Separation of biomaterial has been applied in a variety of contexts. For example, separation techniques for separating proteins from other biomaterials are used in a number of analytical processes.
Separation of biomaterials can be accomplished by functionalized material distributed in a fluid chamber that bind the specific target materials such as recombinant proteins and monoclonal antibodies or cells. The functionalized material, such as beads that are coated with an affinity protein, is trapped by nodes and/or anti-nodes of an acoustic standing wave. In this approach, the functionalized material is trapped without contact (without, for example, using mechanical channels, conduits, tweezers, etc.).
The drawings are described in more detail below, with reference to the accompanying drawings, in which:
The affinity separation of biological materials, such as proteins or cells, is accomplished through the use of a ligand that is covalently bonded to a surface, such as a microbead, interacts with the protein or cell such that the protein or cell is bound to the ligand on the microbead.
A ligand is a substance that forms a complex with the biomolecules. With protein-ligand binding, the ligand is usually a molecule which produces a signal by binding to a site on a target protein the binding typically results in a change of confirmation of target protein. The ligand can be a small molecule, ion, or protein which binds to the protein material. The relationship between ligand and binding partner is a function of charge, hydrophobicity, and molecular structure. Binding occurs by intermolecular forces such as ionic bonds, hydrogen bonds and van der Waals forces. The Association of docking is actually reversible through disassociation. Measurably irreversible covalent bonds between the ligand and target molecule is typical in biological systems.
A ligand that can bind to a receptor, alter the function of the receptor, and trigger a physiological response is called an agonist for the receptor. Agonist binding to receptor can be characterized both in terms of how much physiological response can be triggered and in terms of the concentration of the agonist that is required to produce the physiological response. High affinity ligand binding implies that the relatively low concentration of the ligand is adequate to maximally occupy a ligand—binding site and trigger a physiological response. The lower the Ki level is, the more likely there will be a chemical reaction between the pending and the receptive antigen. Low—affinity binding (high Ki level) implies that a relatively high concentration of the ligand is required before the binding site is maximally occupy and the maximum physiological response to the ligand is achieved. Bivalent ligands consist of two connected molecules as ligands, and are used in scientific research to detect receptor timers and to investigate the properties.
The T cell receptor, or TCR, is a molecule found on the surface of T cells or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding between TCR and antigen peptides is of relatively low affinity and is degenerative.
Referring to
Micro sized beads are available, such as, e.g., Dynabeads, which are on the order of 4.5 μm in size. Nano sized beads may be used, such as, e.g., Myltenyi, which are on the order of 50 nm in size. Some of the affine molecules that may be used include antibodies, aptamers, oligonucleotides and receptors, among others. The targets for the affinity binding may include biomolecules, cells, exosomes, drugs, etc.
Referring to
The acoustic beads can use the same surface and affinity chemistry as is used with magnetic beads. This ease of substitution of acoustic beads for magnetic beads has many advantages, including simplifying approval for applications, as well as simplifying the applications.
The acoustic beads can be made biocompatible. Such beads can be produced in different sizes, which permits continuous separation based on size in a size differentiating acoustic field, such as may be provided with an angled-field fractionation technology. The acoustic beads can be combined with an enclosed acoustics-based system, leading to a continuous end-to-end cycle for therapeutic cell manufacturing. This functionality provides an alternative to magnetic bead extraction, while preserving use of currently existing affinity chemistry, which can be directly transferred to the acoustic beads. The acoustic beads may be a consumable product in the separation operation.
In an example, a proof of concept trial was made using the published Memorial Sloan Kettering Cancer Center (MSKCC) protocol for extraction of CD3+ T cells from patient's blood. In the trial, paramagnetic beads were used, and the magnetic field is replaced with an acoustic field. The process of extracting CD3+ T cells from patient's blood is an integral part of manufacturing CAR (chimeric antigen receptor) T cells. Current processes are based on commercially available CD3 Dynabeads. In the trial, efforts were made to minimize the protocol differences, including performing the experiments in culture broth, rather than blood. The difference is considered reduced since several steps in CAR T cell manufacturing work from broth. The solvent density was increased to make T cells “acoustically invisible,” or not as susceptible to an acoustic field. The small size of the Dynabeads may provide an acoustic contrast that is similar to the cells, thus making separation tolerances smaller. The trial employed Jurkat CD3+ and CD3− T cell lines as models. The CD3− cells were employed as a control for non-specific trapping.
Referring now to
Referring now to
The acoustic beads can be trapped in an acoustic field, such as a multi-dimensional acoustic standing wave. Referring to
Referring to
Referring to
The functionality of streptavidin-beads & biotin-beads was evaluated. Referring to
It may be desirable to obtain independent isolation of CD4+ and CD8+ (“helper” and “killer” T cells, respectively) from suspensions and mixing them in desired ratios with a view toward efficient therapy. Toward this end, acoustic beads with affinity for CD4 and CD8 receptors can be provided. A trial to obtain an example was performed with cell suspensions prepared from mice spleens. Referring to
In this trial, CD4+ and CD8+ isolated cells were verified immunologically. Referring to
Referring now to
Proof-of-concept and validation of performance has been shown using acoustic affinity beads in an acoustic system. The disclosed methods and systems permit the use of off-shelf reagents, and currently available acoustic systems. The affinities can target any type of desired T cells or markers including CD3+, CD4+, CD8+. The acoustic beads can have a high, neutral or low contrast factor, which can affect how the beads respond to an acoustic field, for example being urged toward an acoustic node or antinode, or passing through the field.
