1. Field of the Invention
This invention relates to explosives, and more particularly to acoustic crystal explosives.
2. Description of the Related Art
An explosive material is a material that either is chemically or otherwise energetically unstable or produces a sudden expansion of the material usually accompanied by the production of heat and large changes in pressure (and typically also a flash and/or loud noise) upon initiation; this is called the explosion or detonation.
A chemical explosive is a compound or mixture which, upon the application of heat or shock, decomposes or rearranges with extreme rapidity, yielding much gas and heat. A reaction must be capable of being initiated by the application of a shock wave or heat to a small portion of the mass of the explosive material. A detonation wave is essentially a shock wave supported by a trailing exothermic reaction. Detonation involves a wave traveling through a highly combustible or chemically unstable medium, such as an oxygen-methane mixture or a high explosive. The chemical reaction of the medium occurs following the shock wave, and the chemical energy of the reaction drives the wave forward.
Primary explosives are extremely sensitive to mechanical shock, friction, and heat, to which they will respond by burning rapidly or detonating. Examples include mercury fulminate, lead styphnate and lead azide. Primary explosives are easy to initiate but inherently less stable. Secondary explosives, also called base explosives, are relatively insensitive to shock, friction, and heat. They may burn when exposed to heat or flame in small, unconfined quantities, but detonation can occur. These are sometimes added in small amounts to blasting caps to boost their power. Dynamite, TNT, RDX, PETN, HMX, and others are secondary explosives. PETN is the benchmark compound; compounds more sensitive than PETN are classed as primary explosives. Secondary explosives are inherently more stable but hard to initiate. Often a primary explosive or “booster” is used to produce a shock wave with sufficient intensity to detonate the main charge of secondary explosives. Many customers would like to eliminate the use of primary explosives and use only secondary explosives.
Explosive force is released in a direction perpendicular to the surface of the explosive. If the surface is cut or shaped or “lensed”, the explosive forces can be focused to produce a greater local effect; this is known as a “shaped charge”. Multi-point initiation may be used to approximate a volumetric detonation. Achieving a desired shaped charge or a volumetric detonation is typically very expensive using known techniques.
The following is a summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description and the defining claims that are presented later.
The present invention provides an acoustic crystal explosive that gains its properties from both its periodic structure and its composition. The explosive may be configured to suppress or enhance the sensitivity of detonation of the explosive in response to an acoustic wave. The explosive may be configured to eliminate the need for primary explosives, using only secondary explosives. The acoustic crystal explosive may provide a cost-effective solution for volumetric or shaped-charge detonation. The acoustic crystal explosive may be reprogrammed to provide a configurable explosive.
In an enhancement mode embodiment, an acoustic crystal explosive comprises an explosive material having a first acoustic index and a medium having a second acoustic index different than the first acoustic index. The explosive material and the medium are arranged in a periodic array that provides local contrast modulation of the acoustic index of the explosive in at least one dimension to define a band gap in the acoustic transmission spectrum of the explosive materials. At least one defect cavity in the periodic array creates a resonance in the band gap. The defect cavity concentrates energy from an incident acoustic (shock) wave to detonate the explosive. Without the periodic structure and defect cavity to concentrate energy, the acoustic (shock) wave may be too weak to detonate the explosive. Multiple defect cavities may be configured to provide a desired shaped charge or volumetric detonations. Means may be provided to reprogram the defect cavity(ies) to reconfigure the explosive either offline or in real-time
In a suppression mode embodiment, an acoustic crystal explosive comprises an explosive material having a first acoustic index and a medium having a second acoustic index different than the first acoustic index. The explosive material and the medium are arranged in a periodic array that provides local contrast modulation of the acoustic index of the explosive in at least one dimension to define a band gap in the transmission spectrum of the explosive materials. The band gap reflects energy from an incident shock wave to suppress detonation of the explosive. Suppression mode may be useful for preventing accidental or malicious detonation of the explosive from an external shock wave. An initiation source could be placed inside the explosive for controlled detonation. Alternately, means can be provided to reconfigure the periodic array to introduce one or more defect cavities to switch from suppression to enhancement modes when detonation is desired.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
a and 6b are plots of a shockwave and the frequency response of the shockwave overlaid on the band gap and defect cavity resonance;
a-10b are plan and side views of a programmable acoustic crystal explosive; and
a through 11c are plan views of the programmed acoustic crystal explosive for volumetric detonation and different shaped-charge detonations.
