersing agent comprises between 0.1% and 1% by weight of the concentrate portion of the acoustic texture material; anda filler, where the filler comprises between 40% and 80% by weight of the concentrate portion of the acoustic texture material.
  • 13. An aerosol dispensing system as recited in claim 1, in which the acoustic texture material comprises: a solvent, where the solvent comprises between 15% and 60% by weight of a concentrate portion of the acoustic texture material;a thickener, where the thickener comprises between 0.31% and 10.0% by weight of the concentrate portion of the acoustic texture material;a de-foamer, where the de-foamer comprises between 0.0% and 3.0% by weight of the concentrate portion of the acoustic texture material;a corrosion inhibitor, where the corrosion inhibitor comprises between 0% and 5.0% by weight of the concentrate portion of the acoustic texture material;a biocide, where the biocide comprises between 0% and 6% by weight of the concentrate portion of the acoustic texture material;a binder, where the binder comprises between 1.0% and 10.0% by weight of the concentrate portion of the acoustic texture material;a dispersing agent, where the dispersing agent comprises between 0.0% and 3.0% by weight of the concentrate portion of the acoustic texture material; anda filler, where the filler comprises between 20% and 90% by weight of the concentrate portion of the acoustic texture material.
  • 14. An aerosol dispensing system as recited in claim 1, in which the acoustic texture material comprises: a solvent, where the solvent comprises between 20% and 40% by weight of a concentrate portion of the acoustic texture material;a thickener, where the thickener comprises between 0.55% and 4.5% by weight of the concentrate portion of the acoustic texture material;a de-foamer, where the de-foamer comprises between 0.1% and 1.0% by weight of the concentrate portion of the acoustic texture material;a corrosion inhibitor, where the corrosion inhibitor comprises between 0.2% and 3.0% by weight of the concentrate portion of the acoustic texture material;a biocide, where the biocide comprises between 0.2% and 2.2% by weight of the concentrate portion of the acoustic texture material;a binder, where the binder comprises between 2.0% and 7.0% by weight of the concentrate portion of the acoustic texture material;a dispersing agent, where the dispersing agent comprises between 0.02% and 1.0% by weight of the concentrate portion of the acoustic texture material; anda filler, where the filler comprises between 35.2% and 80% by weight of the concentrate portion of the acoustic texture material.
US Referenced Citations (555)
