The described embodiments relate generally to aircraft, and more particularly, to sensor arrays for aircraft.
Conventional aircraft detection systems, such as radar, may be difficult or cost prohibitive to incorporate into smaller aircraft, such as unmanned aircraft. Further, regulations may require unmanned aircraft to maintain a spherical detection zone, detecting other aircraft in every direction relative to the aircraft. As conventional aircraft detection systems may not be developed for such detection, implementing conventional systems for spherical detection may be technically complex and expensive.
Conventional aircraft, including commercial aircraft and general aviation aircraft, follow established airspace rules to avoid collision with other aircraft. For example, in general, each aircraft is responsible for the airspace in front of the aircraft. In some airspaces, unmanned aerial vehicles (UAVs) may be required to maintain spherical coverage, meaning that the UAV must monitor airspace in each direction for intruding aircraft. UAVs may be responsible for moving out of the way of intruding aircraft, so that other aircraft do not encounter UAVs during flight. Conventional aircraft detection systems, such as radar, may be optimized for monitoring the area in front of an aircraft. While such systems may be altered to provide spherical coverage, a system providing such coverage may prohibitively heavy relative to a UAV. Further, conventional detection systems may have difficulty with long-range detection, which gives a UAV less time to detect other aircraft and alter its flight path to avoid other aircraft.
In one example, a sensor probe for association with a portion of an aircraft is disclosed. The sensor probe includes a microphone assembly having a portion configured to receive audio signals. The sensor probe further includes a nosecone associated with the microphone assembly. The nosecone is configured to shield the portion of the microphone assembly from noise generated by direct impact of an airflow for a plurality of local flow angles.
In another example, an aircraft is disclosed. The aircraft includes an arrangement of sensor probes configured to detect an audio signal. Each sensor probe of the arrangement is configured to manipulate an airflow for a plurality of local flow angles to reduce noise from direct flow for the audio signal.
In another example, a method is disclosed. The method includes receiving an airflow along a nosecone of a sensor probe. The method further includes detecting an audio signal associated with an external environment of the airflow using a microphone assembly. The method further incudes reducing noise from direct flow for the audio signal for a plurality of local flow angles.
In one example, an aerial vehicle including an aircraft sensor probe to detect an audio signal is disclosed. The aircraft sensor includes a nosecone including a tip and a body portion, wherein a diameter of the body portion of the nosecone is smaller than a length of the nosecone and the nosecone is configured to mitigate drag of the sensor probe in an airflow, a mount assembly downstream of the nosecone and positioned rearward of the tip and including a mount aperture in fluid communication within an external environment of the sensor probe and configured to direct airflow from the external environment rearward, a microphone positioned downstream of the mount assembly and secured in a perpendicular orientation relative to a direction of airflow exiting the mount aperture, and an acoustic corridor to transmit the audio signal extending from an opening at an external environment of the sensor probe to the microphone via the mount aperture, wherein the opening is defined by a side of the nosecone.
In one example, an aircraft sensor to detect an audio signal is disclosed. An aircraft sensor probe includes a nosecone including a tip and a body portion, wherein a diameter of the body portion of the nosecone is smaller than a length of the nosecone and the nosecone is configured to mitigate drag of the sensor probe in an airflow, a mount assembly downstream of the nosecone defining a mount aperture extending therethrough, an audio sensor coupled to the mount assembly and positioned rearward of the tip and downstream of the nosecone, an acoustic corridor to transmit the audio signal extending from an external environment of the sensor probe to the audio sensor, an opening defined by the nosecone and fluidly coupled with the acoustic corridor, an intermediary media positioned at the acoustic corridor arranged between the nosecone and the audio sensor, and wherein the sensor probe receives the airflow for a plurality of local flow angles and reduces noise from direct flow for the audio signal.
