This disclosure relates to an acoustic device.
Headsets have acoustic drivers that sit on, over or in the ear. They are thus somewhat obtrusive to wear, and can inhibit the user's ability to hear ambient sounds.
All examples and features mentioned below can be combined in any technically possible way.
The present acoustic device directs high quality sound to each ear without acoustic drivers on, over or in the ears. The acoustic device is designed to be worn around the neck. The acoustic device may comprise a neck loop with a housing. The neck loop may have a “horseshoe”-like, or generally “U” shape, with two legs that sit over or near the clavicles and a curved central portion that sits behind the neck. The acoustic device may have two acoustic drivers; one on each leg of the housing. The drivers may be located below the expected locations of the ears of the user, with their acoustic axes pointed at the ears. The acoustic device may further include two waveguides within the housing, each one having an exit below an ear, close to a driver. The rear side of one driver may be acoustically coupled to the entrance to one waveguide and the rear side of the other driver may be acoustically coupled to the entrance to the other waveguide. Each waveguide may have one end with the driver that feeds it located below one ear (left or right), and the other end (the open end) located below the other ear (right or left), respectively.
The waveguides may fold over one another within the housing. The waveguides may be constructed and arranged such that the entrance and exit to each one is located at the top side of the housing. The waveguides may be constructed and arranged such that each one has a generally consistent cross-sectional area along its length. The waveguides may be constructed and arranged such that each one begins just behind one driver, runs down along the top portion of the housing in the adjacent leg of the neck loop to the end of the leg, turns down to the bottom portion of the housing and turns 180 degrees to run back up the leg, then across the central portion and back down the top portion of the other leg, to an exit located just posteriorly of the other driver. Each waveguide may flip position from the bottom to the top portion of the housing in the central portion of the neck loop.
In one aspect, an acoustic device includes a neck loop that is constructed and arranged to be worn around the neck. The neck loop includes a housing with comprises a first acoustic waveguide having a first sound outlet opening, and a second acoustic waveguide having a second sound outlet opening. There is a first open-backed acoustic driver acoustically coupled to the first waveguide and a second open-backed acoustic driver acoustically coupled to the second waveguide.
Embodiments may include one of the following features, or any combination thereof. The first and second acoustic drivers may be driven such that they radiate sound that is out of phase, over at least some of the spectrum. The first open-backed acoustic driver may be carried by the housing and have a first sound axis that is pointed generally at the expected location of one ear of the user, and the second open-backed acoustic driver may also be carried by the housing and have a second sound axis that is pointed generally at the expected location of the other ear of the user. The first sound outlet opening may be located proximate to the second acoustic driver and the second sound outlet opening may be located proximate to the first acoustic driver. Each waveguide may have one end with its corresponding acoustic driver located at one side of the head and in proximity to and below the adjacent ear, and another end that leads to its sound outlet opening, located at the other side of the head and in proximity to and below the other, adjacent ear.
Embodiments may include one of the above or the following features, or any combination thereof. The housing may have an exterior wall, and the first and second sound outlet openings may be defined in the exterior wall of the housing. The waveguides may both be defined by the exterior wall of the housing and an interior wall of the housing. The interior wall of the housing may lie along a longitudinal axis that is twisted 180° along its length. The neck loop may be generally “U”-shaped with a central portion and first and second leg portions that depend from the central portion and that have distal ends that are spaced apart to define an open end of the neck loop, wherein the twist in the housing interior wall is located in the central portion of the neck loop. The interior wall of the housing may be generally flat and lie under both sound outlet openings. The interior wall of the housing may comprise a raised sound diverter underneath each of the sound outlet openings. The housing may have a top that faces the ears when worn by the user, and wherein the first and sound outlet openings are defined in the top of the housing.
