The present invention relates to the modulation of light traveling along a waveguide, in particular to the acoustic modulation of the light.
It is known to acoustically modulate light travelling along a waveguide. Systems for this purpose are however not well suited to situations where a modulator needs to be temporarily coupled to a fibre.
According to the present invention, there is provide a modulator arrangement for acoustically modulating optical radiation, the modulator arrangement comprising: a waveguide portion; a vibrator element for generating acoustic vibrations; and, a coupling arrangement for releasably coupling the vibrating element to the waveguide portion, the coupling arrangement including a first coupling member secured to the waveguide portion, and a second coupling member secured to the vibrator element, the second coupling member being removable from the first coupling member, the waveguide portion being secured to the first coupling member such that the waveguide portion remains secured to the first coupling member when the second coupling member is removed from the first coupling member.
Because the waveguide portion remains secured to the first coupling member when the second coupling member is removed from the first coupling member, the waveguide is less likely to be damaged when the vibrator element is decoupled from the waveguide. In addition, because the second coupling member is removable, the second coupling member may be released or otherwise detached from the first coupling member and coupled to the waveguide at a different location.
Normally, the waveguide portion will be flexible, in which case the first coupling member will preferably have a substantially rigid portion for retaining the shape of the waveguide when the first and coupling members are removed from one another.
Preferably the first and second coupling members will have respective first and second cooperating surfaces which oppose one another when the coupling means is in the coupled state. The area of the cooperating surface of at least the first coupling member can then be made larger than the area that the waveguide alone would present for coupling, thereby improving the coupling efficiency over that which would be expected from coupling to an optical waveguide, in particular if the optical waveguide is an optical fibre with a small cross section
The first coupling member will preferably be secured to the waveguide portion in a permanent manner, such that the waveguide remains secured to the first coupling member when the second coupling member is repeatedly removed from the first coupling member.
A bore will preferably be provided in the first coupling member though which the optical waveguide portion extends, thereby securing the fibre to the first coupling member, at least in respect of movement in a radial direction. Preferably, the bore will be formed form a substantially rigid material to protect the waveguide. The fibre may be introduced into an existing bore. Otherwise, the bore may be formed around the fibre. In one embodiment, the first coupling member includes a first component and a second component, each component having a respective arcuate receiving surface, such that when the first and second component are brought together, the receiving surfaces form a bore. Such an embodiment will be useful for retro fitting the first coupling member around a fibre following an existing path, since the first and second components can be brought together around the fibre.
Preferably, at least the first coupling member will be arranged to provide, in the coupled state, a coupling medium for carrying acoustic vibrations to the waveguide. In such a situation, the waveguide will be coupled to the second coupling member through the first coupling member. Likewise, the second coupling member will also be configured to carry acoustic vibrations, such that acoustic vibrations can travel from the vibration element and through the first and second coupling members before reaching the waveguide.
A plurality of first coupling members may be provided at intervals along a waveguide path. If the waveguide is an optical fibre, the fibre will preferably retain its coating between the regions where it is coupled to first coupling members. The or each first coupling member may be fixedly secured to a structural element such as a wall or other immovable object, so that a fixed point of connection is provided: that is, the waveguide is not loose at the point where the modulator is to be coupled to the waveguide. This will make it easier to quickly couple the second coupling member to the waveguide. Each first coupling member will preferably be provided at an attachment point where the fibre is accessible (through the first coupling member) for modulation. Between attachment points, the waveguide may be inaccessible, for example because it is located behind or within a wall.
A monitoring station will preferably be provided for monitoring the modulation applied, by the modulator arrangement, to sensing signals travelling along the waveguide. The sensing signals will preferably be formed by pairs of signal copies, the signal copies preferably being transmitted along the waveguide with a time delay relative to one another. A disturbance is likely to affect each signal copy of a pair in a different manner, with a result that the combination of the re-aligned signal copies can be used to retrieve information modulated onto the signals
The signal copies of a pair may be transmitted on a common waveguide, and will then preferably be returned on the common waveguide. However, signal copies of a pair may travel on different waveguides, cables or fibres, which may follow the same or diverse paths.