Number Name Date Kind
208330 Palmer Sep 1878 A
351968 Derrick Nov 1886 A
D25916 Woods Aug 1896 S
568876 Regan Oct 1896 A
579418 Bookwalter Mar 1897 A
582397 Shone May 1897 A
658586 Reiling Sep 1900 A
930095 Seagrave Aug 1909 A
931757 Harmer Aug 1909 A
941671 Campbell Nov 1909 A
1093907 Birnbaum Apr 1914 A
1154974 Custer Sep 1915 A
1486156 Needham Mar 1924 A
2127188 Schellin et al. Aug 1938 A
2149930 Plastaras Mar 1939 A
D134562 Murphy Dec 1942 S
2307014 Becker et al. Jan 1943 A
2320964 Yates Jun 1943 A
2353318 Scheller Jul 1944 A
2388093 Smith Oct 1945 A
2530808 Cerasi Nov 1950 A
2565954 Dey Aug 1951 A
2612293 Michel Sep 1952 A
2686652 Carlson et al. Aug 1954 A
2723200 Pyenson Nov 1955 A
2763406 Countryman Sep 1956 A
2764454 Edelstein Sep 1956 A
2785926 Lataste Mar 1957 A
2790680 Rosholt Apr 1957 A
2831618 Soffer et al. Apr 1958 A
2839225 Soffer et al. Jun 1958 A
2908446 Strouse Oct 1959 A
2932434 Abplanalp Apr 1960 A
2959325 Beard Nov 1960 A
2965270 Soffer et al. Dec 1960 A
2968441 Holcomb Jan 1961 A
2976897 Beckworth Mar 1961 A
2997243 Kolb Aug 1961 A
3061203 Kitabayashi Oct 1962 A
3083872 Meshberg Apr 1963 A
3107059 Frechette Oct 1963 A
3167525 Thomas Jan 1965 A
3191809 Schultz et al. Jun 1965 A
3196819 Lechner et al. Jul 1965 A
3198394 Lefer Aug 1965 A
3216628 Fergusson Nov 1965 A
3231150 Holm et al. Jan 1966 A
3246850 Bourke Apr 1966 A
3258208 Greenebaum, II Jun 1966 A
3284007 Clapp Nov 1966 A
3311274 Green Mar 1967 A
3314571 Greenebaum, II Apr 1967 A
3317140 Smith May 1967 A
3342382 Huling Sep 1967 A
3346195 Groth Oct 1967 A
3373908 Crowell Mar 1968 A
3377028 Bruggeman Apr 1968 A
3390121 Burford Jun 1968 A
3405845 Cook et al. Oct 1968 A
3414171 Grisham et al. Dec 1968 A
3415425 Knight et al. Dec 1968 A
3425600 Abplanalp Feb 1969 A
3428224 Eberhardt et al. Feb 1969 A
3433391 Krizka et al. Mar 1969 A
3450314 Gross Jun 1969 A
3467283 Kinnavy Sep 1969 A
3472457 McAvoy Oct 1969 A
3482738 Bartels Dec 1969 A
3513886 Easter et al. May 1970 A
3514042 Freed May 1970 A
3516611 Piggot Jun 1970 A
3544258 Presant et al. Dec 1970 A
3548564 Bruce et al. Dec 1970 A
3550861 Teson Dec 1970 A
3575319 Safianoff Apr 1971 A
3577516 Gould et al. May 1971 A
3592359 Marraffino Jul 1971 A
3596835 Smith et al. Aug 1971 A
3608822 Berthoud Sep 1971 A
3613954 Bayne Oct 1971 A
3648932 Ewald et al. Mar 1972 A
3653558 Shay Apr 1972 A
3698645 Coffey Oct 1972 A
3700136 Ruekberg Oct 1972 A
3703994 Nigro Nov 1972 A
3704811 Harden, Jr. Dec 1972 A
3704831 Clark Dec 1972 A
3705669 Cox et al. Dec 1972 A
3711030 Jones Jan 1973 A
3764067 Coffey et al. Oct 1973 A
3770166 Marand Nov 1973 A
3773706 Dunn, Jr. Nov 1973 A
3776470 Tsuchiya Dec 1973 A
3776702 Chant Dec 1973 A
