The present invention relates to an acoustic generator, an acoustic generation device, and an electronic device.
Acoustic generators using an actuator have conventionally known (for example, see Patent Literature 1). Such an acoustic generator outputs sound by applying a voltage to an actuator mounted on a vibrating plate, thereby causing the vibrating plate to vibrate.
Patent Literature 1: Japanese Laid-open Patent Publication No. 2009-130663
Because such a conventional acoustic generator actively makes use of the resonance of the vibrating plate, the sound pressure frequency characteristics often indicate peaks (frequencies resulting in a higher sound pressure than those achieved with nearby frequencies) and dips (frequencies resulting in a lower sound pressure than those achieved with nearby frequencies), and it has been therefore difficult to achieve high quality sound.
An acoustic generator according to an aspect of an embodiment includes an exciter, a vibrating body. The exciter receives an input of an electrical signal and is caused to vibrate. The exciter is mounted on the vibrating body, and the vibrating body is caused to vibrate by the vibration of the exciter. The acoustic generator includes at least one pair of two adjacent portions with different stiffnesses in a plan view, and has at least one damper provided contacting with both of the two adjacent portions.
An acoustic generator, an acoustic generation device, and an electronic device that are examples of some embodiments of the present invention will now be explained in detail with reference to the appended drawings. The embodiments described hereunder are not intended to limit the scope of the present invention in any way.
Before explaining an acoustic generator 1 according to the embodiment, a general structure of a basic acoustic generator 1′ will now be explained with reference to
To facilitate understanding of the explanation, included in
Also to facilitate understanding of the explanation, illustrated in
As illustrated in
The frame 2 has two frame members having the same rectangular, frame-like shape, and nipping the ends of the vibrating plate 3 therebetween, thereby allowing the frame 2 to serve as a support for supporting the vibrating plate 3. The vibrating plate 3 has a plate-like or a film-like shape, and of which ends are nipped and fixed by the frame 2. In other words, the vibrating plate 3 is supported in a manner stretched across the frame 2. The inner portion of the vibrating plate 3, being inner with respect to the frame 2, and that is not nipped by the frame 2 and is capable of freely vibrating serves as a vibrating body 3a. The vibrating body 3a is an approximately rectangular portion that is on the inner side of the frame 2.
The vibrating plate 3 may be made of various types of materials, such as a resin or a metal. For example, the vibrating plate 3 may be a film made of a resin such as polyethylene or polyimide and having a thickness of 10 micrometers to 200 micrometers.
The thickness, the material, and the like of the frame members forming the frame 2 are not particularly limited. The frame members may be made of various types of materials such as a resin or a metal. For example, the frame 2 may be preferably made of stainless steel with a thickness of 100 micrometers to 1000 micrometers, from the viewpoint of mechanical strength and high corrosion resistance.
Illustrated in
The piezoelectric element 5 is provided bonded to the surface of the vibrating body 3a, for example, and serves as an exciter that receives an application of an electrical signal and excites the vibrating body 3a.
The piezoelectric element 5 includes a laminate of four piezoelectric layers 5a, 5b, 5c, and 5d that are made of ceramic and laminated alternatingly with three internal electrode layers 5e, surface electrode layers 5f and 5g provided on the top and the bottom surfaces of the laminate, respectively, and external electrodes 5h and 5j provided on respective sides where the internal electrode layers 5e are exposed, as illustrated in
The piezoelectric element 5 has a plate-like shape, and of which principal surfaces at the top and the bottom have a polygonal shape such as a rectangle or a square. The piezoelectric layers 5a, 5b, 5c, and 5d are polarized in the directions indicated by the arrows in
When a voltage is applied to the piezoelectric element 5 via the lead terminals 6a and 6b, the piezoelectric layers 5c and 5d on the side bonded on the vibrating body 3a deform by shrinking, and the piezoelectric layers 5a and 5b on the opposite side deform by stretching, for examples, at one particular moment. By applying an alternating-current signal to the piezoelectric element, therefore, the piezoelectric element 5 is caused to bend and vibrate, thereby causing the vibrating body 3a to bend and vibrate.
A principal surface of the piezoelectric element 5 is bonded to a principal surface of the vibrating body 3a using an adhesive such as epoxy-based resin.