Preferably, the monitoring station will be configured to, transmit the sensing signals along an optical waveguide, the sensing signals being returned to the monitoring station from a point along the waveguide that is beyond the region where a modulation is being applied. The signals may be reflected by a reflector, for example a mirrored surface at an end of the waveguide or fibre. Alternatively or in addition, the signals may be returned by a process of distributed backscattering along the waveguide, preferably Rayleigh backscattering. For Rayleigh backscattering to return the signals sufficiently strongly, preferably 1 km of excess waveguide will be provided beyond the furthest point where a disturbance is to be detected. The amount of excess waveguide required will depend on the wavelength of the light (shorter wavelengths requiring shorter lengths of fibre), on the output power of the optical source for the sensing signals, and the sensitivity of a detector for detecting the returned sensing signals. Preferably, the wavelength will be between 1 and 2 microns, for example in the silica transmission windows at 1550 mm, 1480 nm or 1310 nm.
Information may be received from the modulation point by performing the following steps: receiving from a remote region returned signal copies previously transmitted to the remote region, the remote region residing beyond the location at which a modulation is applied; and, combining one signal copy of a pair with the other signal copy of that pair, such that the combination signal is representative of the applied modulation.
The output signals from a source will preferably have an irregular component, in which case the step of copying, at least in part, the output signal from the source will preferably result in the irregular component being common to each of the signal copies of a pair. Other characteristics of the signal need not be the same in each signal copy: for example, the signal copies may have different amplitudes. The irregular component will preferably be random, or pseudo random (by pseudo random, it is meant that although in theory a component is possible to predict, the time or processing power required to do this will make it in practice impossible to predict). Since the output signal has a waveform, the irregular component may be provided by the phase of the waveform, for example if the waveform has randomly occurring phase variations.
The waveform may conveniently be provided by an optical source having a short coherence time, preferably less than 10 pico seconds or even less than 1 pico second, the waveform being composed of a succession of wavetrains, each having a respective coherence length. Generally, the waveform will be much longer than individual wavetrains. The signals will in this situation normally be formed from successive portions of the waveform, without well defined boundaries being needed between successive signals or signal copies.
In a preferred embodiment, the output from the optical source is fed to an interferometer stage, such as an un-balanced Mach Zehnder interferometer, where the signal is copied, one copy being channeled to one path of the interferometer, whilst the other copy is channeled to another path of the interferometer, the transit time associated with each path being different, such that a relative or differential delay results between the time at which the signal copies are transmitted from the interferometer stage. The same interferometer stage can then be employed to re-align the returned signal copies of a pair in a particularly convenient manner, since the relative delay imposed in the outbound direction will be the same as the relative delay imposed in the return direction, this being in each case determined by the difference in the transit times of the two paths. In such a situation, the combination of the re-aligned signals will result in an interference signal being output from the interferometer stage.
The differential delay will preferably be chosen in dependence on the average coherence time of the source. The differential delay will preferably be much longer than the coherence time. Preferably, the ratio of the differential delay to the coherence time will be greater or equal to 1:3, yet more preferably 1:5 or even yet more preferably 1:10.
The delay line of the interferometer may be 20 km or more, corresponding to a temporal offset of about 100 microseconds.
The signal may be output from the source as a continuous stream. However, the output from the source may also be pulsed or operate in burst mode.
Further aspects of the present invention are specified in the appended claims. The invention will now be described, by way of example only, with reference to the following drawings in which:
a shows the first and second coupling members of
b is a schematic view illustrating an optical fibre extending through the first coupling member;
a is a plan view of clasp arrangement for retaining the first and second coupling members in a coupled position;
b is a cross sectional view along the line X-X of
As is shown more clearly in
The second coupling member is generally rectangular, having (in the orientation of
A backing plate 132 is provided, on which the first coupling member is securely mounted. The backing plate has upstanding wall portions 136a, 136b arranged such than when the first coupling member is received in the second coupling member, the wall portions 136a, 136b overlie the respective upper and lower surfaces 128, 129 of the first coupling member.