3777981 Probst et al. Dec 1973 A
3788521 Laauwe Jan 1974 A
3795366 McGhie et al. Mar 1974 A
3799398 Morane et al. Mar 1974 A
3806005 Prussin et al. Apr 1974 A
3811369 Ruegg May 1974 A
3813011 Harrison et al. May 1974 A
3814326 Bartlett Jun 1974 A
3819119 Coffey et al. Jun 1974 A
3828977 Borchert Aug 1974 A
3848778 Meshberg Nov 1974 A
3862705 Beres et al. Jan 1975 A
3871553 Steinberg Mar 1975 A
3891128 Smrt Jun 1975 A
3912132 Stevens Oct 1975 A
3913803 Laauwe Oct 1975 A
3913804 Laauwe Oct 1975 A
3913842 Singer Oct 1975 A
3932973 Moore Jan 1976 A
3936002 Geberth, Jr. Feb 1976 A
3938708 Burger Feb 1976 A
3961756 Martini Jun 1976 A
3975554 Kummins et al. Aug 1976 A
3982698 Anderson Sep 1976 A
3989165 Shaw et al. Nov 1976 A
3991916 Del Bon Nov 1976 A
3992003 Visceglia et al. Nov 1976 A
4010134 Braunisch et al. Mar 1977 A
4032064 Giggard Jun 1977 A
4036673 Murphy et al. Jul 1977 A
4045860 Winckler Sep 1977 A
4089443 Zrinyi May 1978 A
4096974 Haber et al. Jun 1978 A
4117951 Winckler Oct 1978 A
4129448 Greenfield et al. Dec 1978 A
4147284 Mizzi Apr 1979 A
4148416 Gunn-Smith Apr 1979 A
4154378 Paoletti et al. May 1979 A
4164492 Cooper Aug 1979 A
RE30093 Burger Sep 1979 E
4171757 Diamond Oct 1979 A
4173558 Beck Nov 1979 A
4185758 Giggard Jan 1980 A
4187959 Pelton Feb 1980 A
4187985 Goth Feb 1980 A
4198365 Pelton Apr 1980 A
4202470 Fujii May 1980 A
4238264 Pelton Dec 1980 A
4240940 Vasishth et al. Dec 1980 A
4258141 Jarre et al. Mar 1981 A
4275172 Barth et al. Jun 1981 A
4293353 Pelton et al. Oct 1981 A
4308973 Irland Jan 1982 A
4310108 Motoyama et al. Jan 1982 A
4322020 Stone Mar 1982 A
4346743 Miller Aug 1982 A
4354638 Weinstein Oct 1982 A
4358388 Daniel et al. Nov 1982 A
4370930 Strasser et al. Feb 1983 A
4372475 Goforth et al. Feb 1983 A
4401271 Hansen Aug 1983 A
4401272 Merton et al. Aug 1983 A
4411387 Stern et al. Oct 1983 A
4417674 Giuffredi Nov 1983 A
4431120 Burger Feb 1984 A
4438221 Fracalossi et al. Mar 1984 A
4442959 Del Bon et al. Apr 1984 A
4460719 Danville Jul 1984 A
4482662 Rapaport et al. Nov 1984 A
4496081 Farrey Jan 1985 A
4546905 Nandagiri et al. Oct 1985 A
4595127 Stoody Jun 1986 A
4609608 Solc Sep 1986 A
4641765 Diamond Feb 1987 A
4683246 Davis et al. Jul 1987 A
4702400 Corbett Oct 1987 A
4728007 Samuelson et al. Mar 1988 A
D295725 Shioda May 1988 S
4744495 Warby May 1988 A
4761312 Koshi et al. Aug 1988 A
4792062 Goncalves Dec 1988 A
4793162 Emmons Dec 1988 A
4804144 Denman Feb 1989 A
4815414 Duffy et al. Mar 1989 A
4819838 Hart, Jr. Apr 1989 A
4830224 Brison May 1989 A
4839393 Buchanan et al. Jun 1989 A
4854482 Bergner Aug 1989 A
4870805 Morane Oct 1989 A
4878599 Greenway Nov 1989 A
4887651 Santiago Dec 1989 A