Examples of materials with which the piezoelectric layers 5a, 5b, 5c, and 5d are formed include lead-free piezoelectric materials such as lead zirconate titanate (PZT), a Bi-layered ferroelectric compound, a tungsten bronze structure compound, and a piezoelectric ceramic conventionally used.
Various types of metallic materials may be used for the internal electrode layers 5e. When a material with a metallic component consisting of silver and palladium, and a ceramic component used in the piezoelectric layers 5a, 5b, 5c, and 5d, for example, a stress caused by the difference in the thermal expansions in the piezoelectric layers 5a, 5b, 5c, and 5d and the internal electrode layers Se can be reduced, so that the piezoelectric element 5 with no defective lamination can be achieved.
The lead terminals 6a and 6b may be made of various types of metallic materials. When the lead terminals 6a and 6b are provided using flexible wiring in which a foil made of a metal such as copper or aluminum is interposed between resin films, for example, a low-profile piezoelectric element 5 can be provided.
The acoustic generator 1′ also includes, as illustrated in
For the resin layer 7, a material such as a resin, including acrylic-based resin and silicone-based resin, or rubber may be used, and the resin layer 7 is preferably formed in such a manner that a Young's modulus within a range from 1 megapascal to 1 gigapascal is achieved. By embedding the piezoelectric element 5 in the resin layer 7, an appropriate level of damper effect can be achieved, so that the resonance can be suppressed and the peaks and the dips in the sound pressure frequency characteristics can be reduced.
Furthermore, illustrated in
In the acoustic generator according to this example illustrated in
In a plan view of the acoustic generator from a direction perpendicular to the principal surfaces of the vibrating body 3a (in the thickness direction of the vibrating body 3a, and in the Z-axial direction in
The portion including the vibrating body 3a, the resin layer 7, and the piezoelectric element 5 represents a portion where the vibrating body 3a, the resin layer 7, and the piezoelectric element 5 are present in a plan view in the direction perpendicular to the principal surfaces of the vibrating body 3a. These portions with different stiffness tend to deform largely when the vibrating body 3a bends and vibrates.
Hereinafter, when a something is viewed in a plan view, the thing is looked down in the thickness direction of the vibrating body 3a (the direction perpendicular to the principal surfaces of the vibrating body 3a, and in the Z-axial direction in
As an example, let us focus on the portion surrounded by the closed curve PD drawn with a dotted line in
In such a case, it is effective to take an approach of reducing the height of the peak P (see the arrow 201 in
In the embodiment, therefore, the height of the peak P is reduced, to begin with, by providing a damper 8, giving a mechanical vibration loss to the vibrating body 3a thereby.
The acoustic generator according to the embodiment has at least one pair of two adjacent portions with different stiffness in a plan view, and is provided with at least one damper 8 that is positioned contacting with both of the two adjacent portions with different stiffness in a plan view. In this manner, the levels of the peaks and the dips in the sound pressure frequency characteristics can be further reduced.
The levels of the peaks and the dips in sound pressure frequency characteristics can also be reduced by providing the damper 8 in a manner contacting with a portion including the exciter (the piezoelectric element 5) and an adjacent portion not including the exciter (the piezoelectric element 5), in a plan view of the acoustic generator.
The levels of the peaks and the dips in sound pressure frequency characteristics can be reduced more effectively by providing the damper 8 straddling the portion including the exciter (the piezoelectric element 5) and the adjacent portion not including the exciter (the piezoelectric element 5) (the portion including the vibrating body 3a and the resin layer 7), in a plan view of the acoustic generator.
The levels of the peaks and the dips in sound pressure frequency characteristics can also be reduced by providing the damper 8 in a manner contacting with both of a portion including the support (the frame 2) and an adjacent portion not including the support (the frame 2) (portion including the vibrating body 3a and the resin layer 7), in a plan view of the acoustic generator.
The levels of the peaks and the dips in sound pressure frequency characteristics can be reduced more effectively by providing the damper 8 straddling the portion including the support (the frame 2) and the adjacent portion not including the support (the frame 2) (portion including the vibrating body 3a and the resin layer 7), in a plan view of the acoustic generator.