In order to releasably secure the first coupling member to the second coupling member, a clasp arrangement 140 is provided in which resilient tongues 142a, 142b are securely affixed to respective upper and lower surfaces of the second coupling member. The tongues are each affixed at a rear end thereof, the tongues each having a curved portion in an intermediate region such that the forward region of each tongue is displaced from the respective surface to which it is attached. Towards the forward end of each tongue, there is provided an upstanding portion 146. When the second coupling member is moved in the forward direction (indicated by the arrow of
In the example of
The first coupling member 116 has a bore 150 through which the fibre 16 extends. As the width of the bore will be slightly larger than that of the fibre 16, a filler such as potting putty or gel may be used to fill the annulus region between the fibre and the inner wall of the bore. The portion of fibre within the bore may retain its protective coating. Otherwise, in order to improve the acoustic coupling the coating may be striped such that the glass material formed by the core and cladding of the fibre is exposed to the filler. As a further alternative, in order to embed the (possibly bared) fibre portion in the coupling material, the first coupling member may be formed around the fibre. This may be achieved by allowing the coupling material of the first coupling member to set or solidify around the fibre. The first coupling member with the fibre portion will in this situation be manufactured as a single unit.
The optical fibre 16 will extend at least a short distance beyond the bore, so that the fibre can be connected or spliced to a further fibre of an optical network or connected to a monitoring station.
In another embodiment shown in
The first and second coupling material will preferably be substantially rigid and will have the same acoustic impedance to facilitate the transfer of acoustic waves between the first and second coupling members. Likewise, the filler will be chosen to match the acoustic impedance of the first coupling member, as well as that of the optical fibre. In the embodiment of
In another embodiment, the transducer element 118 is mounted on the rear surface of the second coupling member, as shown in
Since the fibre is flexible, in the absence of the first coupling member, a person may move the loose fibre when attempting to couple or decouple a piezoelectric element directly to the fibre, which movement may disturb communication already travelling along the fibre and/or damage the fibre. However, since the first coupling member is formed from a substantially rigid material, the first coupling member will protect the fibre 16 when the second coupling element is moved in and out of the coupling position.
Also, the first coupling member will to some extent guide the second coupling member into position, making it easier to couple the two members quickly. Furthermore, the first coupling member may be mounted on a wall surface 133 as shown in
Furthermore, the first coupling member will provide an enlarged coupling area (per unit length of fibre) for receiving acoustic vibrations as compared to the fibre or fibre cable alone, since a fibre or cable will normally have a small cross section. In contrast, the facets of the wedge portion of the first coupling member provided a large coupling area, the cross section of the first coupling member being larger than that of the fibre. Typically, the first coupling member will be 1 or 2 cm in length in the axial direction, the tip of the wedge extending 1 or 2 cm from the base plate, whilst the angle between the facets will be between 10 and 20 degrees.
In more detail, the monitoring station 12 includes an optical source 18 with a short coherence time (random phase changes in the output providing an irregular component to the signal). Sensing signals (waveform portions) from the optical source 18 are fed to an interferometer stage 20, here a Mach Zehnder interferometer having a first path 24 and a second path 26. The interferometer 20 includes a first coupling stage 28 for coupling optical radiation between the optical source 18, the first and second paths 24, 26, and a signal processing system 29. For light travelling in a forward direction, that is, away from the source, the first coupling stage 28 acts as a directional power (intensity) splitter, channeling light from the optical source 18 to each of the paths 24, 26, the power to each path being shared in a predetermined manner, here in a 50:50 ratio.
For each signal provided by the optical source 18 in a given time interval, that signal is copied such that there is a first copy and a second copy, the first and second copies being duplicates of one another. One copy travels along the first path 24 whilst the other copy travels along the second path 26. A second coupling stage 130 is provided for coupling light between the first and second paths 24, 26 and an output 135 of the interferometer, which output is connected to the optical link 16. For light travelling in the forward direction, the coupling stage 130 acts as a combiner, combining the light from the first and second paths and channeling this combined light to the interferometer output 135. The first path of the interferometer has a delay stage 134 for increasing the transit time of light travelling therealong between the first and second coupling stages 28, 130, such that the transit time for light travelling between the coupling stages 28, 130 is longer along the first path 24 than it is along the second path 26. For each signal produced by the optical source, the interferometer 20 serves to delay one of the signal copies relative to the other signal copy, the signal copies being transmitted onto the link 16 at different times to one another.