As described above, explosive detonation can be initiated by the application of a shock wave to the explosive. The transmission properties of most explosives are such that shock waves propagate through the explosive and if sufficiently intense initiate detonation. The intensity of the shock wave required to initiate detonation can be both a plus and minus. Primary explosives are easy to intentionally detonate (plus) but are also susceptible to unintentional (environmental, accidental or malicious) detonations and provide less explosive power (minus). Secondary explosives are more difficult to intentionally detonate (minus) but less susceptible to unintentional detonations and provide more explosive power (plus). The use of a primary explosive to initiate detonation of the secondary explosive is a common technique to address some of these issues. However, primary explosives are less stable and customers would like to eliminate their use in many applications. To effect a volumetric or space-charge detonation requires multi-point initiation or explosive lenses, which are expensive and limited in effectiveness.
The ‘acoustic crystal explosive’, which gains its properties from both its periodic structure and its composition, may overcome these challenges in a cost-effective manner. The acoustic crystal explosive may be configured to initiate secondary explosives directly, eliminating the need for primary explosives. The acoustic crystal explosive can be programmed, and potentially reprogrammed, to provide volumetric detonation or a desired shaped-charge detonation. Essentially the ‘acoustic crystal explosive’ is a periodic array that provides local contrast modulation of the acoustic index of an explosive in at least one dimension. This modulation defines a band gap in the transmission spectrum of the explosive material. The periodic structures are of similar size to the central wavelength of the band gap. By itself the band gap reflects energy from an acoustic or shock wave and tends to suppress detonation. The creation of one or more defect cavities in the periodic array creates a resonance in the band gap that tends to concentrate energy from the acoustic or shock wave to initiate detonation of the explosive. This ‘enhancement’ allows for the elimination of the primary explosives if so desired. Furthermore, the defect cavities can be configured (or reprogrammed) for volumetric or shaped-charge detonation.
As used herein an ‘acoustic wave’ refers to a pressure fluctuation that travels through a medium (solid, liquid or gas) at or near the speed of sound. A ‘shock wave’ is an acoustic wave that is traveling faster than the speed of sound in the medium. Shock waves are typically characterized by an abrupt, nearly discontinuous change in the characteristics of the medium. Across a shock there is an extremely rapid rise in pressure, temperature and density of the flow. A ‘detonation wave’ is a shock wave that is supported by a trailing exothermic reaction in a combustible or chemically unstable medium that drives the wave forward.
As shown in
The explosive material 12 and medium 14 are arranged in a periodic array 16 that provides local contrast modulation of the acoustic index of the explosive in at least one dimension. A 2-D array as shown provides modulation in 1-D. A 3-D array would provide modulation in 2-D. A local contrast modulation of at least 1.5 for a 2-D array and 2.0 for a 3-D array creates a ‘band gap’ 18 in the acoustic transmission spectrum 20 of the explosive material as shown in
The ‘acoustic index’ is defined as the ratio of the speed of sound in a control medium to the speed of sound in the material of interest. We have selected diamond as the control medium although any medium can be used. When computing the contrast or local modulation of the acoustic index the control medium cancels out leaving only the properties of the explosive materials and medium. Table 1 lists a number of explosive materials, the speed of sound in the material and acoustic indices.
As depicted there are many combinations of materials explosive-explosive or explosive-inactive that provide a local contrast modulation (index1/index2) of greater than 1.5 or greater than 2.0. For example, an array formed of PETN and aluminum provides a local contrast modulation of 8.28/2.46=3.45. An array formed of two different explosive compounds PETN and PBXN111 provides a local contrast modulation of 8.28/2.08=3.98.
The acoustic crystal explosive 10 may be useful for preventing accidental or malicious detonation of the explosive from an external shock wave. On account of the availability of materials with large differences in acoustic index, the width of the band gap is fairly large, approximately 20% to 70% of the center wavelength. As such, the band gap may effectively suppress initiation of the explosive from an external shock wave. Because an external shock wave may penetrate 1 or 2 rows before being reflected, if suppression is desired the explosive material in the outer couple rows may be replaced with an inactive material of the same or similar acoustic index to avoid initiating detonation around the periphery. An initiation source (shock or temperature) could be placed inside the explosive for controlled detonation. Alternately, means can be provided to reconfigure the periodic array to introduce one or more defect cavities to switch from suppression to enhancement modes when detonation is desired.