Embodiments may include one of the above or the following features, or any combination thereof. The housing may have a top portion that is closest to the ears when worn by the user and a bottom portion that is closest to the torso when worn by the user, and each waveguide may lie in part in the top portion of the housing and in part in the bottom portion of the housing. The neck loop may be generally “U”-shaped with a central portion and first and second leg portions that depend from the central portion and that have distal ends that are spaced apart to define an open end of the neck loop. The twist in the housing interior wall may be located in the central portion of the neck loop. The first acoustic driver may be located in the first leg portion of the neck loop and the second acoustic driver may be located in the second leg portion of the neck loop. The first waveguide may begin underneath the first acoustic driver, extend along the top portion of the housing to the distal end of the first leg portion of the neck loop and turn to the bottom portion of the housing and extend along the first leg portion into the central portion of the neck loop where it turns to the top portion of the housing and extends into the second leg portion to the first sound outlet opening. The second waveguide may begin underneath the second acoustic driver, extend along the top portion of the housing to the distal end of the second leg portion of the neck loop where it turns to the bottom portion of the housing and extends along the second leg portion into the central portion of the neck loop where it turns to the top portion of the housing and extends into the first leg portion to the second sound outlet opening.
In another aspect an acoustic device includes a neck loop that is constructed and arranged to be worn around the neck, the neck loop comprising a housing that comprises a first acoustic waveguide having a first sound outlet opening, and a second acoustic waveguide having a second sound outlet opening, a first open-backed acoustic driver acoustically coupled to the first waveguide, where the first open-backed acoustic driver is carried by the housing and has a first sound axis that is pointed generally at the expected location of one ear of the user, a second open-backed acoustic driver acoustically coupled to the second waveguide, where the second open-backed acoustic driver is carried by the housing and has a second sound axis that is pointed generally at the expected location of the other ear of the user, wherein the first sound outlet opening is located proximate to the second acoustic driver and the second sound outlet opening is located proximate to the first acoustic driver, and wherein the first and second acoustic drivers are driven such that they radiate sound that is out of phase.
Embodiments may include one of the following features, or any combination thereof. The waveguides may both be defined by the exterior wall of the housing and an interior wall of the housing, and wherein the interior wall of the housing lies along a longitudinal axis that is twisted 180° along its length. The neck loop may be generally “U”-shaped with a central portion and first and second leg portions that depend from the central portion and that have distal ends that are spaced apart to define an open end of the neck loop, wherein the twist in the housing interior wall is located in the central portion of the neck loop. The housing may have a top portion that is closest to the ears when worn by the user and a bottom portion that is closest to the torso when worn by the user, and wherein each waveguide lies in part in the top portion of the housing and in part in the bottom portion of the housing.
In another aspect an acoustic device includes a neck loop that is constructed and arranged to be worn around the neck, the neck loop comprising a housing that comprises a first acoustic waveguide having a first sound outlet opening, and a second acoustic waveguide having a second sound outlet opening, wherein the waveguides are both defined by the exterior wall of the housing and an interior wall of the housing, and wherein the interior wall of the housing lies along a longitudinal axis that is twisted 180° along its length, wherein the neck loop is generally “U”-shaped with a central portion and first and second leg portions that depend from the central portion and that have distal ends that are spaced apart to define an open end of the neck loop, wherein the twist in the housing interior wall is located in the central portion of the neck loop, wherein the housing has a top portion that is closest to the ears when worn by the user and a bottom portion that is closest to the torso when worn by the user, and wherein each waveguide lies in part in the top portion of the housing and in part in the bottom portion of the housing. There is a first open-backed acoustic driver acoustically coupled to the first waveguide, where the first open-backed acoustic driver is located in the first leg portion of the neck loop and has a first sound axis that is pointed generally at the expected location of one ear of the user. There is a second open-backed acoustic driver acoustically coupled to the second waveguide, where the second open-backed acoustic driver is located in the second leg portion of the neck loop and has a second sound axis that is pointed generally at the expected location of the other ear of the user. The first and second acoustic drivers are driven such that they radiate sound that is out of phase. The first sound outlet opening is located proximate to the second acoustic driver and the second sound outlet opening is located proximate to the first acoustic driver. The first waveguide begins underneath the first acoustic driver, extends along the top portion of the housing to the distal end of the first leg portion of the neck loop where it turns to the bottom portion of the housing and extends along the first leg portion into the central portion of the neck loop where it turns to the top portion of the housing and extends into the second leg portion to the first sound outlet opening, and the second waveguide begins underneath the second acoustic driver, extends along the top portion of the housing to the distal end of the second leg portion of the neck loop where it turns to the bottom portion of the housing and extends along the second leg portion into the central portion of the neck loop where it turns to the top portion of the housing and extends into the first leg portion to the second sound outlet opening.