The additional (differential) delay imposed by the delay stage 134 is much greater than the coherence time of the optical source 18. Thus, when light travelling along the first and second paths is recombined by the second coupling stage 130, the interference between light travelling along the two paths averages out, such that on average (over a timescale much greater than the coherence time) the amplitude of light upon recombination at the second coupling stage 130 is of constant amplitude 18.
An outstation 14 is provided at a far end of the fibre. Reflector means, such as a reflecting surface 132 are provided at the outstation 14 for returning signals to the base station 12. For signals travelling in the return direction, that is, for return signals arriving at the interferometer 20 from the outstation 14, the second coupling stage 130 acts as a power splitter, in a similar fashion to the action of the first coupling stage 28 on light in the forward direction from the optical source 18. In this way, return signals are copied at the second coupling stage 130, one copy being channelled along the first path 24, whilst the other copy is channelled along the second path 26. The first coupling stage 28 then serves to combine light from the first and second paths in the return direction, channeling the interference signal (resulting from the combined light) to a signal processing system 29.
For each signal generated by the source 18, there are thus four duplicates of this signal: a non-retarded signal S0 which has traveled along the second path 26 of the interferometer 20 in both the forward and reverse directions; a first retarded signal S1 delayed by a delay D in the forward direction (but not the reverse direction); a second retarded signal S2 retarded by the delay D in the reverse direction (but not the forward direction); and, a twice-retarded signal S3 retarded by a delay 2D, signal S3 being retarded in each of the forward and reverse directions.
The first and second retarded signals S1, S2 which are retarded in one direction only will return to the first coupler stage 28 at the same time. In the absence of any disturbance in the fibre 16, these signals are copies of one another and the signals will interfere or otherwise combine constructively at the first coupler stage 28. However, if one of the pair of signals S1, S2 is modulated or otherwise modified by a disturbance along the fibre, the interference between the two signals will result in an interference signal having different spectral characteristics to the interference signal which would otherwise be produced in the absence of any disturbance to the fibre 16.
In the embodiments shown above, the transducer of the modulator arrangement generates a wave-like disturbance, which is coupled to an optical fibre. The result of this is that an elastic wave (preferably a bulk elastic wave) is launched into the transmission medium of the fibre. The elastic waves cause a local distortion of the glass structure, which changes the refractive index experienced by light travelling along the fibre. This change in refractive index caused a phase modulation in one or both of the (carrier) signals of a pair travelling along the link. However, the interference signal will be the result of interference between, on the one hand, a signal having been modulated by the disturbance at one time, and on the other hand, a signal modulated by the disturbance at another time, the two times being separated by the differential delay D. Thus, when an acoustic disturbance is applied to the optical link 16, the interference signal from the first coupling stage 28 will be a signal at the frequency of the applied acoustic disturbance. Likewise, any amplitude modulated applied to the acoustic signal will result in an interference signal with a corresponding amplitude modulation.
The frequency of the elastic wave may be a few kHz, but higher frequencies of a few MHz or more would allow for higher data rates.
The signal processing system includes: a photo-receiver 51 coupled to the first coupling stage 28 for converting optical signals into electrical signals; a filter 52 for receiving electrical signals from the photo-receiver 51 and filtering the electrical signals; and, a signal processing unit 54. If the information signal introduced by the modulator is an analogue signal, the processing unit 54 may simply be an amplifier, since the amplitude of the interference signal will vary in accordance with the amplitude of the applied acoustic signal. However, if the acoustic signal is amplitude modulated in a digital manner, the processing unit will be a digital system.