The damper 8 is preferably mounted on the surface of the resin layer 7 provided in a manner covering the exciter (the piezoelectric element 5) and the vibrating body 3a on which exciter (the piezoelectric element 5) is mounted, and integrated with the vibrating body 3a and the exciter (the piezoelectric element 5). In this manner, the damper effect can be improved, and the damper can be mounted easily. By providing the damper 8 in a manner contacting with none of the vibrating plate 3 and the exciter (the piezoelectric element 5) receiving an input of an electrical signal and generating vibration, the levels of the peaks and the dips in the sound pressure characteristics can be reduced, and a reduction in the sound pressure level can be suppressed across a wide range of frequencies.
The damper layout will now be explained specifically with reference to
As illustrated in
Each of the dampers 8 may be any member that gives a mechanical loss, but is preferably a member of which mechanical loss coefficient is high, that is, of which mechanical quality factor (what is called a mechanical Q) is low.
Such dampers 8 may be made of various types of elastic materials, but because it is preferable for the dampers 8 to be soft and to deform easily, the dampers 8 is preferably made of a rubber material such as urethane rubber, or a soft resin material such as a silicone resin.
A porous rubber material such as urethane foam is particularly preferable. The dampers 8 are mounted on the surface of the resin layer 7 illustrated in
By providing the dampers 8 in the manner described above, the portions of the vibrating body 3a where the dampers 8 are mounted become subject to a vibration loss attributable to the dampers 8 via the resin layer 7, and the resonance is suppressed thereby.
The damper 8 is provided contacting with both of the portions with different stiffness stretching in the surface direction of the vibrating plate 3. The “adjacent portions with different stiffness” will now be explained.
As illustrated in
To simplify the explanation using
The “adjacent portions with different stiffness” are, for example, the portion S1 and the portion S2, or the portion S1 and the portion S3. A portion near the border between the adjacent portions with different stiffness tends to deform largely when the vibrating body 3a bends and vibrates, because of the difference in the stiffness. In the acoustic generator 1 according to the embodiment, therefore, the dampers 8 are provided contacting with a portion that deforms largely, so that the peaks and the dips can be reduced more effectively.
For example, in the embodiment, as illustrated in
In the embodiment, the damper 8 is also provided in a layout pattern P2 in which the damper 8 is positioned straddling the portion S1 and the portion S3, that is, straddling at least a part of the border between the portion S1 and the portion S3 (in other words, a part of the outline of the portion including the piezoelectric element 5 in a plan view). In the layout pattern P2, the damper 8 may be provided straddling the portion S1 and the portion S2, that is, straddling at least a part of the border between the portion S1 and the portion S2 (in other words, a part of the outline of the vibrating body 3a).
In the embodiment, the damper 8 is also provided in a layout pattern P3 in which the damper 8 comes in contact with both of the portion S1 and the portion S2, and in contact with both of the portion S1 and the portion S3, in a plan view of the acoustic generator 1, as illustrated in
By providing the dampers 8 in a combination of the layout patterns P1 to P3, the mechanical vibration loss attributable to the dampers 8 can be efficiently given to portions that deforms largely, so that the peaks and the dips can be reduced more effectively.
In this manner, by reducing the peaks and the dips in the resonance frequency, excellent sound pressure frequency characteristics that vary smoothly can be achieved.
The four corners of the vibrating body 3a and the nearby portions that are illustrated as surrounded by closed curves C drawn in dotted lines in
Based on the layout patterns P1 to P3 illustrated in
As illustrated in
Illustrated in
As illustrated in
Illustrated in
In such a layout, the dampers 8 may be positioned in a manner filling the respective gaps formed between the frame 2 and the piezoelectric element 5 in the short direction of the frame 2, for example, as illustrated in
In the middle- or large-sized acoustic generator 1 having two or more piezoelectric elements 5, as illustrated in
By positioning the dampers 8 in a manner filling the respective gaps formed between the frame 2 and the piezoelectric element 5 along the surface direction of the vibrating plate 3, an appropriate level of damper effect can be achieved even in a structure in which there are successive portions with different stiffness and deforming largely by different degrees, so that excellent sound pressure frequency characteristics can be achieved.