In another aspect an acoustic device includes a neck loop that is constructed and arranged to be worn around the neck, the neck loop comprising a first acoustic waveguide having a first sound outlet opening, and a second acoustic waveguide having a second sound outlet opening, a first open-backed acoustic driver acoustically coupled to the first waveguide, and a second open-backed acoustic driver acoustically coupled to the second waveguide. There is a first pressure damping element acoustically coupled to the first waveguide, where the first pressure damping element is constructed and arranged to damp one or more acoustic resonances in the first waveguide, and a second pressure damping element acoustically coupled to the second waveguide, where the second pressure damping element is constructed and arranged to damp one or more acoustic resonances in the second waveguide.
Embodiments may include one of the following features, or any combination thereof. The first pressure damping element may be acoustically coupled to the first waveguide at a first location of a pressure maximum for a first wavelength to be damped, and the second pressure damping element may be acoustically coupled to the second waveguide at a second location of a pressure maximum for a second wavelength to be damped. The first location may be at a distance from the first sound outlet opening of about one-quarter of the first wavelength, and the second location may be at a distance from the second sound outlet opening of about one-quarter of the second wavelength. The first and second pressure damping elements may comprise at least one of: foam with at least some closed cells; a waveguide wall opening with a resistive structure covering or in the wall opening; and a pressure-loss stub.
Embodiments may include one of the following features, or any combination thereof. At least one of the first and second pressure damping elements may comprise a shunt waveguide. The shunt waveguide may comprise a tube open at both ends, with one end located inside of or directly coupled to the first or second waveguide and with a resistive structure located at or proximate the other end. The other end of the tube may be located in the first or second waveguide, in about the same plane as the sound outlet opening of the waveguide. The tube may have a length equal to about one-quarter of the wavelength of an acoustic resonance to be damped.
Embodiments may include one of the following features, or any combination thereof. The first and second acoustic drivers may be driven such that they radiate sound that is out of phase. The first acoustic driver may be carried by the neck loop and have a first sound axis that is pointed generally at the expected location of one ear of the user, and the second acoustic driver may be carried by the neck loop and have a second sound axis that is pointed generally at the expected location of the other ear of the user. The first sound outlet opening may be located proximate to the second acoustic driver and the second sound outlet opening may be located proximate to the first acoustic driver. Each waveguide may have one end with its corresponding acoustic driver located at one side of the head and in proximity to and below the adjacent ear, and another end that leads to its sound outlet opening, located at the other side of the head and in proximity to and below the other, adjacent ear.
Embodiments may include one of the following features, or any combination thereof. The neck loop may have an exterior wall, and the first sound outlet opening may be defined in the exterior wall of the neck loop, and the second sound outlet opening may be defined in the exterior wall of the neck loop. The neck loop may have a top that faces the ears when worn by the user, and the first sound outlet opening may be defined in the top of the neck loop and the second sound outlet opening may be defined in the top of the neck loop. The waveguides may both be defined by the exterior wall of the neck loop and an interior wall of the neck loop.
Embodiments may include one of the following features, or any combination thereof. The neck loop may be generally “U”-shaped with a central portion and first and second leg portions that depend from the central portion and that have distal ends that are spaced apart to define an open end of the neck loop. The first acoustic driver may be located in the first leg portion of the neck loop and the second acoustic driver may be located in the second leg portion of the neck loop. The first sound outlet opening may be located in the second leg portion, and the second sound outlet opening may be located in the first leg portion. The acoustic device may further include a low resistance screen located in a waveguide between the back of the transducer and the sound outlet opening. The screen may be located directly behind the transducer. The neck loop may further comprise an acoustic volume between a waveguide and the back of the transducer, and a pressure damping element may be acoustically coupled to this acoustic volume.