The light source may be a Light Emitting Diode, a Fabry-Perot Laser Diode, or a source of amplified spontaneous emission such as an Erbium-Doped Fibre Amplifier or a Semiconductor Optical Amplifier, but preferably the light source will be a Super Luminescent Diode, since this has a broad and smooth power spectrum, and a short coherence time of about 0.5 pico seconds. The radiation produced by the optical source will preferably be unpolarised, or alternatively a de-polarising unit 43 may be provided between the light source and the interferometer, for depolarising the light before the light is injected into the interferometer (the de-polarising unit may be for example, a Fibre Lyot de-polariser). A depolariser 49 will preferably be provided in one of the paths of the interferometer, here, the first path, so that the polarisation of light from the first path combining in the return direction at the first coupler 28 is at least partially aligned with that of the light from the other path. Typically, the source will operate at a wavelength of between 1 micron and 2 microns, preferably around 1.31, 1.48 or 1.55 microns, in order to efficiently make use of standard telecommunications optical fibre, such fibre being configured to support single mode transmission at this wavelength. Typically, the fibre will have a single core of a diameter which is around 9 or 10 microns.
The first coupling stage 28, at the source side of the interferometer, will preferably be a 3×3 coupler (with some ports terminated), whereas the second coupling stage 130, at the transmission side, will preferably be a 2×2 coupler, with one port terminated. The 3×3 coupler is used in order to create a relative phase bias of φb=120° between the optical fields on its output ports. This can be used to improve the sensitivity of the interferometer. (We denote the phase modulation due to a disturbance as φd(t).). It can be shown that the receiver ac output signal is proportional to: rac(t)=k·Cos {φb+φd(t)+φm(t)} where, k is a constant of proportionality and φm(t) is the data phase modulation signal. The equation shows how the phase bias can be used to select a higher slope region of the Cosine function in order to improve the sensitivity when the magnitude of the disturbance is small.
Further details and further examples of embodiments are provided below, where the coupling arrangement is referred to as an “clip-on”.
Coupling to a fibre (or a cable): this approach lends itself particularly well to indoor applications where there is a long term need for a convenient ‘access point’ to a fibre via a clip-on.
For the wall-mounted receiver side of the clip-on a short length of primary coated fibre, typically 3 cm, is embedded in a wedge comprising a suitable rigid material capable of efficiently coupling vibrations to the fibre. In practice fibre tails would emerge from each side of this wedge so that the unit can be readily spliced into the associated fibre cable during installation. For the transmitter side of the clip-on a vibrating transducer is embedded in a suitable rigid material chosen again for its coupling efficiency. The transducer is electrically terminated so that, upon application of a data signal, a property of the device can be modulated. This modulation can take many forms, for example, the transducer with no data could be resonating at a constant frequency (equivalent a carrier signal in radio systems) and applying the data could modulate the intensity, frequency or phase of that carrier. Alternatively a shift-keying methodology could be used where the transducer only resonates during the ‘1’s in the data stream, with no resonance during the ‘0’s, or the reverse. The optimum choice of modulation methodology is ultimately the one that most efficiently couples data to the fibre.
For the design of the transducer guidance can be taken from, for example, ultrasonic scanners of the kind used widely in medicine. They employ a transducer capable of resonating at typically 10 MHz and can support modulation sidebands approaching 6 MHz. Specialist researchers in that field might be valuable partners in developing a transducer for the clip-on.
Example applications of the invention: the clip-on can be used in situations where the fibre is already in place or where a new installation is required. In either case the clip-on greatly increases the uses to which the fibre can be put to, and caters for many practical circumstances. The following examples are not exhaustive but serve to highlight how the clip-on can enable new capabilities which can be exploited commercially across many business sectors.