4893730 Bolduc Jan 1990 A
4896832 Howlett Jan 1990 A
D307649 Henry May 1990 S
4940171 Gilroy Jul 1990 A
4949871 Flanner Aug 1990 A
4953759 Schmidt Sep 1990 A
4954544 Chandaria Sep 1990 A
4955545 Stern et al. Sep 1990 A
4961537 Stern Oct 1990 A
4969577 Werding Nov 1990 A
4969579 Behar Nov 1990 A
4988017 Schrader et al. Jan 1991 A
4991750 Moral Feb 1991 A
5007556 Lover Apr 1991 A
5009390 McAuliffe, Jr. et al. Apr 1991 A
5014887 Kopp May 1991 A
5037011 Woods Aug 1991 A
5038964 Bouix Aug 1991 A
5052585 Bolduc Oct 1991 A
5059187 Sperry et al. Oct 1991 A
5065900 Scheindel Nov 1991 A
5069390 Stern et al. Dec 1991 A
5083685 Amemiya et al. Jan 1992 A
5100055 Rokitenetz et al. Mar 1992 A
5115944 Nikolich May 1992 A
5126086 Stoffel Jun 1992 A
5169037 Davies et al. Dec 1992 A
5179982 Berube et al. Jan 1993 A
5182316 DeVoe et al. Jan 1993 A
5185197 Nixon Feb 1993 A
5188263 Woods Feb 1993 A
5188295 Stern et al. Feb 1993 A
5211317 Diamond et al. May 1993 A
5219609 Owens Jun 1993 A
5250599 Swartz Oct 1993 A
5277336 Youel Jan 1994 A
5297704 Stollmeyer Mar 1994 A
5307964 Toth May 1994 A
5308397 Whatcott May 1994 A
5310095 Stern et al. May 1994 A
5312888 Nafziger et al. May 1994 A
5314097 Smrt et al. May 1994 A
5323963 Ballu Jun 1994 A
5341970 Woods Aug 1994 A
5342597 Tunison, III Aug 1994 A
5368207 Cruysberghs Nov 1994 A
5374434 Clapp et al. Dec 1994 A
5405051 Miskell Apr 1995 A
5409148 Stern et al. Apr 1995 A
5417357 Yquel May 1995 A
5418013 Detrick et al. May 1995 A
D358989 Woods Jun 1995 S
5421519 Woods Jun 1995 A
5425824 Marwick Jun 1995 A
5450983 Stern et al. Sep 1995 A
5467902 Yquel Nov 1995 A
5476879 Woods et al. Dec 1995 A
5489048 Stern et al. Feb 1996 A
5498282 Miller et al. Mar 1996 A
5501375 Nilson Mar 1996 A
5505344 Woods Apr 1996 A
5523798 Hagino et al. Jun 1996 A
5524798 Stern et al. Jun 1996 A
5544783 Conigliaro Aug 1996 A
5548010 Franer Aug 1996 A
5549226 Kopp Aug 1996 A
5549228 Brown Aug 1996 A
5558247 Caso Sep 1996 A
5562235 Cruysberghs Oct 1996 A
D375890 Takai Nov 1996 S
5570813 Clark, II Nov 1996 A
5573137 Pauls Nov 1996 A
5583178 Oxman et al. Dec 1996 A
5597095 Ferrara, Jr. Jan 1997 A
5615804 Brown Apr 1997 A
5639026 Woods Jun 1997 A
5641095 de Laforcade Jun 1997 A
5645198 Stern et al. Jul 1997 A
5655691 Stern et al. Aug 1997 A
5695788 Woods Dec 1997 A
5715975 Stern et al. Feb 1998 A
5727736 Tryon Mar 1998 A
5752631 Yabuno et al. May 1998 A
5762319 Kopp Jun 1998 A
5775432 Burns et al. Jul 1998 A
5788129 Markos Aug 1998 A
5788214 Kopp Aug 1998 A
5792465 Hagarty Aug 1998 A
5799879 Ottl et al. Sep 1998 A
5865351 De Laforcade Feb 1999 A
5868286 Mascitelli Feb 1999 A
5887756 Brown Mar 1999 A
5894964 Barnes et al. Apr 1999 A