In one example, an aircraft is disclosed. The aircraft includes a fuselage, a first wing extending from the fuselage, a second wing extending from the fuselage opposite the first wing, a propeller, and one or more sensor probes to detect an audio signal including a nosecone including a tip and a body portion, wherein the nosecone is configured to mitigate drag of the sensor probes in the airflow, an audio sensor positioned rearward of the tip and downstream of the nosecone, an acoustic corridor to transmit the audio signal extending from an opening at an external environment of the sensor probe to the audio sensor, and a mount assembly downstream of the nosecone and defining a mount aperture extending therethrough, the microphone assembly mount coupled with the audio sensor.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following description.
The description that follows includes sample systems, methods, and apparatuses that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.
The following disclosure describes systems and techniques to facilitate detection of acoustic signals from an aircraft. A sample aircraft may include an unmanned aerial vehicle (UAV). The systems and techniques described herein are also applicable to piloted aerial vehicles and/or other vehicles or moving objects more generally. The acoustic signals may be detected using a sensor probe or other assembly that includes a microphone device. The sensor probe may be arranged to detect the acoustic signals during operation of the aircraft. The aircraft may include a detection and avoidance system that uses the acoustic signals to determine information associated with an environment of the aircraft, and can distinguish between audio signals produced by intruders, such as other aircraft, and audio signals produced by the aircraft's own engines (or flight system), distinguish between audio signals produced by intruders and natural sources (e.g., wind or weather noise), and determine spatial information of signals (e.g., provide a location estimation of the intruder relative to the aircraft). One such detection and avoidance system is described in U.S. Patent Application No. 63/082,838, entitled “ACOUSTIC BASED DETECTION AND AVOIDANCE FOR AIRCRAFT,” of which is incorporated by reference herein.
The sensor probes of the present disclosure facilitate the detection of acoustic signals for use in an acoustic detection and avoidance system or other on-board aircraft systems. In one embodiment, a sample sensor probe may be a generally elongated structure that extends from a portion of the aircraft, such as a wing assembly, fuselage, or other portion of the aircraft. The sensor probe may include a microphone assembly having a portion that is configured to receive audio signals. A nosecone may be associated with the microphone assembly and configured to shield the portion of the microphone assembly from noise or other unwanted audio signals generated by direct impact of an airflow on the sensor probe. In some cases, the nosecone can be configured to shield the portion of the microphone assembly for a plurality of local flow angles to facilitate removal of the directional aspects of the airflow relative to the portion of the microphone assembly. The nosecone may also function as an environmental barrier between the microphone assembly and the external environment, shielding the microphone assembly from moisture, debris, radiation, and/or other contaminants.
The nosecone may also be configured to shield the microphone assembly while allowing the microphone assembly to have sufficient audial exposure to the external environment. For example, the nosecone may be configured to maintain an acoustic pathway for the audio signal between the portion of the microphone assembly and an external environment of the sensor probe. In one example, the nosecone can define an internal volume and a series of apertures, which may be defined as slits, that define openings into the internal volume. The portion of the microphone assembly may be arranged within the internal volume. The series of slits may therefore define the acoustic pathway to the microphone assembly held in the internal volume. In some cases, the nosecone is configured to mitigate a transition or separation of the flow until downstream of the series of slits, for the plurality of flow angles, to further facilitate the reduction of noise.
