1. Technical Field
The invention relates to directional loud speaker systems and more particularly to a acoustic source for delivering intense sound energy to a location spaced a substantial distance from the source.
2. Description of the Problem
A wide variety of acoustic transducers capable of absorbing substantial input energies to produce intense sound fields are available. Directional control of the sound produced and limiting the attenuation of sound field intensity may be effected using a number of types of enclosures and horns and careful positional arrangement of the transducers with respect to one another. The application of the sound system guides selection and blending of these techniques. Some systems, for example those intended for music, should minimize distortion. Many music amplification systems will limit themselves to use of an enclosure and a baffle around the transducers. A public address system tolerates some distortion, particularly at higher frequencies. This favors the use of a high degree of directional control to reduce the rate of drop off in sound pressure with increasing distance from the source. In a public address system it is common for the transducer to be horn loaded.
Of particular interest here is the possibility that a sound system can be adapted for use in the management of crowds or of individuals. It is well known that sound can be intensive enough to be disabling without threatening permanent injury. Were it possible to deliver a sound field of sufficient intensity to disable a person at a distance, or force his retreat, direct physical interaction between those charged with control of crowds, or limiting access to a facility, would be made easier. Such control would also appear far less dramatic and provocative to onlookers and those seeing recordings of the events on television.
Naturally it would of advantage to make such a system mobile. This factor dictates that the system be highly efficient and that sound generated by the system have a minimal drop off in intensity with distance. The directional control of the sound should also be high. The ability to optimize the sound field for the range to a target would also be of advantage.
The invention provides a broadband sound generator and transmitter. Sound generation is provided by a low frequency range transducer and a higher frequency range transducer array. The sound generators are located forward from a concave reflecting surface which has a forward radiant axis. The low frequency range transducer is located on the radiant axis and the higher frequency transducer array is located radially distributed about the forward radiant axis. The transducer and the transducer array are movable along the forward radiant axis to vary the focal point of sound radiated by the transducers into the concave reflecting source. A broadband input signal used to excite the transducers is applied to the transducers through signal conditioning circuitry connected between an input signal source and the transducers. The signal conditioning circuitry includes a cross-over module apportioning selected frequency components of the input signal between first and second channels, and phase and differential delay components adjusting for the changes in spacing between the transducers and the concave reflective surface.
Additional effects, features and advantages will be apparent in the written description that follows.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Referring now to the figures and in particular to
Referring to
Sound field SF is fed by low frequency and high frequency acoustical transducers operatively positioned in a spaced relationship in front of the front concave reflecting surface 34 and centered on the forward radiant axis A. The acoustical transducers are mounted in the loudspeaker enclosure 30 and, more specifically, are mounted on a secondary parabolic dish 46 forming the end of enclosure 30 located closer to primary parabolic dish 32. Low frequency sound is generated by a loudspeaker 40 which is centered on the forward acoustical axis A and oriented to direct sound from its forward side directly into concave reflecting surface 34. The low frequency sound source is illustrated as a single driver; diaphragm unit, however other elements might be used. For example, the device could have multiple drivers. Higher frequency sound has as a source a plurality of horn loaded tweeters 39 which are disposed on the secondary parabolic dish 46 and oriented outwardly to direct sound toward the primary parabolic dish 32. Again, other high frequency sound services could be used, e.g. high frequency diaphragm elements. Tweeters 39 are arrayed radially around forward radiant axis A in a circle and the projection axis of the sound they generate is canted outwardly from the forward radiant axis A of the concave reflecting surface 34. Alternatively, the low frequency device could be a circular diaphragm disposed centered on the forward radiant axis with the HF sources located on or nearer to the forward radiant axis A. Whatever the arrangement, sound from both sets of transducers is reflected forward from concave reflecting surface 34 in a sound field SF collimated around null field NF. As described below, sound field SF slowly closes to a far focus FF which may be displaced from sound projector 24 by hundreds of meters.
Enclosure 30 provides both support for the transducers and a framework 27 for moving the transducers in and out along forward projection axis A relative to concave reflecting surface 34. By moving enclosure 30 the far focus FF of the forward reflected sound waves can be changed from tens of meters to hundreds of meters by changing the apparent acoustic source FS of the sound. Enclosure 30 is supported forward from concave reflecting dish 34 on framework 27 which is mounted to a rim 29 set on the perimeter of primary parabolic dish 32. The framework includes a plurality of struts 42 extending from the rim 29 forward from concave reflecting dish 34. Struts 42 converge on a perimeter ring 26 of smaller diameter than rim 27. Enclosure 30 rides on tracks 38 supported by the perimeter ring 26. Tracks 38 lie parallel to the forward radiant axis A. Linear motors (not shown) may be used to lock enclosure 30 in place on the tracks 38 and to move the enclosure to and fro along the forward radiant axis A as indicated by double arrow B. Movement of enclosure 30 changes the location of apparent source FS of sound directed into the concave reflecting dish and also changes the point of convergence of sound field SF forward from the concave reflecting surface 34. The object is to achieve beam collimation.