5915598 Yazawa et al. Jun 1999 A
5921446 Stern Jul 1999 A
5934518 Stern et al. Aug 1999 A
5941462 Sandor Aug 1999 A
5957333 Losenno et al. Sep 1999 A
5975356 Yquel et al. Nov 1999 A
5988575 Lesko Nov 1999 A
5997891 Fuerst et al. Dec 1999 A
6000583 Stern et al. Dec 1999 A
6027042 Smith Feb 2000 A
6032830 Brown Mar 2000 A
6039306 Pericard et al. Mar 2000 A
6058960 Kopp May 2000 A
6062494 Mills May 2000 A
6070770 Tada et al. Jun 2000 A
6092698 Bayer Jul 2000 A
6095435 Greer, Jr. et al. Aug 2000 A
6112945 Woods Sep 2000 A
6113070 Holzboog Sep 2000 A
6116473 Stern et al. Sep 2000 A
6129247 Thomas et al. Oct 2000 A
6131777 Warby Oct 2000 A
6139821 Fuerst et al. Oct 2000 A
6152335 Stern et al. Nov 2000 A
6161735 Uchiyama et al. Dec 2000 A
6168093 Greer, Jr. et al. Jan 2001 B1
6170717 Di Giovanni et al. Jan 2001 B1
D438111 Woods Feb 2001 S
6225393 Woods May 2001 B1
6254015 Abplanalp Jul 2001 B1
6257503 Baudin Jul 2001 B1
6261631 Lomasney et al. Jul 2001 B1
6265459 Mahoney et al. Jul 2001 B1
6276570 Stern et al. Aug 2001 B1
6283171 Blake Sep 2001 B1
6284077 Lucas et al. Sep 2001 B1
6290104 Bougamont et al. Sep 2001 B1
6291536 Taylor Sep 2001 B1
6296155 Smith Oct 2001 B1
6296156 Lasserre et al. Oct 2001 B1
6299679 Montoya Oct 2001 B1
6299686 Mills Oct 2001 B1
6315152 Kalisz Nov 2001 B1
6325256 Liljeqvist et al. Dec 2001 B1
6328185 Stern et al. Dec 2001 B1
6328197 Gapihan Dec 2001 B1
6333365 Lucas et al. Dec 2001 B1
6352184 Stern et al. Mar 2002 B1
6362302 Boddie Mar 2002 B1
6375036 Woods Apr 2002 B1
6382474 Woods et al. May 2002 B1
6386402 Woods May 2002 B1
6394321 Bayer May 2002 B1
6394364 Abplanalp May 2002 B1
6395794 Lucas et al. May 2002 B2
6398082 Clark et al. Jun 2002 B2
6399687 Woods Jun 2002 B2
6408492 Sparks et al. Jun 2002 B1
6412657 Riley et al. Jul 2002 B2
6414044 Taylor Jul 2002 B2
6415964 Woods Jul 2002 B2
6439430 Gilroy, Sr. et al. Aug 2002 B1
6446842 Stern et al. Sep 2002 B2
D464395 Huang Oct 2002 S
6474513 Burt Nov 2002 B2
6478198 Haroian Nov 2002 B2
6478561 Braun et al. Nov 2002 B2
6482392 Zhou et al. Nov 2002 B1
D468980 Woods Jan 2003 S
6510969 Di Giovanni et al. Jan 2003 B2
6520377 Yquel Feb 2003 B2
6531528 Kurp Mar 2003 B1
6536633 Stern et al. Mar 2003 B2
6581807 Mekata Jun 2003 B1
6588628 Abplanalp et al. Jul 2003 B2
6595393 Loghman-Adham et al. Jul 2003 B1
6607106 Henry et al. Aug 2003 B2
6613186 Johnson Sep 2003 B2
6615827 Greenwood et al. Sep 2003 B2
6637627 Liljeqvist et al. Oct 2003 B1
6641005 Stern et al. Nov 2003 B1
6641864 Woods Nov 2003 B2
6652704 Green Nov 2003 B2
6659312 Stern et al. Dec 2003 B1
6666352 Woods Dec 2003 B1
6688492 Jaworski et al. Feb 2004 B2
6712238 Mills Mar 2004 B1
6726066 Woods Apr 2004 B2
