This disclosure relates generally to noise attenuation and, more particularly, to an acoustic panel for attenuating noise generated by, for example, a gas turbine engine for an aircraft propulsion system.
A propulsion system for an aircraft produces varying amounts of audible noise during operation. One or more acoustic panels may be configured with the propulsion system to attenuate and reduce this noise. As a general rule with known technology, relatively thin acoustic panels are utilized to attenuate noise with relatively short wavelengths and high frequencies, whereas relatively thick acoustic panels are utilized to attenuate noise with relatively long wavelengths. However, as noise wavelengths lengthen as a byproduct of new engine designs while space allocation for sound attenuation structures decreases, traditional acoustic panel configurations may not fulfill all their requirements. There is a need in the art for an improved sound attenuation structure for an aircraft propulsion system that attenuates longer wavelength, low frequency noise without being excessively thick.
According to an aspect of the present disclosure, a panel is provided for attenuating noise. This panel includes a perforated first skin, a second skin, an array of corrugations, a first channel, a second channel, a plurality of first sidewalls and a plurality of second sidewalls. The array of corrugations includes a first corrugation and a second corrugation. Each of the corrugations includes a baffle and a septum. The first channel is formed by the baffle of the first corrugation, the septum of the first corrugation and the first skin. The second channel is formed by the baffle of the second corrugation, the septum of the first corrugation and the second skin. The first sidewalls divide the first channel into a plurality of first chambers. The second sidewalls divide the second channel into a plurality of second chambers. A first of the second chambers is fluidly coupled with a subset of the first chambers through perforations in the septum of the first corrugation.
According to another aspect of the present disclosure, another panel is provided for attenuating noise. This panel includes a perforated first skin, a second skin, an array of corrugations, a first channel, a second channel, a plurality of first sidewalls and a plurality of second sidewalls. The array of corrugations include a first corrugation and a second corrugation. Each of the corrugations includes a baffle and a septum. The first channel is formed by the baffle of the first corrugation, the septum of the first corrugation and the first skin. The second channel is formed by the baffle of the second corrugation, the septum of the first corrugation and the second skin. The first sidewalls divide the first channel into a plurality of first chambers. An adjacent pair of the first sidewalls are longitudinally separated by a first distance. The second sidewalls divide the second channel into a plurality of second chambers. An adjacent pair of the second sidewalls are longitudinally separated by a second distance that is greater than the first distance.
According to still another aspect of the present disclosure, another panel is provided for attenuating noise. This panel includes a perforated first skin, a second skin, a core, a first channel and a second channel. The core is between the first skin and the second skin. The core includes a first baffle, a second baffle, a porous first septum, a plurality of first sidewalls and a plurality of second sidewalls. The first channel is formed by the first baffle, the first septum and the first skin. The second channel is formed by the second baffle, the first septum and the second skin. The first sidewalls divides the first channel into a plurality of first chambers. The second sidewalls divides the second channel into a plurality of second chambers. A first of the second chambers is fluidly coupled with a subset of the first chambers through the first septum.
An adjacent pair of the first sidewalls may be longitudinally separated by a first distance. An adjacent pair of the second sidewalls may be longitudinally separated by a second distance that is greater than the first distance.
The second distance may be N times greater than the first distance, where N may be a whole number equal to or greater than two.
The first channel and the second channel may extend longitudinally along the first corrugation. A first of the second sidewalls may be longitudinally aligned with a respective one of the first sidewalls.
The first channel and the second channel may extend longitudinally along the first corrugation. A first of the second sidewalls may be longitudinally offset from each of the first sidewalls.
A first end of the baffle of the first corrugation may be connected to the second skin. A second end of the baffle of the first corrugation may be connected to the first skin and a first end of the septum of the first corrugation. A second end of the septum of the first corrugation may be connected to the second skin.
The baffle of the first corrugation and the septum of the first corrugation may each extend between the first skin and the second skin. The baffle of the first corrugation may be angularly offset from each of the first skin and the second skin by an acute angle. The septum the first corrugation may be angularly offset from each of the first skin and the second skin by an acute angle.
