This Application is a Section 371 National Stage Application of International Application No. PCT/EP2014/053222 filed Feb. 19, 2014 and published as WO/2014/131669 A1 on Sep. 4, 2014, in English, which claims priority to and benefit of GB Patent Application No. 1303516.7, filed Feb 27, 2013, the contents of which are hereby incorporated by reference in their entirety.
The present invention relates to an acoustic phase plug used in systems for converting electrical signals into sound, such as a phase plug for a compression driver or loudspeaker.
Phase plugs are usually disposed, in use, adjacent a diaphragm, the diaphragm being driven axially to generated sound waves; these sound waves are channelled by the phase plug so as to enhance the acoustic performance of the diaphragm. Conventional phase-plugs have an axisymmetric surface which closely follows the geometry of the associated diaphragm. The enclosed volume of air between the diaphragm and phase-plug must be sufficiently small to avoid loss of high frequency output due to acoustic compliance. To achieve maximum low frequency output the diaphragm must move with the largest possible displacement.
Some attempts have been made to shape the diaphragm in the axial direction so as to increase its stiffness, and thus improve its acoustic performance; however, the introduction of such shapes inevitably either reduces the clearance between the phase plug and the diaphragm (which is undesirable, as it risks the diaphragm impinging on the phase plug during operation, which has a drastic adverse effect on the sound quality), or it increases the volume of the cavity between the diaphragm and phase-plug, which is also undesirable. As a result of this, and other practical constraints, the size of the axial shaping is severely restricted in the part of the phase plug facing the diaphragm.
Accordingly the present invention provides a phase plug for a loudspeaker having a driven diaphragm, wherein at least a portion of the surface of the phase plug disposed in use adjacent the diaphragm is generally annular in two orthogonal directions and has an axis in a third orthogonal direction, and wherein at least a portion of the said annular surface is shaped such that as successive radial cross-sections through the annular surface are generated by rotating a plane about the axis, the cross-sectional shape of the surface of the phase plug intersecting said plane varies as the angle of rotation increases. The variation of the cross-section may be periodic.
Such an arrangement facilitates the shaping of a diaphragm in the axial direction to a significant extent, allowing the stiffness of the diaphragm to be optimised whilst avoiding the problems of diaphragm/phase plug impingement and unnecessarily and undesirably increasing the volume between the diaphragm and phase-plug.
The surface of the phase plug may further comprise one or more axisymmetric areas surrounding the periodically varying shaped portion. The generally annular surface may further comprise an axisymmetric portion inside the annular portion, and/or the surface of the phase plug may comprise a concave portion within the generally annular portion. This concave portion, which may be centred on the axis (and substantially axisymmetric), may be generally dome-shaped—a concave dome shaped as part of a sphere, ellipsoid, paraboloid or hyperboloid, for example.
The phase plug may include at least one channel for sound waves generated by a diaphragm disposed adjacent the phase plug to pass through, the or each channel terminating adjacent the periodically varying shaped portion of the phase plug surface.
The non-axisymmetric portion may extend circumferentially around a concave surface, which may be axisymmetric. The varying shaped portion may extend smoothly and/or substantially uninterruptedly around the axisymmetric surface. Portions of the surface of the phase plug other than the periodically varying shaped portion(s) may be axisymmetric; apart from the optional central portion of the surface of the phase plug, there may be a substantially flat or planar surface forming an annulus inside and/or outside the varying shaped portion.
The periodically varying shaped portions of the phase plug surface may comprise a series of axial cavities formed in the generally annular surface: this series of cavities may be formed as separate, but substantially similar individual cavities disposed generally circumferentially around the generally annular surface (these cavities may be evenly distributed about the circumference), or it may comprise a single, sinuously shaped cavity. The periodically varying shaped portion may extend substantially uninterruptedly around the annular surface, and/or it may be smooth and blend smoothly with the surrounding portions of the surface, or it may comprise a series of cavities which are themselves smooth but which are discontinuous where they blend into the generally annular surface of the phase plug. Alternatively or additionally the periodically varying shaped portion(s) may be in the form of a succession of undulations, or of substantially continuous curves, which may have a sinusoidal appearance. The undulations may protrude from the general plane of the annular surface in either or both directions in the axial direction.