In another example, the nosecone can be formed at least partially from a barrier material. The barrier material may generally shield the microphone from weather and debris. The barrier material can include or be fully or partially formed from an acoustically transparent material. The nosecone can include a section that is substantially transparent to audio signals of interest (e.g., audio produced by intruders, which can be in the 0-500 Hz or other appropriate range). The nosecone can thus selectively attenuate unwanted signals (noise) and provide an acoustic path that minimizes the production of additional unwanted signals or the distortion of the unwanted signals. While many materials are possible and contemplated herein, the acoustically transparent material may be formed from a porous material, such as a porous, hydrophobic plastic. The acoustically transparent material may be used to shield the microphone from weather and debris, but allow acoustic signals to be transmitted to the microphone. For example, the acoustically transparent material may define a tortuous pathway such that water cannot flow through the material, but sound waves are able to flow therethrough. Additionally, the acoustically transparent material may be selected to prevent a direct impact of flow angles of air and sound on the microphone, further reducing noise. Optionally, the material may also assist in reorienting the air flow, such that the air flow does not generate noise or the noise is reduced to the desired sound frequencies to be detected by the microphone
The microphone assembly may be arranged within the sensor probe to enhance the detection of acoustic signals for use with a detection and avoidance system. The microphone assembly may include one more microphone devices, pressure transducers and/or any appropriate sensors that are configured to detect audio-frequency air pressure fluctuations. In one example, the microphone assembly may be orientated within the nosecone along a direction substantially perpendicular to a direction of flow encountered by the nosecone or otherwise perpendicular to a direction of travel of the aircraft. The substantially perpendicular arrangement permits the microphone assembly to be arranged along a centerline of a circular nosecone. This arrangement may also help cancel or otherwise mitigate pressure fluctuations at the microphone assembly that may contribute to undue noise. The microphone assembly can be mounted at a rear section of the nosecone and extend along a substantially cylindrical cross-section, downstream of a tip of nosecone. In some cases, a microphone assembly mount, stiffener, and/or other structures may be fitted substantially into the nosecone to mount the microphone assembly in the desired orientation. The microphone mount may also include an alignment feature engageable with the microphone assembly to facilitate rotational positioning. This may be beneficial in order to align the microphone device with an acoustic corridor in the sensor probe that is off-center or otherwise not concentric with a centerline of the probe.
The sensor probes described herein may be implemented in an acoustic array for the aircraft. In some cases, it may be beneficial to obtain acoustic signals from multiple sensors during operation of the aircraft, for example, to support the operation of the detection and avoidance system. The multiple acoustic signals can be used together to detect a location of the intruder in multiple directions relative to the aircraft, e.g., 360 degrees, and/or to facilitate the substation of unwanted noise. The multiple sensor probes may be arranged with the aircraft to optimize the location detection. In one example, an arrangement of sensor probes may be connected to and extending from a wing assembly of the aircraft. The sensor probes may be spaced apart along the wing assembly to facilitate acoustic detection at multiple locations. The sensor probes may also extend elongated from a leading edge of the wing assembly, which may help reduce aeroacoustics noise from turbulent flow associate with the other components of the aircraft.
In some cases, the sensor probes may extend at different lengths from the leading edge, which may be determined based on a position of the probe relative to the fuselage. For example, a first sensor probe may extend a first length from the leading edge and a second sensor probe may extend a second, shorter length from the leading edge, the second sensor probe being further away from the fuselage than the first sensor probe. In one example, the aircraft may include wing portions extending from opposing sides of the fuselage, each with a first sensor probe at a first length and three additional sensor probes at a second, shorter length. Additionally or alternatively, the sensor probes may be orientated at different angles relative to the wing assembly. For example, the sensor probes may be orientated at different angles in order to align with a local flow angle along the wing. The sensor probes may also be arranged to extend from various different surfaces of the wing assembly, such as extending from a top surface, a bottom surface, tip and/or other portion of the wing assembly. Variation in probe geometry may allow software to receive a wider range of information regarding a detected acoustic signal. The detection and avoidance system may utilize the wider range of information to enhance the accuracy of intruder detection, as one example.
Turning now to the figures,
The aircraft 100 may be equipped with an arrangement of peripheral assemblies, such as sensor probes. In the
With reference to
The sensor probes 108a-108h may be coupled to the aircraft 100 at the wing assembly 104. For example, the sensor probes 108a-108d may collectively define a first subset of sensor probes that are connected to the first wing portion 104a. The first subset of sensor probes may be attached to the first wing portion underside 105a and extend elongated from the first wing portion leading edge 107b. In the example of
In the example of
The sensor probes 108a-108h may be releasably coupled to the wing assembly 104 using a breakaway mechanism 130, as shown in
The rear section 111b of the nosecone 110 may extend from the forward section 111a of the nosecone 110. The rear section 111b may define a body of the nosecone 110 that may be used to house electrical components of the nosecone 110. For example, the rear section 111b may include a cylindrical portion 162. The cylindrical portion 162 may define a substantially constant exterior contour that is generally in line with the direction of flow encountered by the sensor probe 108a. For example, the cylindrical portion 162 may define a substantially constant exterior contour that is generally parallel to a centerline of the sensor probe 108a. The rear section 111b may also define a mount region 164. The mount region 164 may be a recessed feature that extends at least partially into the body of the nosecone 110 at the rear section 111b. The mount region 164 may define a seat for one or more internal components of the sensor probe 108a, including for various microphone assemblies and associated components.