Infrastructure for hospital ward communications and sensors: in hospitals, labour intensive paper based means are used at the bedside, then entered on to the electronic system at a separate location. This is inefficient and open to errors. Deploying a single continuous fibre and a suite of clip-ons in each ward affords solutions to these issues and delivers an infrastructure which can be put to wider use. This is illustrated in
Weaving a length of fibre into a sheet placed between the patient and the bed creates a pressure sensor for that particular bed. Occupancy of the bed can then be detected by the central sensor controller. By exploiting the locating capability of the sensor system the occupancy of multiple beds within the ward can be monitored (scalable to the whole hospital). The spatial resolution of this can be enhanced by fibre coils in the vicinity of each bed which artificially increase the distance between the beds. These coils intrinsically behave as acoustic pickups and so could be used by people at the bedside to alert the ward staff of an emergency at a particular bed, by speaking the necessary commands and details from the bedside (i.e., a voice activated emergency alert). Clearly ethical and privacy issues may arise from a microphonic capability at each bed, but a potential opportunity nevertheless exists to improve patient care.
A clip-on can be located by each bed, as is currently done for mains power, reading light, radio headphones, etc. Any electronic patient information device being used at the bedside can then upload data directly to the central hospital system. This can be done by physically connecting to a wall mounted clip-on (ref
All of these capabilities and more not covered here can be delivered by one fibre, which of course can also be used to deliver conventional high speed data communication to the ward.
In practice there would need to be some means of disconnecting the bed from the fibre in
Traffic monitoring and road side communication: there is a growing need to continuously monitor traffic on main routes to prevent/manage congestion, police the speed limits, assist the emergency services, and so on. Coupled with that are emerging business opportunities for vehicles to upload data on engine performance, location etc to centralised service providers. This and similar opportunities can be addressed by deploying a fibre and suite of clip-ons along the roadside, as shown in
The fibre functions is a vibration sensor which can be used to detect the passing of individual vehicles or groups. Placing the fibre under the road surface as shown increases its sensitivity, and repeating that at a known distance along the road gives the system a means of computing average speed.
Wireless access points and emergency communication points can be deployed along the fibre and connected via clip-ons attached to the outer sheath of the cable (ref
Train tracker: for train operators to operate their rolling stock efficiently and safely it is vital that they know the location of all their trains. The current methodology for determining train location uses sensors embedded in the track at the required intervals. These are actuated when the bogies under the rolling stock momentarily short circuit the parallel rails as they pass over. This methodology has several practical limitations, the most critical being the high latency and the sensitivity to leaves on the line, which can disable the sensor. Maintaining these sensors and installing additional ones at new sites is costly and requires a fairly significant infrastructure along the trackside.
Clip-ons combined with wireless access points along the trackside can also be used by the travelling passengers to upload data to service providers, along the lines illustrated in
Underground tunnel or train system: as with surface train systems, there is also a critical requirement in underground train systems to know the location of trains, and the solution illustrated in
Much of the infrastructure is similar to that shown earlier in
Remote environmental monitoring along a cable route: in remote monitoring methodologies for networks, the onset of possible failures can be detected early at a central location and remedial action taken before service outage occurs. Whereas this is relatively straight forward within buildings such as telephone exchanges and switching centres and the like, things become far less straight forward in the field, yet that is where the greatest vulnerability lies. Historically remote monitoring systems in the field on key trunk routes, monitor for example the air pressure in cable joints along the route, or water level in deep man holes, with the data being sent to the local exchange. Because of the cost and complexity of the infrastructure needed for these systems they are not widespread, and consequently the bulk of the cable plant in the network is not remotely monitored on a continuous or even periodic basis. This could be remedied by deploying sensors and clip-ons throughout the network, as shown in
Clip-ons could be deployed at relevant locations along the route of the fibre cable, principally at man holes, surface access points, distribution cabinets and the like. A suite of sensors at each location deliver their data (continuously or periodically as required) to the clip-on which couples to the fibre (possibly via the sheath of the cable). The particular mix of sensors will be chosen in relation to the local circumstances, for example, perhaps full environmental monitoring in main man holes that house many primary routes, but a limited suite elsewhere. Where considered appropriate a wireless access point could also be connected to the clip-on, allowing the maintenance crew to upload data directly to the local exchange.
In one of the embodiments represented in
To deploy such an arrangement in practice, for example throughout a hospital ward, it will be necessary to limit the length of the fibre on either side of the wedge to short tails, say 2 m long. These tails would then be spliced to the fibre cable that is laid around the ward or whatever the locality is, see
Although this approach is straight forward, the need to double-splice every wedge connector into the fibre infrastructure is time consuming and arguably the risk element in the installation process. A more efficient and robust approach would be to deploy a continuous fibre cable around the locality, then attach wedge connectors to the cable where required. This could be achieved by adopting a split-wedge concept.