The baffle of the first corrugation and the septum of the first corrugation may each extend between the first skin and the second skin. The baffle of the first corrugation may be angularly offset from each of the first skin and the second skin by an acute angle. The septum the first corrugation may be substantially perpendicular to the first skin and the second skin.
A first of the first chambers may extend vertically from the first corrugation to the first skin, may extend laterally between the baffle of the first corrugation and the septum of the first corrugation, and may extend longitudinally between an adjacent pair of the first sidewalls.
The first of the second chambers may extend vertically from the first and the second corrugations to the second skin, may extend laterally between the baffle of the second corrugation and the septum of the first corrugation, and may extend longitudinally between an adjacent pair of the second sidewalls.
The first of the second chambers and the subset of the first chambers may each be configured as an empty space.
The panel may include a core connected between the first skin and the second skin. The core may include the array of corrugations, the first sidewalls and the second sidewalls. The core may be configured from or otherwise include fiber-reinforced composite material.
The panel may include a core connected between the first skin and the second skin. The core may include the array of corrugations, the first sidewalls and the second sidewalls. The core may be configured from or otherwise include sheet metal.
The panel may include a plurality of third sidewalls and a plurality of fourth sidewalls. The array of corrugations may include a third corrugation. A third channel may be formed by the baffle of the second corrugation, the septum of the second corrugation and the first skin. A fourth channel may be formed by the baffle of the third corrugation, the septum of the second corrugation and the second skin. The third sidewalls may divide the third channel into a plurality of third chambers. The fourth sidewalls may divide the fourth channel into a plurality of fourth chambers. A first of the third chambers may be fluidly coupled with a subset of the fourth chambers through perforations in the septum of the second corrugation.
The panel may be configured as a component of a nacelle for an aircraft propulsion system.
A first of the second chambers may be fluidly coupled with a subset of the first chambers through perforations in the septum of the first corrugation.
Each of the second chambers may only be fluidly coupled with a respective one of the first chambers.
The foregoing features and the operation of the invention will become more apparent in light of the following description and the accompanying drawings.
The acoustic panel 20 extends laterally along an x-axis. The acoustic panel 20 extends longitudinally along a y-axis. The acoustic panel 20 extends vertically along a z-axis. The term “vertical” is used herein to describe a depthwise panel direction and is not limited to a gravitational up/down direction. Furthermore, for ease of illustration, the x-y plane is shown as a generally flat plane. However, in other embodiments, the x-y plane and, thus, the acoustic panel 20 may be curved and/or follow an undulating geometry. For example, the x-y plane and, thus, the acoustic panel 20 may be arcuate, cylindrical or conical with or without radial undulations. Thus, the vertical direction may change at different locations along the x-y plane. For example, referring to
Referring again to
The first skin 22 may be configured as a relatively thin sheet or layer of material that extends laterally and longitudinally along the x-y plane. This first skin material may include, but is not limited to, a metal, a polymer, a fiber reinforced composite (e.g., fiberglass composite, carbon fiber composite, aramid fiber composite, etc.), or a combination thereof. Referring now to
The second skin 24 may be configured as a relatively thin sheet or layer of (e.g., continuous and uninterrupted/non-perforated) material that extends laterally and longitudinally along the x-y plane (see
The core 26 extends laterally and longitudinally along the x-y plane (see
Referring to
Referring now to
The top baffle end 50 is connected to or otherwise engaged with the first skin 22. The top baffle end 50 of
Each septum 48 may be configured from a relatively thin sheet or layer of porous (e.g., perforated) material. Each septum 48 extends vertically and laterally between the top septum end 54 (e.g., edge) and the opposing bottom septum end 56 (e.g., edge). Note, the terms “top” and “bottom” are used above to describe ends of the septum 48 as situated in the drawings and are not intended to limit the septum 48 or the acoustic panel 20 to such an exemplary gravitational orientation.