The present invention recognises that improved acoustic performance may be achieved by using a geometry for the phase-plug surface which is not wholly axisymmetric but instead is of varying radial cross-sectional shape in an annular region so as to provide a concave and variably shaped region to allow for the termination of a channel for soundwaves generated by the diaphragm thereat. This region may be formed as a series of smoothly-shaped regular cavities in the surface (e.g. circles/domes, triangles, or essentially any rectilinear or curved shape), or as a succession of circumferential undulations in the generally annular portion of the surface of the phase plug. The maximum output for a given cavity volume may be obtained by making the phase-plug surface the same shape as the displaced diaphragm surface. This approach allows much greater freedom in the choice of circumferential undulations and their size. For example the circumferential undulations may even be greater than the phase-plug to diaphragm spacing.
The phase plug will, as is conventional, have one or more channels for soundwaves generated by the diaphragm. These channels may be radial or annular or a series of circular holes or other shape. At least one of these channels may terminate at or adjacent the periodically varying shaped portion of the phase plug surface.
In another aspect, the present invention also encompasses a loudspeaker incorporating a phase plug as described herein.
For convenience, the present invention is principally described herein with reference to a circular phase plug, however the invention applies equally to non-circular phase plugs, such as elliptical or race track shapes, or any shape being symmetrical in two orthogonal directions and lying in the general plane of the phase plug surface which in use is intended to lie adjacent an acoustically-driven diaphragm. Accordingly, or unless clearly indicated otherwise, any use in this description or in the claims of the terms “annular”, “circumference”, “circumferential”, “circumferentially”, “concentric” or “around” should not be construed as being restricted to a circular shape alone, nor as being necessarily centred on a single axis but instead as simply surrounding a boundary. Similarly, the term “appears sinusoidal” should not be construed as limited to a strictly sinusoidal shape, but instead construed broadly as encompassing any substantially smooth series of substantially continuous and substantially cyclical curves.
An embodiment of the present invention will now be described by way of example, with reference to the accompanying figures in which;
The phase plug 1 shown in
As can be seen in
The surface of the phase plug 1 is configured and disposed relative to the diaphragm 3 so as to provide an air cavity 25 (see
Referring to
Typically the phase-plug to diaphragm spacing may be in the region of 0.1 mm-1.2 mm and the ratio of the effective diaphragm radiating area to phase-plug entrance area, also called compression ratio, is between 5 and 12. The mean flux at the voice coil is limited by the saturation of the iron poles and is between 1.2 Tesla and 2.1 Tesla depending on the magnet size and cost. The majority of compression drivers use a titanium diaphragm and an aluminium voice coil, which is often copper clad to improve electrical connectivity.
It will of course be understood that many variations may be made to the above-described embodiment without departing from the scope of the present invention. For example, although the drawings illustrate a series of dome-shaped cavities 31, these may be of any smoothly concave shape (e.g. elliptical, ovoid, rectangular, lozenge, etc.), or even be formed of a continuously curved surface having radial and/or circumferential undulations, which may appear sinusoidal and which may be periodically or cyclically curved. There may be any number of cavities, and these may be arranged in one or more circumferential rows, which can be aligned, staggered or arranged symmetrically, according to the relevant acoustic desiderata. Similarly, although the phase plug in the drawings has a generally dome-shaped or spherical central cavity, this may be of any smoothly curved shape, such as an ellipsoid, hyperboloid or paraboloid or a surface derived from a part of the surface of a toroid, and although shown as axi-symmetric the shape of this cavity may be non-axisymmetric. The cavities are shown evenly spaced around a circle, however for some applications the cavities could be unevenly spaced, and/or the cycle of any curves could vary. Furthermore, where different variations or alternative arrangements are described above, it should be understood that embodiments of the invention may incorporate such variations and/or alternatives in any suitable combination.
Number | Date | Country | Kind |
---|---|---|---|
1303516.7 | Feb 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/053222 | 2/19/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/131669 | 9/4/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5117462 | Bie | May 1992 | A |
6574344 | Wiener | Jun 2003 | B1 |
20010040974 | Steckling | Nov 2001 | A1 |
20020057819 | Czerwinski | May 2002 | A1 |
20050025331 | Button | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
H05183986 | Jul 1993 | JP |
2004040942 | May 2004 | WO |
Entry |
---|
International Search Report and Written Opinion issued for International Application No. PCT/EP2014/053222, mailed May 8, 2014. |
Search Report issued for GB Patent Application No. 1303516.7, mailed May 9, 2013. |
Number | Date | Country | |
---|---|---|---|
20160014503 A1 | Jan 2016 | US |