The nosecone 110 may be an integrally constructed or otherwise one-piece component. The rear section 111b may extend continuously from the forward section 111a. The dome-shaped tip 158, the conical transition portion 160, and the cylindrical portion 162 may cooperate with one another to define a smooth, continuous aerodynamic shape and contour from the forward-most portion of the sensor probe 108a. The continuous aerodynamic contour may limit drag on the aircraft 100 by mitigating abrupt transitions in air flow along the nosecone 110, such as mitigating abrupt transition along an interface between the dome-shaped tip 158 and the conical transition portion 160 and/or along an interface between the conical transition portion 160 and the cylindrical portion 162.
The nosecone 110 may include a barrier material 113. In some cases, the nosecone 110 may be substantially entirely constructed of the barrier material 113. In these instances, the barrier material 113 may act to both define the structure of the nosecone 110, as well as to transmit acoustic signals while minimizing generation of noise, including selectively attenuating unwanted signals. For example, a portion of the barrier material 113 can include an acoustically transparent material or other material that is substantially transparent to audio signals of interest. The nosecone 110 may thus selectively attenuate unwanted signals (noise) and provide an acoustic path that minimizes the production of additional unwanted signals or the distortion of the unwanted signals. In one example, the barrier material 113 may be a porous, hydrophobic plastic. Porex® manufactured by the Porex Corporation of Atlanta, Georgia may be used. Pores 161 may be defined throughout the acoustically transparent material. The pores 161 may define a tortuous path for flow through the nosecone 110. In some cases, the pores 161 may be substantially evenly spaced through the barrier material 113, but in other embodiments may be defined irregularly. The various pores 161 and other structure may be configured to prevent impact of direct flow on the microphone, as well as orient air flow such that noise generated by the airflow may not impact the desired sound frequencies to be detected by the microphone (e.g., 0 to 500 Hz). In this manner, the nosecone 110 may be configured to reduce broadband noise variations, and the pores can help stabilize flow before it reaches the microphone. The reduction in noise may help enhance the detection of the desired acoustic signals, allowing for a more precise detection of intruders.
The porous, hydrophobic plastic may also be generally configured to prevent entry of moisture into a body of the nosecone 110. For example, the various internal pathways defined by the pores and void regions of the barrier material 113 may impede or prevent the passage of moisture through the nosecone 110. The combination of acoustic transparency and a moisture barrier may allow the nosecone to shield internal components of the sensor probe 108a from the contaminants of an external environment, while allowing the internal components, including a microphone device, to be acoustically exposed to the external environment for acoustic signal detection. The nosecone 110 may also be constructed to shield ultraviolet radiation.
Other materials and constructions of the nosecone 110 are contemplated as well. For example, a portion of the nosecone 110 may be constructed of a solid plastic with a fine stainless steel mesh. Additionally or alternatively, a portion of the nosecone 110 may be constructed of a solid plastic with a fabric mesh. Additionally or alternatively, a portion of the nosecone 110 may be constructed with a foam. In other examples, other materials are possible, including constructing the nosecone 110 from multiple different materials. In many embodiments, the construction of the nosecone 110 is selected to reduce the impact of flow angles on the microphone, while also preventing water and debris from reaching the microphone sensor.
The sensor probe 108a may also include an intermediary media 112. The intermediary media 112 may operate to filter incoming airflow, and/or selectively attenuate, or dampen a signal propagated through the nosecone material. The intermediary media 112 can include a foam, a tortuous path filter, precision woven fabric, and so on. The shape, texture, material of the intermediary media 112 may be tuned to induce certain audial properties within the sensor probe 108a, for example, by attenuating acoustic signals that travel through the intermediary media 112 to a specified degree. The intermediary media 112 may be a polyurethane foam. The intermediary media 112 may be generally cylindrically shaped.