In yet another aspect an acoustic device includes a neck loop that is constructed and arranged to be worn around the neck, the neck loop comprising a first acoustic waveguide having a first sound outlet opening, and a second acoustic waveguide having a second sound outlet opening, wherein the first and second waveguides are side-by-side in at least some of the neck loop. There is a first open-backed acoustic driver acoustically coupled to the first waveguide, and a second open-backed acoustic driver acoustically coupled to the second waveguide. Each waveguide has a first end and its corresponding acoustic driver located at one side of the head and below the adjacent ear, and each waveguide has a second end that leads to its sound outlet opening, located at the other side of the head and below the other, adjacent ear. There is a first pressure damping element acoustically coupled to the first waveguide, where the first pressure damping element is constructed and arranged to damp one or more acoustic resonances in the first waveguide, and a second pressure damping element acoustically coupled to the second waveguide, where the second pressure damping element is constructed and arranged to damp one or more acoustic resonances in the second waveguide.
Embodiments may include one of the following features, or any combination thereof. The waveguides may both be at least in part defined by the exterior wall of the neck loop and an interior wall of the neck loop. The first and second pressure damping elements may each comprise at least one of: foam with at least some closed cells; a waveguide wall opening with a resistive structure covering or in the wall opening; and a shunt waveguide.
The acoustic device directs high quality sound to the ears without direct contact with the ears, and without blocking ambient sounds. The acoustic device is unobtrusive, and can be worn under (if the clothing is sufficiently acoustically transparent) or on top of clothing.
In one aspect, the acoustic device is constructed and arranged to be worn around the neck. The acoustic device has a neck loop that includes a housing. The neck loop has a horseshoe-like shape, with two legs that sit over the top of the torso on either side of the neck, and a curved central portion that sits behind the neck. The device has two acoustic drivers one on each leg of the housing. The drivers are located below the expected locations of the ears of the user, with their acoustic axes pointed at the ears. The acoustic device also has two waveguides within the housing, each one having an exit below an ear, close to a driver. The rear side of one driver is acoustically coupled to the entrance to one waveguide and the rear side of the other driver is acoustically coupled to the entrance to the other waveguide. Each waveguide has one end with the driver that feeds it located below one ear (left or right), and the other end (the open end) located below the other ear (right or left), respectively.
A non-limiting example of the acoustic device is shown in the drawings. This is but one of many possible examples that would illustrate the subject acoustic device. The scope of the invention is not limited by the example but rather is supported by the example.
Acoustic device 10 (
Neck loop 12 comprises housing 13 that is in essence an elongated (solid or flexible) mostly hollow solid plastic tube (except for the sound inlet and outlet openings), with closed distal ends 27 and 28. Housing 13 is divided internally by integral wall (septum) 102. Two internal waveguides are defined by the external walls of the housing and the septum. Housing 13 should be stiff enough such that the sound is not substantially degraded as it travels through the waveguides. In the present non-limiting example, where the lateral distance “D” between the ends 27 and 28 of right and left neck loop legs 20 and 22 is less than the width of a typical human neck, the neck loop also needs to be sufficiently flexible such that ends 27 and 28 can be spread apart when device 10 is donned and doffed, yet will return to its resting shape shown in the drawings. One of many possible materials that has suitable physical properties is polyurethane. Other materials could be used. Also, the device could be constructed in other manners. For example, the device housing could be made of multiple separate portions that were coupled together, for example using fasteners and/or adhesives. And, the neck loop legs do not need to be arranged such that they need to be spread apart when the device is placed behind the neck with the legs draped over the upper chest.
