Electronic devices like cellular phones, tablets, computers, radios, bar code scanners and hearing aids may have at least one acoustic transducer to convert electrical signals into sound or vice-versa. Acoustic transducers such as loudspeakers, microphones, ringers, buzzers, etc. are placed in a protective housing with one or more small apertures which enable sound transmission and reception. These apertures are typically covered with an acoustic cover assembly to protect the transducer from particulate and or liquid contaminants present in the ambient environment. To preserve acoustic performance of transducers, such acoustic covers must provide minimal sound attenuation.
Acoustic cover assemblies may include cover materials such as micro-porous membranes, non-porous films and porous fabrics including both woven and non-woven materials. These cover materials are usually used in conjunction with a gasket which serves to seal and focus acoustic energy to the apertures and prevent any sound leakage.
Known acoustic protective cover assemblies are described in U.S. Pat. No. 6,932,187, U.S. Pat. No. 6,512,834, U.S. Pat. No. 5,828,012 and US 2010/0270102. In use, the gasket in an acoustic cover assembly may be compressed to about 50% of its original thickness when installed in an electronic device. Compression of the gasket facilitates a good seal between the assembly and the components of the device. However, gasket compression may effect the cover material tension, which may in turn alter the acoustic performance. If a cover material has higher tension as a result of gasket compression, it can cause sound waves to reflect off the cover material. The effect would be a higher acoustic insertion loss for the cover material, ultimately degrading the frequency response of the acoustic system.
Therefore, there still exists a need to provide an improved acoustic cover assembly which has minimal acoustic insertion loss under compression while offering a high level of protection from external contaminants.
In a first embodiment, the invention provides an acoustic protective cover assembly having an acoustic gasket comprising a composite of a porous expanded polytetrafluoroethylene (PTFE) polymer matrix having polymeric nodes interconnected by fibrils and resilient expandable microspheres within the matrix, and a cover material bonded to said acoustic gasket at a peripheral region of the cover and unbonded at a central region of the cover. In such an embodiment, the invention may provide a cover material comprising a membrane, such as porous expanded PTFE. The acoustic cover assembly material may be oleophobic. The cover material may be any non-porous film, woven fabric or non-woven materials. The acoustic gasket may include an elastomer, such as silicone disposed within the matrix.
In another embodiment, the invention may provide an acoustic device having an acoustic transducer, an aperture for the passage of acoustic energy and an acoustic cover assembly covering the aperture in which the acoustic cover assembly includes an acoustic gasket surrounding the aperture, wherein the gasket is a composite of a porous expanded polytetrafluoroethylene (PTFE) polymer matrix of polymeric nodes interconnected by fibrils and resilient expandable microspheres within the matrix and a cover material bonded to said acoustic gasket and covering the aperture.
The invention also includes a method of covering an aperture of an acoustic device, including the steps of surrounding the aperture with an acoustic gasket that is a composite of a porous expanded polytetrafluoroethylene (PTFE) polymer matrix of nodes interconnected by fibrils and resilient expandable microspheres within the matrix, and bonding a cover material to the acoustic gasket wherein the cover material covers the aperture.
As shown in exploded view of
Several materials may be used as the cover material (12) including porous PTFE membranes, porous materials constructed out of natural or synthetic fibers formed into woven or non-woven webs or knits, perforated metal foils and in some cases non-porous films such as Mylar®. Expanded PTFE membranes described in U.S. Pat. No. 7,306,729, U.S. Pat. No. 3,953,566, U.S. Pat. No. 5,476,589 and U.S. Pat. No. 5,183,545 may be preferred. The cover material may be rendered oleophobic using methods known in the art.
Acoustic gaskets may be constructed of soft elastomeric materials such as silicone rubber and silicone rubber foam. Other suitable materials for acoustic gaskets include polyurethane cellular foams and PTFE gaskets such as those described in U.S. Pat. No. 4,110,392, U.S. Pat. No. 3,953,566, U.S. Pat. No. 4,187,930. As described therein the materials may include a matrix of porous PTFE partially filled with elastomers as well as metal-plated or particle filled polymers which may provide electrical conductivity where desired.
Expandable thermoplastic microspheres are monocellular particles comprising a body of resinous materials encapsulating a volatile fluid. When heated, the resinous material of the thermoplastic microsphere softens and the volatile material expands, causing the entire microsphere to increase substantially in size. On cooling, the resinous material in the shell of the microspheres ceases flowing and tends to retain its enlarged dimension; the volatile fluid inside the microsphere tends to condense, causing a reduced pressure in the microsphere.
Such thermoplastic microspheres are commercially available from Nobel Industries, Sweden under the trademark EXPANCEL®. These microspheres may be obtained in a variety of sizes and forms, with expansion temperatures generally ranging from 80 to 130 degrees Celsius.
The acoustic gasket of the present invention comprises a composite of a porous polytetrafluoroethylene (PTFE) polymer matrix having polymeric nodes interconnected by fibrils and resilient expandable microspheres embedded within the nodes and fibrils.
A gasket material may be prepared by mixing a dry preparation of resilient expandable microspheres with a dispersion of PTFE or a similar polymer and then heating the resulting composition. Upon heating, the polymer mixture may expand in three dimensions to achieve a porous network of polymeric nodes and fibrils. Such a gasket material may be prepared according to the teachings of U.S. Pat. No. 5,916,671.