Split wedge concept: by the designing the wedge as two passive elements which clamp together around the fibre cable (
Number | Date | Country | Kind |
---|---|---|---|
05251319 | Mar 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2006/000750 | 3/2/2006 | WO | 00 | 8/29/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/092606 | 9/8/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4297887 | Bucaro | Nov 1981 | A |
4397551 | Bage et al. | Aug 1983 | A |
4443700 | Macedo et al. | Apr 1984 | A |
4463451 | Warmack et al. | Jul 1984 | A |
4538103 | Cappon | Aug 1985 | A |
4572949 | Bowers et al. | Feb 1986 | A |
4593385 | Chamuel | Jun 1986 | A |
4649529 | Avicola | Mar 1987 | A |
4654520 | Griffiths | Mar 1987 | A |
4668191 | Plischka | May 1987 | A |
4688200 | Poorman et al. | Aug 1987 | A |
4697926 | Youngquist et al. | Oct 1987 | A |
4708471 | Beckmann et al. | Nov 1987 | A |
4708480 | Sasayama et al. | Nov 1987 | A |
4770535 | Kim et al. | Sep 1988 | A |
4781056 | Noel et al. | Nov 1988 | A |
4805160 | Ishii et al. | Feb 1989 | A |
4847596 | Jacobson et al. | Jul 1989 | A |
4907856 | Hickernell | Mar 1990 | A |
4976507 | Udd | Dec 1990 | A |
4991923 | Kino et al. | Feb 1991 | A |
4994668 | Lagakos et al. | Feb 1991 | A |
4994886 | Nadd | Feb 1991 | A |
5004912 | Martens et al. | Apr 1991 | A |
5015842 | Fradenburgh et al. | May 1991 | A |
5046848 | Udd | Sep 1991 | A |
5051965 | Poorman | Sep 1991 | A |
5093568 | Maycock | Mar 1992 | A |
5104391 | Ingle et al. | Apr 1992 | A |
5140559 | Fisher | Aug 1992 | A |
5173743 | Kim | Dec 1992 | A |
5187362 | Keeble | Feb 1993 | A |
5191614 | LeCong | Mar 1993 | A |
5194847 | Taylor et al. | Mar 1993 | A |
5206924 | Kersey | Apr 1993 | A |
5223967 | Udd | Jun 1993 | A |
5311592 | Udd | May 1994 | A |
5313266 | Keolian et al. | May 1994 | A |
5319609 | Regnault | Jun 1994 | A |
5351318 | Howell et al. | Sep 1994 | A |
5355208 | Crawford et al. | Oct 1994 | A |
5361130 | Kersey et al. | Nov 1994 | A |
5363463 | Kleinerman | Nov 1994 | A |
5373487 | Crawford et al. | Dec 1994 | A |
5379357 | Sentsui et al. | Jan 1995 | A |
5412464 | Thomas et al. | May 1995 | A |
5457998 | Fujisaki et al. | Oct 1995 | A |
5473459 | Davis | Dec 1995 | A |
5491573 | Shipley | Feb 1996 | A |
5497233 | Meyer | Mar 1996 | A |
5500733 | Boisrobert et al. | Mar 1996 | A |
5502782 | Smith | Mar 1996 | A |
5604318 | Fasshauer | Feb 1997 | A |
5636021 | Udd | Jun 1997 | A |
5637865 | Bullat et al. | Jun 1997 | A |
5663927 | Olson et al. | Sep 1997 | A |
5691957 | Spiesberger | Nov 1997 | A |
5694114 | Udd | Dec 1997 | A |
5754293 | Farhadiroushan | May 1998 | A |
5767950 | Hawver et al. | Jun 1998 | A |
5778114 | Eslambolchi et al. | Jul 1998 | A |