The beads may be composed of various materials and combinations, which permits development of optimal chemistry with acoustic performance and biocompatibility. Some examples of bead constructs are provided in U.S. patent application Ser. No. 16/208,512, filed Dec. 3, 2018, the entire disclosure of which is incorporated herein by reference. The beads may be processed for isolation, sorting or any other function useful in a separation process. When used with a tuned acoustic system, the performance of specifically designed acoustic beads can match or exceed that of paramagnetic beads.
Existing chemistries may be used with the acoustic beads, and in conjunction with specifications of size and structure homogeneity to achieve desired results for acoustic and for isolation performance. The beads may be composed of composite constructs to advance acoustic efficiency. The acoustic system provides flexibility to manage small sizes, with heat management, and the use of fluidics to obtain results that are not possible with paramagnetic beads alone. The biocompatibility and/or biodegradability of the acoustic beads and simplified processing permits integration with existing hardware for CAR T cell manufacturing. The affinity acoustic beads can be used in a number of environments, including model environments such as, e.g., animal blood spiked with target cells and murine spleen extracts. The acoustic beads may thus be used in collaboration with existing systems, and may be designed and manufactured for target applications. The beads may be provided with a core that is acoustically active or neutral, and the bead themselves may be configured for high, neutral or low acoustic contrast. The size of the beads may be configured for separation and affinity in combination, for example a certain sized bead may include functionalized material to target a certain biomaterial, while another sized bead, may be functionalized to target another biomaterial, each of which can be separated simultaneously and continuously in a closed or flowing system. The beads can be designed to be of a homogeneous size distribution within a narrow or relatively broad range. Various affinity chemistries may be used, including streptavidin-biotin complex and immunoglobulin or aptamer. The beads may be designed for ease of manufacturability and/or for shelf-life. The beads may be used with approved chemistries, so that they may readily be integrated into known systems that use approved chemistries.
Referring to
Referring to
Referring to
Referring to
Referring to
The methods, systems, and devices discussed above are examples. Various configurations may omit, substitute, or add various procedures or components as appropriate. For instance, in alternative configurations, the methods may be performed in an order different from that described, and that various steps may be added, omitted, or combined. Also, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of the configurations may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples and do not limit the scope of the disclosure or claims.
Specific details are given in the description to provide a thorough understanding of example configurations (including implementations). However, configurations may be practiced without these specific details. For example, well-known processes, structures, and techniques have been shown without unnecessary detail to avoid obscuring the configurations. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the preceding description of the configurations provides a description for implementing described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.
Also, configurations may be described as a process that is depicted as a flow diagram or block diagram. Although each may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional stages or functions not included in the figure.
Having described several example configurations, various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. For example, the above elements may be components of a larger system, wherein other structures or processes may take precedence over or otherwise modify the application of the invention. Also, a number of operations may be undertaken before, during, or after the above elements are considered. Accordingly, the above description does not bound the scope of the claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/675,194, filed on May 23, 2018, and claims the benefit of U.S. Provisional Patent Application Ser. No. 62/679,012, filed on May 31, 2018, and is a continuation-in-part of U.S. patent application Ser. No. 16/010,296, filed on Jun. 15, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/520,488, filed on Jun. 15, 2017, and which is a continuation-in-part of U.S. patent application Ser. No. 15/916,270, filed on Mar. 8, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/468,895, filed on Mar. 8, 2017. This application is also a continuation-in-part of U.S. patent application Ser. No. 15/586,116, filed on May 3, 2017, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/330,947, filed on May 3, 2016, and U.S. Provisional Patent Application Ser. No. 62/359,182, filed on Jul. 6, 2016, and U.S. Provisional Patent Application Ser. No. 62/374,910, filed on Aug. 15, 2016. This application is also a continuation-in-part of U.S. patent application Ser. No. 15/788,784, filed on Oct. 19, 2017, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/410,312, filed on Oct. 19, 2016. This application is a continuation-in-part of U.S. patent application Ser. No. 15/942,316, filed on Mar. 30, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/479,309, filed on Mar. 30, 2017; and U.S. Provisional Patent Application Ser. No. 62/485,229, filed on Apr. 13, 2017, and is a continuation-in-part of U.S. patent application Ser. No. 15/613,790, filed on Jun. 5, 2017, which is a divisional of U.S. patent application Ser. No. 15/143,481, filed on Apr. 29, 2016, now U.S. Pat. No. 9,670,477, issued on Jun. 6, 2017, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/316,933, filed on Apr. 1, 2016; and U.S. Provisional Patent Application Ser. No. 62/154,690, filed on Apr. 29, 2015. The entire disclosures of these applications are hereby fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62675194 | May 2018 | US | |
62679012 | May 2018 | US | |
62520488 | Jun 2017 | US | |
62468895 | Mar 2017 | US | |
62330947 | May 2016 | US | |
62359182 | Jul 2016 | US | |
62374910 | Aug 2016 | US | |
62410312 | Oct 2016 | US | |
62479309 | Mar 2017 | US | |
62485229 | Apr 2017 | US | |
62316933 | Apr 2016 | US | |
62154690 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15143481 | Apr 2016 | US |
Child | 15613790 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16010296 | Jun 2018 | US |
Child | 16421459 | US | |
Parent | 15916270 | Mar 2018 | US |
Child | 16010296 | US | |
Parent | 15586116 | May 2017 | US |
Child | 15916270 | US | |
Parent | 15788784 | Oct 2017 | US |
Child | 15586116 | US | |
Parent | 15942316 | Mar 2018 | US |
Child | 15788784 | US | |
Parent | 15613790 | Jun 2017 | US |
Child | 15942316 | US |