6736288 Green May 2004 B1
6758373 Jackson et al. Jul 2004 B2
6797051 Woods Sep 2004 B2
6802461 Schneider Oct 2004 B2
6831110 Ingold et al. Dec 2004 B2
6832704 Smith Dec 2004 B2
6837396 Jaworski et al. Jan 2005 B2
6843392 Walker Jan 2005 B1
D501538 Zeng Feb 2005 S
D501914 Chen Feb 2005 S
6848601 Greer, Jr. Feb 2005 B2
6851575 van't Hoff Feb 2005 B2
D502533 Chen Mar 2005 S
6880733 Park Apr 2005 B2
6883688 Stern et al. Apr 2005 B1
6894095 Russo et al. May 2005 B2
6905050 Stern et al. Jun 2005 B1
6910608 Greer, Jr. et al. Jun 2005 B2
6913407 Greer et al. Jul 2005 B2
6926178 Anderson Aug 2005 B1
6929154 Grey et al. Aug 2005 B2
6932244 Meshberg Aug 2005 B2
6966467 Di Giovanni et al. Nov 2005 B2
D512309 Geier Dec 2005 S
6971353 Heinze et al. Dec 2005 B2
6971553 Brennan et al. Dec 2005 B2
6978916 Smith Dec 2005 B2
6978947 Jin Dec 2005 B2
6981616 Loghman-Adham et al. Jan 2006 B2
7014073 Stern et al. Mar 2006 B1
7014127 Valpey, III et al. Mar 2006 B2
7036685 Green May 2006 B1
7045008 Langford May 2006 B2
7059497 Woods Jun 2006 B2
7059546 Ogata et al. Jun 2006 B2
7063236 Greer, Jr. et al. Jun 2006 B2
7104424 Kolanus Sep 2006 B2
7104427 Pericard et al. Sep 2006 B2
7121434 Caruso Oct 2006 B1
7163962 Woods Jan 2007 B2
7182227 Poile et al. Feb 2007 B2
7189022 Greer, Jr. et al. Mar 2007 B1
7192985 Woods Mar 2007 B2
7204393 Strand Apr 2007 B2
7226001 Stern et al. Jun 2007 B1
7226232 Greer, Jr. et al. Jun 2007 B2
7232047 Greer, Jr. et al. Jun 2007 B2
7237697 Dunne Jul 2007 B2
7240857 Stern et al. Jul 2007 B1
7249692 Walters et al. Jul 2007 B2
7261225 Rueschhoff et al. Aug 2007 B2
7267248 Yerby et al. Sep 2007 B2
7278590 Greer, Jr. et al. Oct 2007 B1
7303152 Woods Dec 2007 B2
7307053 Tasz et al. Dec 2007 B2
7337985 Greer, Jr. et al. Mar 2008 B1
7341169 Bayer Mar 2008 B2
7350676 Di Giovanni et al. Apr 2008 B2
7374068 Greer, Jr. May 2008 B2
7383968 Greer, Jr. et al. Jun 2008 B2
7383970 Anderson Jun 2008 B2
7445166 Williams Nov 2008 B2
7448517 Shieh et al. Nov 2008 B2
7481338 Stern et al. Jan 2009 B1
7487891 Yerby et al. Feb 2009 B2
7487893 Greer, Jr. et al. Feb 2009 B1
7494075 Schneider Feb 2009 B2
7500621 Tryon et al. Mar 2009 B2
7510102 Schmitt Mar 2009 B2
7556841 Kimball et al. Jul 2009 B2
D600119 Sweeton Sep 2009 S
7588171 Reedy et al. Sep 2009 B2
7597274 Stern et al. Oct 2009 B1
7600659 Greer, Jr. et al. Oct 2009 B1
7624932 Greer, Jr. et al. Dec 2009 B1
7631785 Paas et al. Dec 2009 B2
7641079 Lott et al. Jan 2010 B2
7673816 Stern et al. Mar 2010 B1
7677420 Greer, Jr. et al. Mar 2010 B1
7699190 Hygema Apr 2010 B2
7721920 Ruiz De Gopegui et al. May 2010 B2
7744299 Greer, Jr. et al. Jun 2010 B1
7748572 Althoff et al. Jul 2010 B2
7757905 Strand et al. Jul 2010 B2
