A data storage system, such as a disc drive, includes a base and a top cover that houses a variety of internal components. Example internal components include one or more data storage discs, a spindle motor and a spindle hub. The disc(s) are mounted to the spindle hub and the spindle motor drives the spindle hub which rotates the disc(s). A disc drive also includes external components. An example external component includes a printed circuit board assembly (PCBA). The PCBA is attached to an outer surface of the base.
Acoustic noise can be generated from the rotation of the spindle motor and the attached disc(s). Acoustic noise can also be generated from the actuator assembly that supports read/write heads which read and write data to the storage disc(s). A base and top cover house internal components of the disc drive and can amplify the sources of acoustic noise discussed above. More specifically, the base and top cover can substantially add to acoustic noise due to their resonance characteristics.
Independent of acoustic noise, mechanical resonance associated with components of the disk drive, such as operation of the actuator assembly, can result in read/write errors due to track misregistration. Disc drives with high track densities are particularly prone to track misregistration errors that can arise from excessive mechanical resonances. To alleviate vibration and acoustic noise as well as to provide dampening of mechanical resonances, a layer of damping material can be secured to the outer surface of the base between the PCBA, and the base.
The PCBA is used to compress the damping material against the base so that the damping material can perform its acoustic damping functions. Typically, screws are used to secure the PCBA to the base. The compression of the damping material forms a constrained layer that dissipates acoustic energy and mechanical vibration emitted by the disc drive. Additionally, the damping material acts to electrically insulate the PCBA from the drive housing.
When the PCBA is secured to the base, the pressure that the damping material applies to the PCBA in response to the compression again the base causes the PCBA to deflect outwardly away from the drive housing. With a sufficient amount of deflection, the disc drive can no longer comply with established dimensional form factor. In some instances, the deflection of the PCBA can be great enough that when the disc drive is installed in the designated computing device, damage to the disc drive occurs by contact of the disc drive with the internal components of the computing device.
An acoustic damping pad is provided to alleviate vibration and acoustic noise. The acoustic damping pad includes a first surface and an opposing second surface that are defined by a periphery. A first set of perforations extend between the first surface and the second surface of the acoustic damping pad. Each adjacent perforation in the first set of perforations is uniformly spaced apart from each other across a first select surface area of the first surface and across a corresponding first select surface area of the opposing second surface to form a uniform pattern.
These and various other features and advantages will be apparent from a reading of the following Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the background.
Data storage system 100 includes an enclosure 101 that encloses a plurality of components such as a disc medium 107. Those skilled in the art should recognize that disc drive 100 can contain a single disc, as illustrated in
Base 12 can have a plurality of irregularities formed on an outer surface 13 thereof. In
Acoustic damping pad 10 includes a first surface 19 and an opposing second surface 21 and is defined by a periphery 22. As shown, acoustic damping pad 10 is not simply rectangular shaped, and can have various features formed on periphery 22 to accommodate the corresponding irregularities formed on base 12. Additionally, acoustic damping pad 10 can comprise one or more openings 20 that accommodate the irregularities in base 12. For example, larger hole 20 may be provided to accommodate protrusion 16.
PCBA 14 comprises a substrate 30 including a plurality of components formed thereon, such as various electronic components 34. Substrate 30 may also comprise one or more openings 32 to accommodate the irregular features protruding from base 12. Additionally, PCBA 14 includes a plurality of screw holes 36 which receive a plurality of screws (not shown) that compress first surface 19 of acoustic damping pad 10 against base 12 and also secures PCBA 14 to base 12. In response to the screws that compress first surface 19 of acoustic damping pad 10 against base 12, acoustic damping pad 10 can apply stress on PCBA 14. Such stress can cause PCBA 14 to be deflected outwardly away from the data storage system enclosure. Deflection of PCBA 14 is undesirable especially in regions of the PCBA where the thickest components 34 are located on substrate 30. Since PCBA 14 and acoustic damping pad 10 are usually only fastened to the base around their peripheries, PCBA 14 can also bow or deflect around the central area of the PCBA based on pressure derived from the compression on acoustic damping pad 10 by the plurality of screws.
With reference to
In the embodiment illustrated in
Although perforation pattern 46 includes a first set of perforations 48 that are circular in geometric shape like perforation pattern 24 of acoustic damping pad 10, a distribution shape of perforation pattern 46 is different from a distribution shape of perforation pattern 24 on acoustic damping pad 10. Perforation pattern 46 with first set of perforations 48 can be provided on acoustic damping pad 40 for a base having a different configuration of surface irregularities than that of base 12 illustrated in
Thus,
There are a number of advantages in the above disclosed embodiments. A relatively simple yet effective modification can be made to a pad which remedies undesirable deflection in the PCBA. Form factor requirements may be met with the modified pad, without having to further modify other components of the disc drive. The particular selected perforation pattern can be chosen to provide the necessary amount of increased flexibility of the pad so that an undue amount of force is not transferred to the PCBA. Thus, the ability to specifically tailor the size, type, and number of perforations on the insulating pad provides a comprehensive solution for preventing undesirable PCBA deflection. Additionally, the perforations may be provided for purposes of tuning the acoustic dampening performance of the insulating pad to dampen the acoustic noises associated with operation of the disc drive.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the disclosure have been set forth in the foregoing description, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular application for the data storage system while maintaining substantially the same functionality without departing from the scope and spirit of the present invention. In addition, although the preferred embodiment described herein is directed to an acoustic damping and insulating pad for a disc drive, it will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other types of data storage systems, without departing from the scope and spirit of the present invention.
This application claims the benefit of U.S. Provisional Application 60/759,806 filed on Jan. 18, 2006 entitled “PERFORATED INSULATING PAD TO CONTROL CIRCUIT BOARD DEFLECTION,” the entire disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5235482 | Schmitz | Aug 1993 | A |
5483397 | Gifford et al. | Jan 1996 | A |
5666239 | Pottebaum | Sep 1997 | A |
5725931 | Landin et al. | Mar 1998 | A |
5757580 | Andress et al. | May 1998 | A |
5777821 | Pottebaum | Jul 1998 | A |
6233816 | Franke et al. | May 2001 | B1 |
6288866 | Butler et al. | Sep 2001 | B1 |
6290022 | Wolf et al. | Sep 2001 | B1 |
6411463 | Janik et al. | Jun 2002 | B1 |
6496326 | Boutaghou | Dec 2002 | B1 |
6498700 | Takahashi et al. | Dec 2002 | B2 |
6609592 | Wilson | Aug 2003 | B2 |
6674608 | Bernett | Jan 2004 | B1 |
6697217 | Codilian | Feb 2004 | B1 |
6720069 | Murakami et al. | Apr 2004 | B1 |
6947252 | Kang et al. | Sep 2005 | B2 |
6954328 | Daniel et al. | Oct 2005 | B2 |
6954329 | Ojeda et al. | Oct 2005 | B1 |
6958884 | Ojeda et al. | Oct 2005 | B1 |
7643243 | Lee et al. | Jan 2010 | B2 |
20050098379 | Sato et al. | May 2005 | A1 |
20060098332 | Lee et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070165328 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60759806 | Jan 2006 | US |