1. Field of the Invention
The present invention relates to detecting the location of a source of audible and thermal energy, and, more particularly, the present invention relates to detecting the location of a shooter from a moving vehicle such as a helicopter.
2. Description of the Related Art
In certain circumstances and areas, such as within a combat zone, it becomes necessary to detect when a projectile is being directed at you. Early and accurate detection allows one to avoid the projectile if possible, and to move to a safer location to avoid being impacted with further projectiles. It is further beneficial to determine the location from where the projectile originated, and to do so as quickly and accurately.
One known system for detecting inbound projectiles is known as the Common Missile Warning System (“CMWS”). This system senses ultraviolet missile detection data from electro-optic missile sensors and sends a missile alert signal to on-board avionics. The CMWS can function as a stand-alone system with the capability to detect missiles and provide audible and visual warnings to pilots. It can be used in conjunction with other systems, such as to activate expendables to decoy/defeat infrared-guided missiles.
The present invention improves upon the known technology by adding another layer of detection that may be used independently or in conjunction with existing detection systems.
The system of the present invention provides for the detection of the location of shooters with respect to a moving platform, such as a helicopter or fixed-wing aircraft. The system makes use of the ballistic shock of ordnance to find a shooter by one of three methods: using a single small array (that detects ordnance shock) in conjunction with the electro-optic infrared detection of the shot; using a single small array that detects both the muzzle blast (often obscured on an aircraft in flight) and ordnance shock (that is more easily detected above the background noise); and using multiple small arrays, each of which detects ordnance shock, to triangulate the ordnance trajectory.
The present invention is described with reference to the accompanying drawings, wherein:
The system of the present invention provides for the detection of the location of shooters with respect to a moving platform, such as a helicopter or fixed-wing aircraft. The system detects the acoustic emissions of a weapon being fired, and accurately determines the location of the shooter. The system includes an array of microphones that are placed within a housing, which is then positioned on the outer surface of the vehicle. A lower surface of the vehicle is a preferred attachment location. The microphones preferably are positioned in a circular array.
The inventive system further comprises electronics to process the information detected by the microphones. Such equipment may include filters to block or remove background noise and other unwanted data. Such equipment may also include processors to match the detected acoustic data to known or expected acoustic profiles. Such equipment may also include processors to perform calculations to determine the angle of arrival (“AOA”) and time of arrival (“TOA”) of the ordnance. Such equipment may also include signaling electronics to deliver the detected and calculated data to the vehicle operator and/or other personnel. The system may make use of alarming equipment already on board the vehicle, such as that associated with the CMWS system. The electronic equipment may also be positioned within the annular housing. Thus, the entire inventive system is small and light, weighing only a few pounds, minimizing installation and operational burden to the vehicle.
In the above equations, c is the speed of sound. Thus, by measuring both the optical and acoustic measurements of the ordnance, not only the direction to the shooter but also the distance to the shooter are determined. These equations were described by R. C. Maher in “Modeling and Signal Processing of Acoustic Gunshot Recordings,” Proc. IEEE Signal Processing Society 12th DSP Workshop, pp. 257-261, September 2006, Jackson Lake, Wyo.
While the above discussion refers to muzzle blast, the second signal may be detected via electro-optic infrared detection. This information will be used in conjunction with the acoustic detection of the shot as described above to determine the location of the shooter.
After the data is measured, it is processed or filtered to remove background noise. The processed signal is shown in the second chart of
The processed signal is then correlated or convoluted. This step is also known as match filtering. This step compares the processed signal to known or expected acoustic profiles for ordnance to further remove noise such as statistical scatter from the data. The result of this convolution process is a substantially clear acoustic signal of the ballistic shock wave from which calculations can be made. The third chart in the sequence of
The difference in timing among the microphones within the array indicates from which direction the projectile came. Thus, the direction to the weapon and shooter is determined. This angular calculation is illustrated in the fourth chart in the sequence of
In another preferred embodiment, the acoustic sensor system of the present invention is used without the input of any other detection system. With this design, multiple arrays are used to provide multiple signals that are triangulated to yield the location of the weapon and the inbound ordnance.
The use of the terms “a” and “an” and “the” and similar references in the context of describing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
While the preferred embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. For example, while the invention has been described herein as being used with an aircraft it may also be used on other platforms, such as a ground vehicle. Thus the present invention should not be limited by the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Furthermore, while certain advantages of the invention have been described herein, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Additional information regarding the invention is attached hereto as Exhibit A.
This application claims rights under 35 USC §119(e) from U.S. Provisional Application No. 61/193,544, filed Dec. 5, 2008, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61193544 | Dec 2008 | US |