The top septum end 54 is connected to or otherwise engaged with the first skin 22. The bottom septum end 56 is connected to or otherwise engaged with the second skin 24. With the foregoing configuration, the septum 48 of
Referring to
Each set of the first sidewalls 42 includes a plurality of the first sidewalls 42. Each set of the first sidewalls 42 is arranged with a respective one of the corrugations 40. More particularly, the first sidewalls 42 in each set is arranged within a respective one of the first channels 62 in a longitudinally extending array. These first sidewalls 42 are configured within the respective first channel 62 to (e.g., fluidly) divide that first channel 62 into a plurality of first chambers 64. For example, each first sidewall 42 extends vertically from the first skin 22 to the baffle 46 and the septum 48 of a respective corrugation 40. Each first sidewall 42 extends laterally between the baffle 46 and the septum 48 of a respective corrugation 40. Each first sidewall 42 is also longitudinally separated from each longitudinally adjacent first sidewall 42 in the same channel 62 by a longitudinal distance 66.
With the foregoing sidewall 42 configuration, each of the first chambers 64 extends vertically from the first skin 22 to the baffle 46 and the septum 48 of a respective corrugation 40. Each first chamber 64 extends laterally between the baffle 46 and the septum 48 of a respective corrugation 40. Each first chamber 64 extends longitudinally between a longitudinally adjacent pair of the first sidewalls 42, such that each first chamber 64 has a longitudinal length that is the same as the longitudinal distance 66 between the adjacent first sidewalls 42.
Each of the first chambers 64 is fluidly coupled to the environment outside of the panel 20 and adjacent the first skin 22 through one or more of the perforations 28 in the first skin 22. Each first chamber 64 may be configured as an empty space. In other words, the acoustic panel 20 may be configured without including any other elements within each first chambers 64. Of course, the present disclosure is not limited to such an empty configuration.
Referring to
Each set of the second sidewalls 44 includes a plurality of the second sidewalls 44. Each set of the second sidewalls 44 is arranged between a respective adjacent pair of the corrugations 40. More particularly, the second sidewalls 44 in each set is arranged within a respective one of the second channels 68 in a longitudinally extending array. These second sidewalls 44 are configured within the respective second channel 68 to (e.g., fluidly) divide that second channel 68 into a plurality of second chambers 70; e.g., folding chambers. For example, each second sidewall 44 extends vertically from the second skin 24 to the baffle 46 of one of the respective corrugations 40 and the septum 48 of the other one of the respective corrugations 40. Each second sidewall 44 extends laterally between the baffle 46 of one of the respective corrugations 40 and the septum 48 of the other one of the respective corrugations 40. Each second sidewall 44 is also longitudinally separated from longitudinally adjacent second sidewalls 44 in the same channel by a longitudinal distance 72.
With the foregoing sidewall 44 configuration, each of the second chambers 70 extends vertically from the second skin 24 to the baffle 46 of one of the respective corrugations 40 and the septum 48 of the other one of the respective corrugations 40. Each second chamber 70 extends laterally between the baffle 46 of one of the respective corrugations 40 and the septum 48 of the other one of the respective corrugations 40. Each second chamber 70 extends longitudinally between a longitudinally adjacent pair of the second sidewalls 44, such that each second chamber 70 has a longitudinal length that is the same as the longitudinal distance 72 between the adjacent second sidewalls 44.
Referring to
The second chamber 70 and the first chambers 64 fluidly coupled therewith collectively form a resonance chamber system. This resonance chamber system is operable of attenuating multiple frequencies of noise; e.g., relatively high frequency noise and relatively low frequency noise. For example, each first chamber 64 may receive relatively high frequency sound waves through the perforations 28 in the first skin 22. The first chamber 64 may reverse the phase of one or more frequencies of those sound waves using known acoustic reflection principles and subsequently direct the reverse phase sound waves out of the acoustic panel 20 through the perforations 28 to destructively interfere with other incoming noise waves. By contrast, relatively low frequency sound waves may travel into the second chamber 70, and may travel longitudinally through the chamber 70. The second chamber 70 may reverse the phase of one or more frequencies of those sound waves using known acoustic reflection principles and subsequently direct the reverse phase sound waves out of the acoustic panel 20 through first chambers 64 and the perforations 28 to destructively interfere with other incoming noise waves.