Conveniently mounted somewhere on the framework 27, such as depending from rim 29, is a range finder 12 which may include a television camera and laser range finder. Range finder 12 may also advantageously be mounted in lens cap 35 aligned with the forward radiant axis A of the concave reflecting surface 34. Acoustic projector 24 is movable as a unit up and down and in a circle using a motorized altazimuth mounting 20 set on the upper end of mast 14.
Referring to
Shape control of outer circumferential section 55 provides improved efficiency, i.e. reduced attenuation of the higher frequency sound generated by the array of horn loaded tweeters 39 and projected forward by the primary parabolic dish 32. Where primary parabolic dish 32 is divided into two sections 255, 55 the shape of the two sections can be better optimized relative to the predominant frequencies of the sound directed into the respective sections. Shape control of the outer circumferential section 55 is achieved by dividing the outer circumferential section into segments 155 which are independently positionable. (See
Generation of sound is initiated electronically upon microprocessor 62 receiving a trigger signal from operator inputs 102. Simultaneously with receipt of indication from an operator that sound is to be projected, the range to a target identified by the operator is obtained by microprocessor 62 from range finder 68. Range finder 68 may include a laser distance measuring element for this purpose. Or, a microphone may be built into the system for echo location. Aiming of the primary parabolic dish 32 is done under operator control by inputs from operator inputs 102 directed by microprocessor 62 as position control signals to positioning motors 92. Where the primary parabolic dish 32 is divided into inner and outer sections shape control of the outer circumferential section 55 is provided by dish shape control 90. This operation is informed by the frequency mix selected by microprocessor 62, delay of the signal and the distance to target and may be made dynamic.
Microprocessor 62 generates a signal for application to an audio signal source 61 (which may be an output port of the microprocessor). Audio signal source 61 generates a signal which is in turn applied to an adjustable amplifier 70. Microprocessor 62 controls the output amplitude to achieve an optimal typically non-lethal, sound pressure level at the target distance. The resulting signal is applied to an analog to digital converter 72 and the resulting digital signal is applied to a cross-over circuit 74 which passes selected frequency components to the signals to either of two channels. The channels, of course, correspond to the low and high frequency audio transducers. Each channel comprises four components, connected in series, and under the control of microprocessor 62. The components are connected, in series and include dynamic delay lines 76A-B, parametric equalization contour filters 78A-B, dynamic phase filters 80A-B and dynamic limiters 82A-B, in each channel. Operation of these components is under the control of microprocessor 62, which takes into the account the frequency and phase of the signals and the distance spacing the loudspeakers from the concave reflecting surface 34 to achieve near coherent summing of the signal mix to boost efficiency of the system. Before application of the signals to the respective sets of transducers, the signals are reconverted to analog signals by digital to analog converter 84. The outputs of converter 84 are amplified by amplifiers 86 and 88 and the respective amplified drive signals are applied to transducer 144, associated with low frequency loud speaker 44 and to audio transducers 139 associated with horn loaded tweeters 39.
It is not necessary that all loud speakers in an array be driven synchronously. Speaker drive channels can be divided so that groups of speakers, or individual speakers, are independently controlled. Circuitry to effect such operation can take a number of different forms. Similarly, digital signal processors can be programmed in a number of different ways to implement a given equivalent circuit.
Sound projection system 10 may be dismounted from a vehicle and set up as a stand alone unit powered by a local generator or battery (not shown). As illustrated in
The present invention provides a sound system adapted for use in the management of crowds or of individuals. Intensive, highly directed sound may be directed toward an isolated human target and disable or drive away the target without threatening permanent injury. Such a sound field makes it possible to disable a person at a distance, or force his retreat, without direct physical interaction between those charged with control of crowds, or limiting access to a facility, would be made easier. Such control should appear far less dramatic and provocative to onlookers and those seeing recordings of the events on television.
While the invention is shown in only a few of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4769848 | Eberbach | Sep 1988 | A |
5220608 | Pfister | Jun 1993 | A |
5821470 | Meyer et al. | Oct 1998 | A |
6031920 | Wiener | Feb 2000 | A |
6134332 | Wiener | Oct 2000 | A |
6441798 | Ehrenberg et al. | Aug 2002 | B1 |
6556687 | Manabe | Apr 2003 | B1 |
6625288 | Koizumi | Sep 2003 | B1 |
20020071572 | Moertel | Jun 2002 | A1 |
20020126854 | Norris et al. | Sep 2002 | A1 |