Housing 13 carries right and left acoustic drivers 14 and 16. The drivers are located at the top surface 30 of housing 13, and below the expected location of the ears “E.” See
Located close to and just posteriorly of the drivers and in the top exterior wall 30 of housing 13 are waveguide outlets 40 and 50. Outlet 50 is the outlet for waveguide 110 which has its entrance at the back of right-side driver 14. Outlet 40 is the outlet for waveguide 160 which has its entrance at the back of left-side driver 16. See
Acoustic device 10 includes right and left button socks or partial housing covers 60 and 62; button socks are sleeves that can define or support aspects of the device's user interface, such as volume buttons 68, power button 74, control button 76, and openings 72 that expose the microphone. When present, the microphone allows the device to be used to conduct phone calls (like a headset). Other buttons, sliders and similar controls can be included as desired. The user interface may be configured and positioned to permit ease of operation by the user. Individual buttons may be uniquely shaped and positioned to permit identification without viewing the buttons. Electronics covers are located below the button socks. Printed circuit boards that carry the hardware that is necessary for the functionality of acoustic device 10, and a battery, are located below the covers.
Housing 13 includes two waveguides, 110 and 160. See
The first part of waveguide 110 is shown in
In one non-limiting example, each waveguide has a generally consistent cross-sectional area along its entire length, including the generally annular outlet opening, of about 2 cm2. In one non-limiting example each waveguide has an overall length in the range of about 22-44 cm; very close to 43 cm in one specific example. In one non-limiting example, the waveguides are sufficiently long to establish resonance at about 150 Hz. More generally, the main dimensions of the acoustic device (e.g., waveguide length and cross-sectional area) are dictated primarily by human ergonomics, while proper acoustic response and functionality is ensured by proper audio signal processing. Other waveguide arrangements, shapes, sizes, and lengths are contemplated within the scope of the present disclosure.
An exemplary but non-limiting example of the electronics for the acoustic device are shown in
The waveguides of the subject acoustic device are resonant structures. It can be beneficial to suppress one or more undesirable resonances while preserving the resonances that reinforce the acoustic performance of the acoustic device. Resonance peaks can be reduced by introducing into the waveguide a source of resistive loss. Resistive loss elements can reduce undesirable peaks and dips in the device output, making the device output more predictable and more power efficient.
Loss elements can cause one or both of velocity loss and pressure loss. Examples of velocity loss elements include but are not limited to materials that provide resistance to air flow, including foam with open cells, fiberglass, wool, or any other open fluff, and resistive woven screens made out of fabric, plastic, metal, or other materials. Velocity loss elements will reduce the waveguide's output acoustic energy level across different frequencies to different degree. This can be counteracted by increasing the acoustic pressure within the waveguide, but this is not always feasible. Velocity loss elements alone may thus not achieve optimum broadband waveguide performance.
Pressure loss elements are impedance elements located at areas of the waveguide with high pressure, e.g., at pressure maxima for the resonances to be damped. Pressure loss elements create a shunting velocity that will help to reduce undesirable high pressure modes. Non-limiting examples of pressure loss elements include closed cell foam located against the inner wall of the waveguide, or in the waveguide away from the wall, and a wall opening lined with any resistive screen, mesh or fluff similar to the velocity loss elements.
In order to design a practical acoustic device with suppression of undesirable resonances, the loss elements should be introduced so that they suppress undesirable modes while minimizing the effect on desirable modes. This can be achieved by introducing loss elements into specially selected waveguide locations and/or by using loss elements that are themselves resonant structures that have the desired resonant frequencies and are placed at a location where they are active at those frequencies. Some loss elements can achieve only one of these goals while others can achieve both, as is further described below.
The waveguide output (curve B) has multiple resonances at the frequencies 700 Hz and above. In order to damp the 1300 Hz resonance (the highest peak), a pressure loss element 236 needs to be located at about 6.5 cm from the waveguide open end 234 (6.5 cm corresponds to about ¼ of the 1300 Hz wavelength in air of about 27 cm). The resistance (impedance) value of the loss element 236 is selected (via the material of the pressure loss element and/or the size of any opening contained in pressure loss element) to have the maximum suppression of the 1300 Hz mode with acceptable loss at other frequencies. A desirable resistance value is one that reduces the pressure peak while having minimal effect on other waveguide modes. The value of the resistance depends at least in part on waveguide geometry and audio system design requirements, and can be determined either experimentally or by audio system simulation.
