The present invention relates generally to sonoluminescence and, more particularly, to an acoustic driver assembly for use with a sonoluminescence cavitation chamber.
Sonoluminescence is a well-known phenomena discovered in the 1930's in which light is generated when a liquid is cavitated. Although a variety of techniques for cavitating the liquid are known (e.g., spark discharge, laser pulse, flowing the liquid through a Venturi tube), one of the most common techniques is through the application of high intensity sound waves.
In essence, the cavitation process consists of three stages; bubble formation, growth and subsequent collapse. The bubble or bubbles cavitated during this process absorb the applied energy, for example sound energy, and then release the energy in the form of light emission during an extremely brief period of time. The intensity of the generated light depends on a variety of factors including the physical properties of the liquid (e.g., density, surface tension, vapor pressure, chemical structure, temperature, hydrostatic pressure, etc.) and the applied energy (e.g., sound wave amplitude, sound wave frequency, etc.).
Although it is generally recognized that during the collapse of a cavitating bubble extremely high temperature plasmas are developed, leading to the observed sonoluminescence effect, many aspects of the phenomena have not yet been characterized. As such, the phenomena is at the heart of a considerable amount of research as scientists attempt to not only completely characterize the phenomena (e.g., effects of pressure on the cavitating medium), but also its many applications (e.g., sonochemistry, chemical detoxification, ultrasonic cleaning, etc.).
Although acoustic drivers are commonly used to drive the cavitation process, there is little information about methods of coupling the acoustic energy to the cavitation chamber. For example, in an article entitled Ambient Pressure Effect on Single-Bubble Sonoluminescence by Dan et al. published in vol. 83, no. 9 of Physical Review Letters, the authors describe their study of the effects of ambient pressure on bubble dynamics and single bubble sonoluminescence. Although the authors describe their experimental apparatus in some detail, they only disclose that a piezoelectric transducer was used at the fundamental frequency of the chamber, not how the transducer couples its energy into the chamber.
U.S. Pat. No. 4,333,796 discloses a cavitation chamber that is generally cylindrical although the inventors note that other shapes, such as spherical, can also be used. As disclosed, the chamber is comprised of a refractory metal such as tungsten, titanium, molybdenum, rhenium or some alloy thereof and the cavitation medium is a liquid metal such as lithium or an alloy thereof. Surrounding the cavitation chamber is a housing which is purportedly used as a neutron and tritium shield. Projecting through both the outer housing and the cavitation chamber walls are a number of acoustic horns, each of the acoustic horns being coupled to a transducer which supplies the mechanical energy to the associated horn. The specification only discloses that the horns, through the use of flanges, are secured to the chamber/housing walls in such a way as to provide a seal and that the transducers are mounted to the outer ends of the horns.
U.S. Pat. No. 5,658,534 discloses a sonochemical apparatus consisting of a stainless steel tube about which ultrasonic transducers are affixed. The patent provides considerable detail as to the method of coupling the transducers to the tube. In particular, the patent discloses a transducer fixed to a cylindrical half-wavelength coupler by a stud, the coupler being clamped within a stainless steel collar welded to the outside of the sonochemical tube. The collars allow circulation of oil through the collar and an external heat exchanger. The abutting faces of the coupler and the transducer assembly are smooth and flat. The energy produced by the transducer passes through the coupler into the oil and then from the oil into the wall of the sonochemical tube.
U.S. Pat. No. 5,659,173 discloses a sonoluminescence system that uses a transparent spherical flask. The spherical flask is not described in detail, although the specification discloses that flasks of Pyrex®, Kontes®, and glass were used with sizes ranging from 10 milliliters to 5 liters. The drivers as well as a microphone piezoelectric were simply epoxied to the exterior surface of the chamber.
U.S. Pat. No. 5,858,104 discloses a shock wave chamber partially filled with a liquid. The remaining portion of the chamber is filled with gas which can be pressurized by a connected pressure source. Acoustic transducers are used to position an object within the chamber while another transducer delivers a compressional acoustic shock wave into the liquid. A flexible membrane separating the liquid from the gas reflects the compressional shock wave as a dilation wave focused on the location of the object about which a bubble is formed. The patent simply discloses that the transducers are mounted in the chamber walls without stating how the transducers are to be mounted.
U.S. Pat. No. 5,994,818 discloses a transducer assembly for use with tubular resonator cavity rather than a cavitation chamber. The assembly includes a piezoelectric transducer coupled to a cylindrical shaped transducer block. The transducer block is coupled via a central threaded bolt to a wave guide which, in turn, is coupled to the tubular resonator cavity. The transducer, transducer block, wave guide and resonator cavity are co-axial along a common central longitudinal axis. The outer surface of the end of the wave guide and the inner surface of the end of the resonator cavity are each threaded, thus allowing the wave guide to be threadably and rigidly coupled to the resonator cavity.
U.S. Pat. No. 6,361,747 discloses an acoustic cavitation reactor in which the reactor chamber is comprised of a flexible tube. The liquid to be treated circulates through the tube. Electroacoustic transducers are radially and uniformly distributed around the tube, each of the electroacoustic transducers having a prismatic bar shape. A film of lubricant is interposed between the transducer heads and the wall of the tube to help couple the acoustic energy into the tube.