A mixture of PTFE in the form of paste, dispersion or powder and microspheres in the form of dry powder or solution are mixed in proportions of 1 to 90% by weight microspheres, with 5 to 85% by weight of microspheres being preferred. It should be appreciated that a wide range of products may be created even with a percentage of microspheres of merely 0.5 to 5% by weight; Mixture may occur by any suitable means, including dry blending of powders, wet blending, co-coagulation of aqueous dispersions and slurry filler, high shear mixing, etc.
In an embodiment containing 10% EXPANCEL and 90% PTFE by weight was prepared. Once mixed, preferably the resulting composition is heated to a temperature of 80 to 180 degrees Celsius for a period of 10 minutes to activate the microspheres. If further density reduction is desired, the composition may be re-heated to a temperature of 40 to 240 degrees Celsius and mechanically expanded through any conventional means, such as those disclosed in U.S. Pat. No. 3,963,566 to Gore. In fact, this material lends itself to use with a variety of mechanical expansion techniques whether before, during and/or after microsphere expansion.
As shown in
Surprisingly, it was found that the acoustic cover assembly constructed using such a gasket material and a porous expanded PTFE membrane as the cover material had very low acoustic impact. In an embodiment with exposed cover material area of about 7 mm2 or less, the acoustic insertion loss of the assembly was measured to be less than 6 dB at about 50% gasket compression.
Optionally, an elastomer such as Silicone may be disposed within the porosity of the gasket material to provide improved water protection. Methods of constructing such a gasket material are described in EP 0730017. The gasket material comprising porous polytetrafluoroethylene (PTFE) polymer matrix having polymeric nodes interconnected by fibrils and resilient expandable microspheres embedded within the nodes and fibrils may be partially of fully imbibed with a silicone elastomer material.
The cover material and the gasket may be attached together using known methods in the art including the use of an adhesive.
Acoustic Frequency Response Measurement Method
This test method was used to measure the acoustic frequency response of the acoustic cover assembly under two conditions. In the first condition, the gasket is uncompressed, in the second it is compressed 50%.
As shown in
The acoustic impact was measured in terms of compression loss (in dB) and defined by the following equation:
Compression Loss (dB)=Runcompressed−Rcompressed
Water Seal Efficacy Test Method
This test method was used to measure the efficacy of the gasket's seal against liquid water. As shown in
A porous expanded PTFE membrane (Part Number GAW 325 from W.L. Gore & Associates, Inc) was cut into a disk, 6 mm in diameter. A ring of gasket material (Part Number 10652331, W.L. Gore & Associates, Inc) of width 1.5 mm and outer diameter 6 mm was attached to the expanded PTFE membrane by using a double sided adhesive. This resultant acoustic cover assembly had exposed membrane area of about 7 mm2. The acoustic frequency response of the assembly was measured using the Acoustic Frequency Response Measurement Test Method. The compression loss was calculated to be 5 dB. The assembly also passed the Water Seal Efficacy Test.
A porous expanded PTFE membrane (Part Number GAW 325 from WI. Gore & Associates, Inc) was cut into a disk, 6 mm in diameter. A ring of gasket material (Product LS2503 Cellular Urethane, EAR Aearo Technologies, a 3M Company) of width 1.5 mm and outer diameter 6 mm was attached to the expanded PTFE membrane by using a double sided adhesive. This resultant acoustic cover assembly had exposed membrane area of about 7 mm2. This acoustic frequency response of the assembly was measured using the Acoustic Frequency Response Measurement Test Method. The compression loss was calculated to be as high as 9.5 dB.
While particular embodiments of the present invention have been illustrated and described herein, the present invention should not be limited to such illustrations and descriptions. It should be apparent the changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3953566 | Gore | Apr 1976 | A |
4013810 | Long | Mar 1977 | A |
4110392 | Yamazaki | Aug 1978 | A |
4187930 | James | Feb 1980 | A |
5146047 | Nagata et al. | Sep 1992 | A |
5183545 | Branca et al. | Feb 1993 | A |
5476589 | Bacino | Dec 1995 | A |
5536910 | Harrold et al. | Jul 1996 | A |
5581019 | Minor et al. | Dec 1996 | A |
5828012 | Repolle et al. | Oct 1998 | A |
5916671 | Dauber et al. | Jun 1999 | A |
6512834 | Banter et al. | Jan 2003 | B1 |
6932187 | Banter et al. | Aug 2005 | B2 |
7095864 | Billson et al. | Aug 2006 | B1 |
7249653 | Sheng et al. | Jul 2007 | B2 |
7306729 | Bacino et al. | Dec 2007 | B2 |
8157048 | Banter et al. | Apr 2012 | B2 |
8172035 | Fehervari et al. | May 2012 | B2 |
8443934 | Akino | May 2013 | B2 |
20050077102 | Banter et al. | Apr 2005 | A1 |
20100247857 | Sanami et al. | Sep 2010 | A1 |
20100270102 | Banter et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
0 730 017 | Apr 1996 | EP |
10-165787 | Jun 1998 | JP |
Entry |
---|
International Search Report for PCT/US2013/054269 dated Nov. 26, 2014. |
Number | Date | Country | |
---|---|---|---|
20140048351 A1 | Feb 2014 | US |