Referring now to
It will be seen that planes defined by the attachment edge 14 and the flat web 20 are displaced from, and generally parallel to each other by inclined panels 24, 26. Further, the attachment edge 14 is preferably provided with at least one mounting point 28 which is preferably a predrilled hole dimensioned for receiving a fastener 30. It will be appreciated that depending on the type of fastener 30, the mounting point 28 may be determined by the installer where the fastener is self tapping.
In the preferred embodiment, the fastener 30 is a threaded screw, and it will be understood that other types of screws or other fasteners are applicable here depending on the structure of a support frame member 32. In this application, “frame member” refers to a floor joist of wood or metal, a concrete beam or slab or the like, as well as a vertical stud made of wood or metal, or other frame members to which wallboard panels are typically attached as well known in the construction art. The resilient channel 12 partially acoustically isolates the wallboard panel 22 from the frame member 32 by providing an interim, cantilevered connection point which disrupts sound transmissions between the frame member and the wallboard panel.
Referring now to
It is preferred that the first and second portions 34, 36 are identical, and as such only one will be described in detail. Each portion 34, 36 is generally ring-shaped and includes a first annular formation 44 disposed on an exterior surface 46 of the bracket 42, and a second annular formation 48 disposed on an interior surface 50 of the bracket. It is also preferred that the first annular formation 44 has a diameter distinct from, and preferably smaller than a diameter of the second annular formation 48. The portions 34, 36 are preferably integrally formed, as by molding or similar technology; however fabrication is also contemplated. A variety of rubber like materials are considered suitable for the portions 34, 36, including, materials which provide resiliency, and acoustic dampening and/or isolation. A typically preferred material is styrene butadiene having a Shore A Durometer value of 50.
At least one fastener opening 52 passes axially through both formations 44, 48 and accommodates the fastener 30. The fastener openings 52 of each of the formations 44, 48 are in registry with each other and with a corresponding aperture 56 in each leg 58 of the bracket 42. It is preferred that the aperture 56 is larger than the fastener openings 52 to avoid contact between the bracket and the fastener 30. Further, to facilitate assembly of the clip 10, it is also preferred that the aperture 56 be open near ends 60 of the legs 58, forming a slot.
Similarly, the portions 34, 36 each have an integrally formed groove or track 62 (shown hidden) dividing the first and second formations and defining a path for slidable engagement of the portions upon the corresponding bracket leg 58. The track 62 preferably extends around the periphery of the portion; however segmented tracks are also considered suitable. It is also contemplated that the apertures 56 could be closed, and in that case the portions 34, 36 would be axially inserted into the apertures of corresponding legs 58.
Referring now to
Thus, installation of the present clip 10 is relatively simple compared to conventional clip systems such as the RSIC-clips. The installer merely places the clip 10 over the attachment edge 14 in registry with the mounting point 28. Next, the fastener 30 is inserted through the fastener openings and driven into the frame member 32.
Once the clip 10 is in place, the wallboard panel 22 is installed upon the flat web 20 of the channel 12 by at least one wallboard fastener 66. As is known in the art, the wallboard panel 22 is preferably gypsum wallboard; however other construction panels are contemplated, including but not limited to wood panels and mixtures of gypsum, fibers, rock wool, fiberglass and other construction grade panel materials known in the art.
Another feature of the present clip 10 is that the portions 34, 36 are of sufficient height or thickness measured along the axis of the fastener openings 52, that an end of most conventional fasteners used in wallboard installation such as the fastener 66 will not contact the frame member 32. Such contact is undesirable due to the acoustical “short circuiting” of the acoustical isolation system, in that sound waves could be transmitted to the wallboard panel directly through the fastener 66. Maintaining a separation of the fastener 66 from the frame member 32 avoids such contact and preserves the desired acoustical isolation.
Acoustical isolation is enhanced because the wallboard panel 22 is acoustically decoupled from the frame member 32. Also, the inherent resiliency of the channel 12 assists in dampening sound transmission between the frame member 32 and the wallboard panel 22. It has been found that use of the present clip 10 in flooring tests has resulted in an improvement of approximately 3 IIC points. Further, the improvement has been most noticeable at frequencies of approximately 1,000 Hz or higher, which is the range of human speech.
As indicated above, fire performance of such systems is a design consideration. In the present case, it is believed that in the event of a fire, the portions 34, 36 would melt away, but the physical connection between the fastener 30, the channel and the frame member 32 would remain, maintaining the structural integrity of the system.
While a particular embodiment of the present acoustic isolator clip for isolating wallboard support channels from a frame member has been shown and described, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.