PCT Application No. US00/32092 discloses several driver assembly configurations for use with a solid cavitation reactor. The disclosed reactor system is comprised of a solid spherical reactor with multiple integral extensions surrounded by a high pressure enclosure. Individual driver assemblies are coupled to each of the reactor's integral extensions, the coupling means sealed to the reactor's enclosure in order to maintain the high pressure characteristics of the enclosure.
Although a variety of cavitation systems have been designed, these systems typically provide inadequate coupling of the acoustic energy to the cavitation chamber. Accordingly, what is needed in the art is an acoustic driver assembly that efficiently couples energy to the cavitation chamber while being relatively easy to manufacture. The present invention provides such a system.
The present invention provides an acoustic driver assembly for use with a spherical cavitation chamber. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is adjacent to the external surface of the chamber has a spherical curvature greater than the spherical curvature of the external surface of the chamber, thus providing a ring of contact between the acoustic driver and the cavitation chamber. The area of the contact ring is increased in one embodiment by chamfering a portion of the head mass such that the chamfered surface has the same curvature as the external surface of the chamber. In at least one embodiment, a void filling material is interposed between one or more pairs of adjacent surfaces of the driver assembly and/or the driver assembly and the exterior surface of the cavitation chamber.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
Chamber 101 can be fabricated from any of a variety of materials, depending primarily on the desired operating temperature and pressure, as well as the fabrication techniques used to make the chamber. Typically the chamber is fabricated from a metal; either a pure metal or an alloy such as stainless steel.
With respect to the dimensions of the chamber, both inner and outer diameters, the selected sizes depend upon the intended use of the chamber. For example, smaller chambers are typically preferable for situations in which the applied energy (e.g., acoustic energy) is somewhat limited. Similarly, thick chamber walls are preferable if the chamber is to be operated at high static pressures. For example, the prior art discloses wall thicknesses of 0.25 inches, 0.5 inches, 0.75 inches, 1.5 inches, 2.375 inches, 3.5 inches and 4 inches, and outside diameters in the range of 2-10 inches. It should be appreciated, however, that the present invention is not limited to a particular outside chamber diameter, inside chamber diameter, chamber material, chamber shape, transducer number, or transducer mounting location. Such information, as provided herein, is only meant to provide exemplary chamber configurations for which the present invention is applicable.
Driver assembly 300 can use a single piezo-electric transducer or a transducer stack. In the preferred embodiment assembly 300 uses a pair of piezo-electric transducer rings 301 and 302 poled in opposite directions. By using a pair of transducers in which the adjacent surfaces of the two crystals have the same polarity, potential grounding problems are minimized. An electrode disc 303 is located between transducer rings 301 and 302 which, during operation, is coupled to the driver power amplifier 305.
The transducer pair is sandwiched between a head mass 307 and a tail mass 309. In the preferred embodiment both head mass 307 and tail mass 309 are fabricated from stainless steel and are of equal mass. In alternate embodiments head mass 307 and tail mass 309 are fabricated from different materials. In yet other alternate embodiments, head mass 307 and tail mass 309 have different masses and/or different mass diameters and/or different mass lengths. For example tail mass 309 can be much larger than head mass 307.
Driver 300 is assembled about a centrally located all-thread 311 which is screwed directly into wall 401 of chamber 101. A cap nut 313 holds the assembly together. As shown, preferably all-thread 311 does not pass through the entire chamber wall, thus leaving the internal chamber surface 105 smooth and preventing gas or liquid leaks at the point of driver attachment. Alternately, for example with thin walled chambers, the threaded hole to which all-thread 311 is coupled passes through the entire chamber wall. Typically in such an embodiment all-thread 311 does not pass through the entire chamber wall but is sealed into place with an epoxy or other suitable sealant. It is understood that all-thread 311 and cap nut 313 can be replaced with a bolt. An insulating sleeve 403 isolates all-thread 311, preventing it from shorting electrode 303.
End surface 315 of driver assembly 300 is preferably spherically shaped with a curvature matching that of external chamber surface 103. This design insures the efficient transfer of acoustic energy into chamber 101.
In a preferred embodiment of the invention, acoustic driver assembly 300 is approximately 2.5 inches in diameter, tail mass 309 and head mass 307 each weigh approximately 5 pounds and are fabricated from 17-4 PH stainless steel, and a pair of piezo-electric transducers fabricated by Channel Industries of Santa Barbara, Calif. is used. Driver 300 is assembled about a 0.5 inch all-thread 311, insulating sleeve 403 is fabricated from Teflon and the assembly is tightened to 120 ft-lbs.
In an alternate embodiment shown in
Micro-surface imperfections, such as those between the head mass and the chamber exterior surface, impair efficient coupling of acoustic energy into the chamber. Accordingly bonding the head mass to the chamber as described above relative to
As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 10/943,679, filed Sep. 17, 2004, which is a continuation of U.S. patent application Ser. No. 10/931,918, filed Sep. 1, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 10943679 | Sep 2004 | US |
Child | 11085361 | Mar 2005 | US |
Parent | 10931918 | Sep 2004 | US |
Child | 10943679 | Sep 2004 | US |