As shown in
If an acoustic (shock) wave is operatively coupled to the explosive with frequency content that overlaps the band gap and particularly the resonance, the defect cavity will concentrate energy from the wave at the defect for some number of cycles. The effect may be to create a hot or high-pressure spot sufficient to initiate detonation of the explosive material near the spot. As will be detailed below, this phenomenon can be useful to initiate detonation of the explosive material using a relatively weak acoustic or shock wave, to directly initiate secondary explosive material without the use of primaries, to control the location of initiation within the explosive, to achieve volumetric detonation, to produce a shape-charged detonation and to reprogram the one or more defect cavities for some or all of the above.
As shown in
As shown in
The center of the band gap is approximately the spacing ‘d’ of the periodic array. This spacing may range from as small as approximately 1 micron to as large as approximately 1 cm depending upon the materials in the periodic array. The material will produce a shock velocity with a certain band of excited modes. The major modes will determine the dominant frequency of the wave. The spacing of the periodic array is set at approximately the major wavelength (or at least on the order of) to center the dominant frequency of the acoustic wave in the band gap. The advantage of a large spacing “d” is that the periodic structures are simpler to fabricate.
In an embodiment, “but for” the periodic structure of the acoustic crystal explosive and particularly the defect cavity, the energy and intensity of wave 54 would be insufficient to detonate the explosive material. This may provide for the use of sources that generate relatively weak shock waves or even acoustic waves that are not shock waves. This may also provide for the direct initiation of secondary explosives. In other embodiments in which the primary objective is to use the periodic structure and defect cavities to produce volumetric, shape-charge or safe & arm detonation, the source may produce a wave 54 with either sufficient or insufficient energy and intensity to initiate detonation of the explosive material without the periodic structure and resonance. In other words, a source that produces a strong shock wave can be used. The band gap will suppress the strong shock wave from initiating detonation throughout the explosive material and concentrate the energy at the defect cavity(ies) for controlled detonation.
As shown in
As shown in
Acoustic crystal explosive 90 includes an explosive material 92 having a first acoustic index and a medium 94 having a second acoustic index different than said first acoustic index. The explosive material 92 and medium 94 are arranged in a periodic array 96 that provides local contrast modulation of the acoustic index of the explosive in at least one dimension. A local contrast modulation creates a ‘band gap’ in the acoustic transmission spectrum. In this particular embodiment, medium 94 is a slab of glass formed with a periodic array of holes that form the sites for the explosive material. Explosive material 92 albeit a solid, liquid or gas can be removed from these cites thereby forming a defect cavity 98. The defect may be formed by air in place of the explosive or by replacing the explosive material with a different material e.g. a different explosive material, an in active material with a different acoustic index with rods of index matching glass. In this particular embodiment, the acoustic crystal explosive is placed on top of a matching array of compressed air canisters 100 that are individually activated by an ignition circuit 102. The circuit triggers specific canisters that released compressed gas to pop the explosive material out of its site in the glass slab. As shown in
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4145972 | Menz | Mar 1979 | A |
4325304 | Ormiston | Apr 1982 | A |
4475461 | Durrell | Oct 1984 | A |
4899663 | Thorn | Feb 1990 | A |
4976199 | Beukes et al. | Dec 1990 | A |
5182418 | Talley | Jan 1993 | A |
5375527 | Nakajima | Dec 1994 | A |
5388521 | Coursen | Feb 1995 | A |
6744552 | Scalora | Jun 2004 | B2 |
6809856 | Reed | Oct 2004 | B2 |
7078697 | Barker | Jul 2006 | B2 |
7079308 | Reed | Jul 2006 | B2 |
7116458 | Reed | Oct 2006 | B2 |
7257333 | Rosenwald | Aug 2007 | B2 |
7292740 | Barker et al. | Nov 2007 | B1 |
7418373 | Heck, Sr. | Aug 2008 | B2 |
7886667 | Baker et al. | Feb 2011 | B1 |
20030183109 | Rudhard et al. | Oct 2003 | A1 |
20050016407 | Bernard | Jan 2005 | A1 |
20080282925 | Lownds et al. | Nov 2008 | A1 |