7766196 Sugano et al. Aug 2010 B2
7775408 Yamamoto et al. Aug 2010 B2
7784647 Tourigny Aug 2010 B2
7784649 Greer, Jr. Aug 2010 B2
7789278 Ruiz de Gopegui et al. Sep 2010 B2
7845523 Greer, Jr. et al. Dec 2010 B1
7854356 Eberhardt Dec 2010 B2
7861894 Walters et al. Jan 2011 B2
7886995 Togashi Feb 2011 B2
7891529 Paas et al. Feb 2011 B2
7913877 Neuhalfen Mar 2011 B2
7922041 Gurrisi et al. Apr 2011 B2
7926741 Laidler et al. Apr 2011 B2
7947753 Greer, Jr. May 2011 B2
7980487 Mirazita et al. Jul 2011 B2
7984827 Hygema Jul 2011 B2
7984834 McBroom et al. Jul 2011 B2
7997511 Reynolds et al. Aug 2011 B2
8006868 Geiberger et al. Aug 2011 B2
8016163 Behar et al. Sep 2011 B2
8025189 Salameh Sep 2011 B2
8028861 Brouwer Oct 2011 B2
8028864 Stern et al. Oct 2011 B2
8033432 Pardonge et al. Oct 2011 B2
8033484 Tryon et al. Oct 2011 B2
8038077 Greer, Jr. et al. Oct 2011 B1
8042713 Greer, Jr. et al. Oct 2011 B2
8070017 Green Dec 2011 B2
8074847 Smith Dec 2011 B2
8074848 Pittl et al. Dec 2011 B2
8083159 Leuliet et al. Dec 2011 B2
8087548 Kimball Jan 2012 B2
8087552 Fazekas et al. Jan 2012 B2
8128008 Chevalier Mar 2012 B2
8132697 Finlay et al. Mar 2012 B2
8276832 Nelson et al. Oct 2012 B2
8344056 Tait et al. Jan 2013 B1
8840038 Lehr Sep 2014 B2
8844765 Tryon Sep 2014 B2
20020003147 Corba Jan 2002 A1
20020100769 McKune Aug 2002 A1
20020108339 Adebar et al. Aug 2002 A1
20020119256 Woods Aug 2002 A1
20030134973 Chen et al. Jul 2003 A1
20030205580 Yahav Nov 2003 A1
20040141797 Garabedian et al. Jul 2004 A1
20040154264 Colbert Aug 2004 A1
20040157960 Rowe Aug 2004 A1
20050121474 Lasserre et al. Jun 2005 A1
20050236436 Woods Oct 2005 A1
20050256257 Betremieux et al. Nov 2005 A1
20060049205 Green Mar 2006 A1
20060180612 Paas et al. Aug 2006 A1
20060180616 Woods Aug 2006 A1
20060219808 Woods Oct 2006 A1
20060219811 Woods Oct 2006 A1
20060273207 Woods Dec 2006 A1
20070117916 Anderson et al. May 2007 A1
20070119984 Woods May 2007 A1
20070125879 Khamenian Jun 2007 A1
20070155892 Gharapetian et al. Jul 2007 A1
20070178243 Houck et al. Aug 2007 A1
20070194040 Tasz et al. Aug 2007 A1
20070219310 Woods Sep 2007 A1
20070228086 Delande et al. Oct 2007 A1
20070260011 Woods Nov 2007 A1
20070272765 Kwasny Nov 2007 A1
20070272768 Williams et al. Nov 2007 A1
20070290006 Lott et al. Dec 2007 A1
20080008678 Wyers Jan 2008 A1
20080017671 Shieh et al. Jan 2008 A1
20080029551 Lombardi Feb 2008 A1
20080033099 Bosway Feb 2008 A1
20080041887 Scheindel Feb 2008 A1
20080164347 Leuliet et al. Jul 2008 A1
20090004468 Chen et al. Jan 2009 A1
20090020621 Clark et al. Jan 2009 A1
20090283545 Kimball Nov 2009 A1
20100108716 Bilko May 2010 A1
20100147897 Kopp Jun 2010 A1