With reference to
An adhesive 116 or other fastening element may also be provided with the sensor probe 108a. The adhesive 116 may be a double sided adhesive having sufficient bonding characteristics to structurally mount electrical components within the sensor probe 108a such that the electrical components maintain their positioning during operation of the aircraft 100. The adhesive 116 may also be weather resistant, immune to pressure differentials or changes, and/or otherwise be configured to maintain adhesiveness during operation of the aircraft 100. The adhesive 116 may also be contoured for arrangement within the sensor probe 108a. For example, the adhesive 116 may include an adhesive aperture 172 and an adhesive alignment feature 173.
The sensor probe 108a may be configured to detect acoustic signals using a microphone assembly 118. The microphone assembly 118 may include a microphone device 118a and a stiffener structure 118b. The microphone device 118a may include any appropriate audio sensor, such as one or more omnidirectional microphones, directional microphones, or the like and so on that are configured to detect an acoustic signal through the barrier material 113. While many constructions are possible, the microphone device 118a may include a windscreen or barrier layer, a diaphragm, a coil, a magnetic core, a capsule or other device to transform a vibration to an electric signal, and/or an output for transmitting said electrical signal, among other components. The stiffener structure 118b may be a plate, rod, base or other structure that provides rigidity to the microphone device 118a. The stiffener structure may include a stiffener aperture 174 and a stiffener alignment feature 175.
A nosecone mount 120 is also provide with the sensor probe 108a. The nosecone mount 120, as shown with respect to
The sensor probe 108a may also include an elongated member 124. The elongated member 124 may be a tube that has a hollow interior. The elongated member 124 may extend elongated a sufficient distance to separate components of the sensor assembly 108a from a portion of the aircraft 100. The elongated member 124 may have sufficient rigidity in order to dampen an oscillation of the sensor probe 108a relative to the wing assembly 104, the fuselage, and/or other portion of the aircraft 100. A flex harness 122 is also provided. The flex harness 122 may include an electrical coupling, including housing various conductors, that extends along an elongated distance. The electrical coupling may be substantially flexible and manipulateable without substantially damaging or interrupting an electrical signal carried by the flex harness 122.
The sensor probe 108a may be coupled such that microphone assembly 118 is secured downstream of the nosecone 110. The mount region 164 of the nosecone 110 may at least partially receive the microphone assembly 118 at the rear section 111b, as shown in
Other examples of the nosecone 110 are contemplated herein. For example and with reference to
With reference to
The microphone assembly 118 may also be coupled within the sensor probe 108a in order to define a rotational position of the microphone device 118a. In some cases, the microphone assembly mount may be configured to rotationally position the microphone assembly in response to a local flow angle of the airflow. The positioning can be active or passive. Additionally or alternatively, the microphone device 118a may be rigidly fixed to the stiffener structure 118b. The stiffener structure 118b may be received by the microphone assembly mount 114 such that the mount alignment feature 171 and the stiffener alignment feature 175 engage with one another. The mount alignment feature 171 and the stiffener alignment feature 175 may be complementary alignment features. For example, the mount alignment feature 171 may be a protrusion that prevents entry of the stiffener structure 118b into the microphone assembly mount 114 absent the alignment of the stiffener alignment feature 175 with the mount alignment feature 171. The adhesive alignment feature 173 may be similarly configured for receipt within the microphone assembly mount 114 at the proper rotational position.