5936719 | Johnson | Aug 1999 | A |
5975697 | Podoleanu | Nov 1999 | A |
5991479 | Kleinerman | Nov 1999 | A |
6072921 | Frederick et al. | Jun 2000 | A |
6075628 | Fisher et al. | Jun 2000 | A |
6115520 | Laskowski et al. | Sep 2000 | A |
6194706 | Ressl | Feb 2001 | B1 |
6195162 | Varnham et al. | Feb 2001 | B1 |
6269198 | Hodgson et al. | Jul 2001 | B1 |
6269204 | Ishikawa | Jul 2001 | B1 |
6285806 | Kersey et al. | Sep 2001 | B1 |
6315463 | Kropp | Nov 2001 | B1 |
6459486 | Udd et al. | Oct 2002 | B1 |
6594055 | Snawerdt | Jul 2003 | B2 |
6625083 | Vandenbroucke | Sep 2003 | B2 |
6628570 | Ruffa | Sep 2003 | B2 |
6788417 | Zumberge et al. | Sep 2004 | B1 |
6859419 | Blackmon et al. | Feb 2005 | B1 |
20010028766 | Hatami-Hanza | Oct 2001 | A1 |
20020196447 | Nakamura et al. | Dec 2002 | A1 |
20030103211 | Lange et al. | Jun 2003 | A1 |
20030117893 | Bary | Jun 2003 | A1 |
20030174924 | Tennyson | Sep 2003 | A1 |
20040027560 | Fredin et al. | Feb 2004 | A1 |
20040113056 | Everall et al. | Jun 2004 | A1 |
20040201476 | Howard | Oct 2004 | A1 |
20060256344 | Sikora | Nov 2006 | A1 |
20070009600 | Edgren et al. | Jan 2007 | A1 |
20070065150 | Sikora et al. | Mar 2007 | A1 |
20070264012 | Healey et al. | Nov 2007 | A1 |
20080013161 | Tokura et al. | Jan 2008 | A1 |
20080018908 | Healey et al. | Jan 2008 | A1 |
20080123085 | Sikora et al. | May 2008 | A1 |
20080219093 | Heatley et al. | Sep 2008 | A1 |
20080219660 | Healey et al. | Sep 2008 | A1 |
20080278711 | Sikora et al. | Nov 2008 | A1 |
20090014634 | Sikora et al. | Jan 2009 | A1 |
20090097844 | Healey | Apr 2009 | A1 |
20090103928 | Healey et al. | Apr 2009 | A1 |
20090135428 | Healey | May 2009 | A1 |
Number | Date | Country |
---|---|---|
0 251 632 | Jan 1988 | EP |
0 360 449 | Mar 1990 | EP |
0364093 | Apr 1990 | EP |
0 376 449 | Jul 1990 | EP |
0 377 549 | Jul 1990 | EP |
0513381 | Nov 1992 | EP |
0 592 690 | Apr 1994 | EP |
0 794 414 | Sep 1997 | EP |
0 821 224 | Jan 1998 | EP |
0 953 830 | Nov 1999 | EP |
1 037 410 | Sep 2000 | EP |
1 096 273 | May 2001 | EP |
1236985 | Sep 2002 | EP |
1 385 022 | Jan 2004 | EP |
1 496 723 | Jan 2005 | EP |
2 751 746 | Jan 1998 | FR |
2 015 844 | Sep 1979 | GB |
2 019 561 | Oct 1979 | GB |
2 113 417 | Aug 1983 | GB |
2 126 820 | Mar 1984 | GB |
2 205 174 | Nov 1988 | GB |
2 219 166 | Nov 1989 | GB |
2 262 803 | Jun 1993 | GB |
2 264 018 | Aug 1993 | GB |
2 401 738 | Nov 2004 | GB |
2001-194109 | Jul 2001 | JP |
WO 9325866 | Dec 1993 | WO |
WO 9705713 | Feb 1997 | WO |
WO 0167806 | Sep 2001 | WO |
WO 02065425 | Aug 2002 | WO |
WO 03014674 | Feb 2003 | WO |
WO 2005008443 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080166120 A1 | Jul 2008 | US |