In the example illustrated in
Note that pressure loss elements will have an effect if they are installed at locations of high pressure but not necessarily at maximum pressure locations. Also, the elements can be installed at pressure maxima closer to the transducer than shown in
Stub 260 is constructed, arranged and located to produce low z-impedance at the resonant frequency being suppressed. Its opening 262 is placed approximately at the location of a pressure maximum of the resonant frequency. Stub 260 is preferably vented into (i.e., acoustically coupled to) main waveguide 252, but it can be either inside or outside of waveguide 252. The other end 264 of stub 260 is resistively (velocity) loaded (e.g., with resistive element 266, which in non-limiting examples could be foam, wire mesh, fabric mesh, a screen and/or fluff). The value of the resistive loading of stub 260 is selected such that the bandwidth of the impedance minimum of stub 260 is approximately equal to or slightly larger than the bandwidth of the waveguide peak.
As depicted in
In this example the stub was positioned with its opening in the main waveguide approximately 6.5 cm from the main waveguide open end, and has a length of about 6.5 cm (which is about ¼ of the sound wavelength at 1300 Hz). The undesirable peak at about 1300 Hz is suppressed by about 15 dB, while most of the other resonances are left substantially undisturbed. Accordingly, a pressure loss element that has both spatial and frequency properties, such as that shown in
Acoustic devices can include one or more of such pressure loss or dual loss elements (i.e., pressure loss elements that have both spatial and frequency properties) in one or both of the waveguides in order to improve acoustic performance.
One potential issue with the present acoustic device is that it has two openings in the housing, one at the end of each waveguide. Sand, dirt and other particles can enter through these openings. These particles can interfere with operation of the acoustic device. For example the particles can jam into the small clearance between the voice coil and the magnet, which can be as small as about 0.3 mm. Proper operation of the transducer can thus be compromised by foreign particles. Particles can be inhibited from reaching the transducer by the use of a low resistance screen (which acts as a velocity loss element) somewhere between the back of the transducer and the waveguide opening. In order to inhibit SPL losses from such a velocity loss element, this screen should be located at a velocity minimum, or at least where volume velocity is low. One possible location is directly behind the transducer, where velocity is low, as depicted by screen 272,
Embodiments of the systems and methods described above comprise computer components and computer-implemented steps that will be apparent to those skilled in the art. For example, it should be understood by one of skill in the art that the computer-implemented steps may be stored as computer-executable instructions on a computer-readable medium such as, for example, floppy disks, hard disks, optical disks, Flash ROMS, nonvolatile ROM, and RAM. Furthermore, it should be understood by one of skill in the art that the computer-executable instructions may be executed on a variety of processors such as, for example, microprocessors, digital signal processors, gate arrays, etc. For ease of exposition, not every step or element of the systems and methods described above is described herein as part of a computer system, but those skilled in the art will recognize that each step or element may have a corresponding computer system or software component. Such computer system and/or software components are therefore enabled by describing their corresponding steps or elements (that is, their functionality), and are within the scope of the disclosure.
A number of implementations have been described. Nevertheless, it will be understood that additional modifications may be made without departing from the scope of the inventive concepts described herein, and, accordingly, other embodiments are within the scope of the following claims.
This application is a continuation of application Ser. No. 15/150,700, filed on May 10, 2016 (pending), which is a continuation in part of application Ser. No. 14/799,265, filed on Jul. 14, 2015 (now U.S. Pat. No. 9,571,917, issued on Feb. 14, 2017), which itself claimed benefit from U.S. Provisional Patent Application No. 62/026,237, filed on Jul. 18, 2014, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62026237 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15150700 | May 2016 | US |
Child | 15646381 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14799265 | Jul 2015 | US |
Child | 15150700 | US |