The microphone assembly 118 may be rotationally aligned within the sensor probe 108a to define an acoustic corridor 190 that is offset from a centerline of the sensor probe 108a (e.g.,
The nosecone mount 120 may also be utilized to couple the microphone assembly 118 in the sensor probe 108a in conjunction with the nosecone 110. For example, the nosecone 110 may be seated on the nosecone mount 120 and cooperate to house the microphone assembly 118 and associated components therein. In one configuration, the nosecone 110 is slid over the nosecone seat 121 and the groove 123 of the nosecone mount 120. For example, the nosecone seat 121 may be inserted into the mount region of the nosecone 110. The sealing element 148 may be seated in the groove 123 and define a friction fit with the nosecone 110 within the mount region 164. Glues and other adhesives may also be used to secure the nosecone 110 on the nosecone mount 120. In the engaged configuration, the nosecone 110 and the nosecone mount 120 may define a substantially continuous or uninterrupted contour to minimize drag as air flow traverses an external interface of the nosecone 110 and the nosecone mount 120.
The nosecone mount 120 may be coupled to the elongated member 124 using a bonding substance, such as glue. As shown in
The sensor probe 108a may be coupled to the aircraft 100 via the breakaway mechanism 130.
In operation, the sensor probe 108a may be configured to detect acoustic signals. For example, the nosecone 110 may be configured to receive a flow of air that is associated with an acoustic signal, such as that from an intruder.
The sensor probe 108a may also operate to detect audio signal and limit the impact of noise or other unwanted signals during the detection. With reference to the flow diagram of
In one example and as shown in
Additionally or alternatively, an acoustically transparent material or other portions of the nosecone can be used to facilitate the reduction of noise. For example and with reference to
Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Thus, the foregoing descriptions of the specific examples described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the examples to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a continuation of U.S. patent application Ser. No. 17/138,526, filed Dec. 30, 2020, now U.S. Pat. No. 11,765,494, which claims priority to U.S. Provisional Patent Application No. 62/955,946, filed Dec. 31, 2019, U.S. Provisional Patent Application No. 62/984,266, filed Mar. 2, 2020, U.S. Provisional Patent Application No. 63/021,633, filed May 7, 2020, and U.S. Provisional Patent Application No. 63/082,869, filed Sep. 24, 2020.
Number | Name | Date | Kind |
---|---|---|---|
2663518 | Glenn | Dec 1953 | A |
3444508 | Granfors et al. | May 1969 | A |
3476208 | Sellman et al. | Nov 1969 | A |
3893061 | Slawsky et al. | Jul 1975 | A |
3964694 | Metzger et al. | Jun 1976 | A |
4106740 | Lloyd et al. | Aug 1978 | A |
4137992 | Herman | Feb 1979 | A |
4363937 | Bruna | Dec 1982 | A |
4428549 | Halliday et al. | Jan 1984 | A |
4509151 | Anderson | Apr 1985 | A |
4622657 | Clare | Nov 1986 | A |
4689821 | Salikuddin et al. | Aug 1987 | A |
4811308 | Michel | Mar 1989 | A |
4831874 | Daubin et al. | May 1989 | A |
4926171 | Kelley | May 1990 | A |
4966252 | Drever | Oct 1990 | A |
4974213 | Siwecki | Nov 1990 | A |
5062085 | Andrews | Oct 1991 | A |
5111400 | Yoder | May 1992 | A |
5150336 | Sullivan et al. | Sep 1992 | A |
5177316 | Honigsbaum | Jan 1993 | A |
5339287 | Bauer | Aug 1994 | A |
5410519 | Hall et al. | Apr 1995 | A |