It is also worth noting, the acoustic length of the resonance chamber system is longer than a vertical thickness of the core 26. This enables the acoustic panel 20 to attenuate lower frequency sound waves than would be possible with a traditional prior art double degree of freedom (DDoF) acoustic panel.
The core 26 may be constructed from any suitable material(s). The core 26, for example, may be constructed from a metal (e.g., sheet metal), a polymer, a fiber reinforced composite (e.g., fiberglass composite, carbon fiber composite, aramid fiber composite, fiber reinforced plastic (FRP), metal matrix material, using continuous fibers, chopped fiber, particulates infused (e.g., nano tubes, etc.), paper such as that in a nomex core, etc.), or a combination thereof one or more of components of the core 26 may be constructed from the same or a like material. Alternatively, one or more of the components of the core 26 may be constructed from a different material than one or more of the other components of the core 26. Furthermore, the core 26 may be constructed from the same material(s) as the first skin 22 and/or the second skin 24, or a different material or materials.
In some embodiments, as shown by
In some embodiments, referring to
While various embodiments of the present invention have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. For example, the present invention as described herein includes several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the present invention that some or all of these features may be combined with any one of the aspects and remain within the scope of the invention. Accordingly, the present invention is not to be restricted except in light of the attached claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3341395 | Weber | Sep 1967 | A |
3542152 | Oxx, Jr. | Nov 1970 | A |
3734234 | Wirt | May 1973 | A |
3848697 | Jannot | Nov 1974 | A |
3913702 | Wirt et al. | Oct 1975 | A |
4106587 | Nash et al. | Aug 1978 | A |
4122672 | Lowrie | Oct 1978 | A |
4421201 | Nelsen et al. | Dec 1983 | A |
4531362 | Barry et al. | Jul 1985 | A |
4645032 | Ross et al. | Feb 1987 | A |
5028474 | Czaplicki | Jul 1991 | A |
5057176 | Bainbridge | Oct 1991 | A |
5618363 | Mullender et al. | Apr 1997 | A |
5785919 | Wilson | Jul 1998 | A |
6122892 | Gonidec et al. | Sep 2000 | A |
7337875 | Proscia et al. | Mar 2008 | B2 |
7401682 | Proscia et al. | Jul 2008 | B2 |
7814658 | Akishev | Oct 2010 | B2 |
7857093 | Sternberger et al. | Dec 2010 | B2 |
7870929 | Farstad | Jan 2011 | B2 |
8336316 | Kirby | Dec 2012 | B2 |
8490744 | Nakamura et al. | Jul 2013 | B2 |
8567558 | Nakajima et al. | Oct 2013 | B2 |
8727707 | Schwaller | May 2014 | B2 |
8733496 | Ono et al. | May 2014 | B2 |
8833515 | Todorovic | Sep 2014 | B2 |
8931588 | Murray | Jan 2015 | B2 |
8955643 | Liu | Feb 2015 | B2 |
9097179 | Brooks et al. | Aug 2015 | B2 |
9284727 | McKnight et al. | Mar 2016 | B2 |
10125688 | Loewenstein | Nov 2018 | B2 |
20030098200 | Clark | May 2003 | A1 |
20050263346 | Nishimura | Dec 2005 | A1 |
20060169533 | Patrick | Aug 2006 | A1 |
20110100747 | Hoetzeldt | May 2011 | A1 |
20120160933 | Vauchel et al. | Jun 2012 | A1 |
20130142624 | Julliard et al. | Jun 2013 | A1 |
20140064928 | Todorovic et al. | Mar 2014 | A1 |
20140326536 | Vauchel et al. | Nov 2014 | A1 |
20150037135 | Kempton | Feb 2015 | A1 |
20150367953 | Yu et al. | Dec 2015 | A1 |
20160076453 | Richter | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
102012001571 | Aug 2013 | DE |
0888606 | Nov 2011 | EP |
1406844 | Sep 1975 | GB |
Entry |
---|
European Search Report dated Nov. 29, 2018 for EP Application No. 18178546.0. |
Number | Date | Country | |
---|---|---|---|
20180363558 A1 | Dec 2018 | US |