As illustrated in
Illustrated in
By providing the damper 8 on the principal surface of the vibrating plate 3 on the opposite side of the piezoelectric element 5, the profile of the acoustic generator 1 can be reduced. Furthermore, by providing the damper 8 in a manner directly contacting with the vibrating plate 3 generating sound, the damper effect of the damper can be improved.
When a unimorph piezoelectric element 5 is mounted in a manner nipping the vibrating plate 3 from both sides, as illustrated in
In
The layout of the damper 8 is not limited to those described above, and the damper 8 may be positioned in various other ways. For example, the damper 8 may be provided in singularity, in a manner contacting with the surface of the resin layer 7 and the surface of the frame 2, and another damper 8 may be provided in the resin layer 7 in a manner contacting with the vibrating body 3a and the piezoelectric element 5.
Explained now with reference to
The acoustic generation device 20 is an acoustic generator such as what is called a speaker, and includes, for example, a housing 30 and the acoustic generator 1 mounted on the housing 30, as illustrated in
The acoustic generator 1 is mounted on the opening 30a on the housing 30. The acoustic generation device 20 having such a structure can resonate the sound generated by the acoustic generator 1 inside of the housing 30, so that the sound pressure in the low-frequency range, for example, can be increased. The location where the acoustic generator 1 is mounted may be set freely. The acoustic generator 1 may be mounted on the housing 30 with another object interposed between the acoustic generator 1 and the housing 30.
The acoustic generator 1 may be installed in different types of electronic devices 50. For example, in
As illustrated in
The electronic device 50 also includes a display unit 50e, an antenna 50f, and the acoustic generator 1. The electronic device 50 also includes a case 40 in which these devices are housed.
In
The controller 50a is a control unit for the electronic device 50. The communication unit 50b exchanges data, for example, via the antenna 50f, based on the control of the controller 50a.
The key input unit 50c is an input device for the electronic device 50, and receives operations of key inputs performed by an operator. The microphone input unit 50d is also an input device for the electronic device 50, and receives operations of voice inputs of an operator.
The display unit 50e is a display output device for the electronic device 50, and outputs information to be displayed based on the control of the controller 50a.
The acoustic generator 1 operates as a sound output device in the electronic device 50. The acoustic generator 1 is connected to the controller 50a in the electronic circuit 60, and receives an application of a voltage controlled by the controller 50a and outputs sound.
Explained with reference to
Mainly explained in the embodiment described above is an example in which the piezoelectric element 5 is provided on one principal surface of the vibrating body 3a, but the configuration is not limited thereto, and the piezoelectric element 5 may be provided on both surfaces of the vibrating body 3a.
Explained in the embodiment is an example in which the portion on the inner side of the frame has a polygonal shape of which example is an approximately rectangular shape. The shape of the portion is, however, not limited thereto, and may be a circle or an oval.
Furthermore, explained in the embodiment described above is an example in which the resin layer 7 is formed to cover the piezoelectric element 5 and the vibrating body 3a in the frame 2, but the resin layer does not necessarily be provided.
Furthermore, explained in the embodiment described above is an example in which the vibrating plate is a thin film such as a resin film, but the vibrating plate is not limited thereto, and the vibrating plate may be a plate-like member, for example.
Furthermore, explained in the embodiment described above is an example in which the support for supporting the vibrating body 3a is the frame 2, and supports the ends of the vibrating body 3a, but the support is not limited thereto. For example, the support may support only the two ends of the vibrating body 3a in the longitudinal direction or the short direction.
Furthermore, explained in the embodiment described above is an example in which the exciter is the piezoelectric element 5, but the exciter is not limited to a piezoelectric element, and may be any exciter having a function of receiving an electrical signal and causing vibration. The exciter may be, for example, an electrodynamic exciter, an electrostatic exciter, or an electromagnetic exciter that are known exciters causing a speaker to vibrate. An electrodynamic exciter applies a current to a coil positioned between magnetic poles of permanent magnets, and causes the coil to vibrate. An electrostatic exciter applies a bias and an electrical signal to two metal plates facing each other, and causes the metal plates to vibrate. An electromagnetic exciter supplies an electrical signal to a coil, and causes a thin steel sheet to vibrate.
The present invention is not limited to the examples explained in the embodiment, and various modifications and improvements are still possible within the scope not deviating from the spirit of the present invention.