20100155432 Christianson Jun 2010 A1
20100200612 Smith Aug 2010 A1
20100322892 Burke Dec 2010 A1
20110021675 Shigemori et al. Jan 2011 A1
20110101025 Walters et al. May 2011 A1
20110127300 Ghavami-Nasr et al. Jun 2011 A1
20110210141 Maas et al. Sep 2011 A1
20110210184 Maas et al. Sep 2011 A1
20110215119 McBroom Sep 2011 A1
20110218096 Hatanaka et al. Sep 2011 A1
20110220685 Lind et al. Sep 2011 A1
20110233235 Adams et al. Sep 2011 A1
20110240682 Miyamoto et al. Oct 2011 A1
20110240771 Legeza Oct 2011 A1
20110253749 Hygema Oct 2011 A1
20110257302 Terrenoire et al. Oct 2011 A1
20110266310 Tomkins et al. Nov 2011 A1
20120000930 Barbieri Jan 2012 A1
20120000931 Cabiri et al. Jan 2012 A1
20120006858 Rovelli Jan 2012 A1
20120006859 Wilkinson et al. Jan 2012 A1
20120032000 Brunk et al. Feb 2012 A1
20120043353 Davideit et al. Feb 2012 A1
20120048959 Maas et al. Mar 2012 A1
20130026252 Hanson et al. Jan 2013 A1
Foreign Referenced Citations (41)
Number Date Country
770467 Oct 1967 CA
976125 Oct 1975 CA
1191493 Aug 1985 CA
1210371 Aug 1986 CA
2145129 Sep 1995 CA
2090185 Oct 1998 CA
2224042 Jun 1999 CA
2291599 Jun 2000 CA
2381994 Feb 2001 CA
2327903 Jun 2001 CA
2065534 Aug 2003 CA
2448794 Dec 2004 CA
2504509 Oct 2005 CA
2504513 Oct 2005 CA
677457 May 1991 CH
680849 Nov 1992 CH
1926796 Mar 1970 DE
3606018 Jun 1987 DE
3808438 Apr 1989 DE
3806991 Sep 1989 DE
2130788 Dec 2009 EP
2130788 Dec 2009 EP
463476 Feb 1914 FR
84727 Sep 1965 FR
1586067 Feb 1970 FR
2659847 Sep 1991 FR
867713 May 1961 GB
970766 Sep 1964 GB
977860 Dec 1964 GB
1144385 Mar 1969 GB
2418959 Dec 2006 GB
461392 Jan 1971 JP
55142073 Nov 1980 JP
8332414 Dec 1996 JP
8607037 Dec 1986 WO
9418094 Aug 1994 WO
2005087617 Sep 2005 WO
2005087617 Sep 2005 WO
2005108240 Nov 2005 WO
2006090229 Aug 2006 WO
2008060157 May 2008 WO
Non-Patent Literature Citations (7)
Entry
Hazelton, “How to Refinish a Kitchen Table,” Website http://www.ronhazelton.com/projects/how—to—refinish—a—kitchen—table, Sep. 23, 2011, 5 pages.
EPO, Partial European Search Report, EP14157672, Jul. 25, 2014, 3 pages.
ATSM, “Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron—Nickel, or Cobalt-Based Alloys,” 1993, 5 pages.
Chadwick, “Controlling Particle Size in Self-Pressurized Aerosol Packages,” Metal Finishing, Aug. 2004, 3 pages, vol. 102, No. 718.
Homax Products, Inc., “Easy Touch Spray Texture Brochure”, Mar. 1992, 1 page.
Newman-Green, Inc., “Aerosol Valves, Sprayheads & Accessories Catalog”, Apr. 1, 1992, pp. 14, 20, and 22.
Tait, “An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists,” 1994, 17 pages, PairODocs Publications, Racine, Wisconsin.
Related Publications (1)
Number Date Country
20140272140 A1 Sep 2014 US