5477506 | Allen | Dec 1995 | A |
5563849 | Hall et al. | Oct 1996 | A |
5575438 | McGonigle et al. | Nov 1996 | A |
5617371 | Williams | Apr 1997 | A |
5666433 | Wehner | Sep 1997 | A |
5699437 | Finn | Dec 1997 | A |
5748143 | Melvin et al. | May 1998 | A |
5808243 | McCormick et al. | Sep 1998 | A |
5861846 | Minter | Jan 1999 | A |
5901232 | Gibbs | May 1999 | A |
5909409 | Barber et al. | Jun 1999 | A |
5995445 | Whitesell et al. | Nov 1999 | A |
6034760 | Rees | Mar 2000 | A |
6201482 | Schiefele et al. | Mar 2001 | B1 |
6288973 | Joynes | Sep 2001 | B1 |
6588701 | Yavnai | Jul 2003 | B2 |
6621764 | Smith | Sep 2003 | B1 |
6705573 | McDonnell | Mar 2004 | B2 |
6760449 | Matsuo | Jul 2004 | B1 |
6795772 | Lin et al. | Sep 2004 | B2 |
6804607 | Wood | Oct 2004 | B1 |
6857601 | Akahori | Feb 2005 | B2 |
6859420 | Coney et al. | Feb 2005 | B1 |
6970796 | Tashev | Nov 2005 | B2 |
7079450 | Breed et al. | Jul 2006 | B2 |
7149147 | Goldman et al. | Dec 2006 | B1 |
7209221 | Breed et al. | Apr 2007 | B2 |
7228232 | Bodin et al. | Jun 2007 | B2 |
7372773 | Horak | May 2008 | B2 |
7383106 | Coonse | Jun 2008 | B1 |
7457619 | Ariyur et al. | Nov 2008 | B2 |
7548488 | Horak et al. | Jun 2009 | B2 |
7606115 | Cline et al. | Oct 2009 | B1 |
7720232 | Oxford | May 2010 | B2 |
7751976 | Matuska et al. | Jul 2010 | B2 |
7818127 | Duggan et al. | Oct 2010 | B1 |
7975959 | Perry et al. | Jul 2011 | B2 |
7991167 | Oxford | Aug 2011 | B2 |
8534112 | Huertos Sanz | Sep 2013 | B2 |
8809755 | Patel et al. | Aug 2014 | B1 |
20010023582 | Nagel | Sep 2001 | A1 |
20020110250 | Schwald | Aug 2002 | A1 |
20030185410 | June et al. | Oct 2003 | A1 |
20040105557 | Matsuo | Jun 2004 | A1 |
20040165736 | Hetherington et al. | Aug 2004 | A1 |
20040252845 | Tashev | Dec 2004 | A1 |
20050169489 | Cleckler et al. | Aug 2005 | A1 |
20050271221 | Cerwin | Dec 2005 | A1 |
20100121574 | Ariyur et al. | May 2010 | A1 |
20150304754 | Akino | Oct 2015 | A1 |
20160063987 | Xu et al. | Mar 2016 | A1 |
20190039724 | Konishi et al. | Feb 2019 | A1 |
20200393562 | Staudinger et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
684490 | Sep 1994 | CH |
102010041733 | Apr 2012 | DE |
0715801 | Nov 2003 | EP |
1571875 | Sep 2005 | EP |
1946606 | Nov 2010 | EP |
381730 | Oct 1932 | GB |
2085821 | May 1982 | GB |
2309301 | Jul 1997 | GB |
2350425 | Mar 2003 | GB |
2380244 | Apr 2003 | GB |
H09500253 | Jan 1997 | JP |
H1098791 | Apr 1998 | JP |
2002039851 | Feb 2002 | JP |
2006319789 | Nov 2006 | JP |
100520786 | Oct 2005 | KR |
20060011064 | Feb 2006 | KR |
9602905 | Feb 1996 | WO |
0167115 | Sep 2001 | WO |
2005006009 | Jan 2005 | WO |
2005012079 | Feb 2005 | WO |
2006113104 | Oct 2006 | WO |
2018081559 | May 2018 | WO |
Entry |
---|
Extended European Search Report dated Mar. 4, 2024 in connection with European patent application No. 20927946.2, 12 pages. |
International Search Report and Written Opinion issued in International Patent Application No. PCT/US2020/067552 on Sep. 28, 2021 (11 pages). |
Office Action dated Jun. 6, 2023 in connection with Japanese patent application No. 2022-565735, 11 pages including English translation. |
Office Action dated Oct. 31, 2023 in connection with Japanese patent application No. 2022-565735, 9 pages including English translation. |
Number | Date | Country | |
---|---|---|---|
20230396909 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
63082869 | Sep 2020 | US | |
63021633 | May 2020 | US | |
62984266 | Mar 2020 | US | |
62955946 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17138526 | Dec 2020 | US |
Child | 18233952 | US |