A specific example of the acoustic generator 1 according to the present invention will now be explained. The exemplary acoustic generator 1 according to the embodiment in which the dampers 8 are provided as illustrated in
To begin with, piezoelectric powder containing PZT of which Zr is partially substituted with Sb, binder, dispersant, plasticizer, and solvent were kneaded for 24 hours in a ball mill, to produce slurry. Green sheets were then produced using the produced slurry with doctor blading. Conductive paste containing Ag and Pd was then applied to the green sheets in a predetermined shape using screen printing, thereby forming a conductor pattern that is to be the internal electrode layer 5e. The green sheets formed with the conductor pattern were then laminated with other green sheets and pressed, and a laminated green body was produced thereby. This laminated green body was then degreased in the air at 500 degrees Celsius for 1 hour, and fired at 1100 degrees Celsius for 3 hours, and the laminate was achieved thereby.
The longitudinal end surfaces of acquired laminate were then cut with dicing, and the tips of the internal electrode layers 5e were exposed to the side surfaces of the laminate. Conductive paste containing Ag and glass was then applied to both principal surfaces of the laminate with screen printing, and the surface electrode layers 5f and 5g were formed thereby. Conductive paste containing Ag and glass was then applied to both longitudinal side surfaces of the laminate with dipping, and baked in the air at 700 degrees Celsius for 10 minutes, and the pair of external electrodes 5h and 5j was formed thereby. In this manner, the laminate was produced. The size of the principal surfaces of the produced laminate had a width of 18 millimeters, and a length of 46 millimeters. The thickness of the laminate was set to 100 micrometers. The piezoelectric layers were then polarized by applying 100-volt voltage for two minutes via the pair of external electrodes 5h and 5j, and an exciter (piezoelectric element) 5 that is a laminated bimorph piezoelectric element was achieved.
A film (vibrating plate) 3 having a thickness of 25 micrometers and made of polyimide resin was then prepared, and the ends of the film 3 were nipped and fixed between the two frame members making up the frame 2, while tensile force was applied to the film 3. Used as the two frame members for making up the frame 2 were those made of stainless steel, with a thickness of 0.5 millimeters. The size of the film 3 on the inner side of the frame 2 was 110 millimeters in length, and 70 millimeters in width. Two exciters 5 were then bonded at the center of one principal surface of the fixed film 3 in the length direction, using an adhesive made of acrylic resin. The lead terminals 6a and 6b were then coupled to each of the exciters 5, and wired. Acrylic-based resin having a Young's modulus of 17 megapascals after being solidified was then filled and solidified inside of the frame members on the one principal surface of the film 3, to the same height as the height of the frame members, and the resin layer 7 was formed thereby.
The dampers 8 were then bonded on the surface of the resin layer 7 using an adhesive made of acrylic resin. For the dampers 8, urethane foam with a thickness of 0.25 millimeter was used. The dampers 8 were mounted at the position illustrated in
The sound pressure frequency characteristics of the produced acoustic generators were measured in accordance with Japan Electronics and Information Technology Industries Association (JEITA) standard EIJA RC-8124A. To make the measurements, a sine-wave signal with an effective voltage of 5 volts was applied between the lead terminals 6a and 6b of the acoustic generator, and sound pressures were measured by installing a microphone at a point of 0.1 meter above a reference axis of the corresponding acoustic generator. The measurements from the exemplary acoustic generator 1 according to an embodiment of the present invention are illustrated in
Compared with the sound pressure frequency characteristics of the acoustic generator according to the comparative example illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2012-179065 | Aug 2012 | JP | national |
2012-218931 | Sep 2012 | JP | national |
2012-286794 | Dec 2012 | JP | national |
This application is national stage application of International Application No. PCT/JP2013/065293, filed on May 31, 2013, which designates the United States, incorporated herein by reference, and which claims the benefit of priority from Japanese Patent Application No. 2012-179065, filed on Aug. 10, 2012; Japanese Patent Application No. 2012-218931, filed on Sep. 29, 2012; and Japanese Patent Application No. 2012-286794, filed on Dec. 28, 2012, the entire contents of all of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/065293 | 5/31/2013 | WO | 00 |