A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
This disclosure relates to radio frequency filters using acoustic wave resonators, and specifically to filters for use in communications equipment.
A radio frequency (RF) filter is a two-port device configured to pass some frequencies and to stop other frequencies, where “pass” means transmit with relatively low signal loss and “stop” means block or substantially attenuate. The range of frequencies passed by a filter is referred to as the “pass-band” of the filter. The range of frequencies stopped by such a filter is referred to as the “stop-band” of the filter. A typical RF filter has at least one pass-band and at least one stop-band. Specific requirements on a passband or stop-band depend on the application. For example, a “pass-band” may be defined as a frequency range where the insertion loss of a filter is better than a defined value such as 1 dB, 2 dB, or 3 dB. A “stop-band” may be defined as a frequency range where the rejection of a filter is greater than a defined value such as 20 dB, 30 dB, 40 dB, or greater depending on application.
RF filters are used in communications systems where information is transmitted over wireless links. For example, RF filters may be found in the RF front-ends of cellular base stations, mobile telephone and computing devices, satellite transceivers and ground stations, IoT (Internet of Things) devices, laptop computers and tablets, fixed point radio links, and other communications systems. RF filters are also used in radar and electronic and information warfare systems.
RF filters typically require many design trade-offs to achieve, for each specific application, the best compromise between performance parameters such as insertion loss, rejection, isolation, power handling, linearity, size and cost. Specific design and manufacturing methods and enhancements can benefit simultaneously one or several of these requirements.
Performance enhancements to the RF filters in a wireless system can have broad impact to system performance. Improvements in RF filters can be leveraged to provide system performance improvements such as larger cell size, longer battery life, higher data rates, greater network capacity, lower cost, enhanced security, higher reliability, etc. These improvements can be realized at many levels of the wireless system both separately and in combination, for example at the RF module, RF transceiver, mobile or fixed sub-system, or network levels.
High performance RF filters for present communication systems commonly incorporate acoustic wave resonators including surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators, film bulk acoustic wave resonators (FBAR), and other types of acoustic resonators. However, these existing technologies are not well-suited for use at the higher frequencies and bandwidths proposed for future communications networks.
The desire for wider communication channel bandwidths will inevitably lead to the use of higher frequency communications bands. Radio access technology for mobile telephone networks has been standardized by the 3GPP (3rd Generation Partnership Project). Radio access technology for 5th generation (5G) mobile networks is defined in the 5G NR (new radio) standard. The 5G NR standard defines several new communications bands. Two of these new communications bands are n77, which uses the frequency range from 3300 MHz to 4200 MHZ, and n79, which uses the frequency range from 4400 MHz to 5000 MHz. Both band n77 and band n79 use time-division duplexing (TDD), such that a communications device operating in band n77 and/or band n79 use the same frequencies for both uplink and downlink transmissions. Bandpass filters for bands n77 and n79 must be capable of handling the transmit power of the communications device. WiFi bands at 5 GHz and 6 GHz also require high frequency and wide bandwidth. The 5G NR standard also defines millimeter wave communication bands with frequencies between 24.25 GHz and 40 GHz.
The Transversely-Excited Film Bulk Acoustic Resonator (XBAR) is an acoustic resonator structure for use in microwave filters. The XBAR is described in U.S. Pat. No. 10,491,291, titled TRANSVERSELY EXCITED FILM BULK ACOUSTIC RESONATOR. An XBAR resonator comprises an interdigital transducer (IDT) formed on a thin floating layer, or diaphragm, of a single-crystal piezoelectric material. The IDT includes a first set of parallel fingers, extending from a first busbar and a second set of parallel fingers extending from a second busbar. The first and second sets of parallel fingers are interleaved. A microwave signal applied to the IDT excites a shear primary acoustic wave in the piezoelectric diaphragm. XBAR resonators provide very high electromechanical coupling and high frequency capability. XBAR resonators may be used in a variety of RF filters including band-reject filters, band-pass filters, duplexers, and multiplexers. XBARs are well suited for use in filters for communications bands with frequencies above 3 GHz.
Throughout this description, elements appearing in figures are assigned three-digit or four-digit reference designators, where the two least significant digits are specific to the element and the one or two most significant digit is the figure number where the element is first introduced. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having the same reference designator.
Description of Apparatus
The XBAR 100 is made up of a thin film conductor pattern formed on a surface of a piezoelectric plate 110 having substantially parallel front and back surfaces 112, 114, respectively. The piezoelectric plate is a thin single-crystal layer of a piezoelectric material such as lithium niobate, lithium tantalate, lanthanum gallium silicate, gallium nitride, or aluminum nitride. The piezoelectric plate is cut such that the orientation of the X, Y, and Z crystalline axes with respect to the front and back surfaces is known and consistent. The piezoelectric plate may be Z-cut, which is to say the Z axis is normal to the front and back surfaces 112, 114. The piezoelectric plate may be rotated Z-cut or rotated YX-cut. XBARs may be fabricated on piezoelectric plates with other crystallographic orientations.
The back surface 114 of the piezoelectric plate 110 is attached to a surface of a substrate 120 except for a portion of the piezoelectric plate 110 that forms a diaphragm 115 spanning a cavity 140 formed in the substrate. The portion of the piezoelectric plate that spans the cavity is referred to herein as the “diaphragm” 115 due to its physical resemblance to the diaphragm of a microphone. As shown in
The substrate 120 provides mechanical support to the piezoelectric plate 110. The substrate 120 may be, for example, silicon, sapphire, quartz, or some other material or combination of materials. The back surface 114 of the piezoelectric plate 110 may be bonded to the substrate 120 using a wafer bonding process. Alternatively, the piezoelectric plate 110 may be grown on the substrate 120 or attached to the substrate in some other manner. The piezoelectric plate 110 may be attached directly to the substrate or may be attached to the substrate 120 via one or more intermediate material layers 122 as shown in
“Cavity” has its conventional meaning of “an empty space within a solid body.” The cavity 140 may be a hole completely through the substrate 120 (as shown in Section A-A and Section B-B) or a recess in the substrate 120 under the diaphragm 115. The cavity 140 may be formed, for example, by selective etching of the substrate 120 before or after the piezoelectric plate 110 and the substrate 120 are attached.
The conductor pattern of the XBAR 100 includes an interdigital transducer (IDT) 130. The IDT 130 includes a first plurality of parallel fingers, such as finger 136, extending from a first busbar 132 and a second plurality of fingers extending from a second busbar 134. The first and second pluralities of parallel fingers are interleaved. The interleaved fingers overlap for a distance AP, commonly referred to as the “aperture” of the IDT. The center-to-center distance L between the outermost fingers of the IDT 130 is the “length” of the IDT.
The first and second busbars 132, 134 serve as the terminals of the XBAR 100. A radio frequency or microwave signal applied between the two busbars 132, 134 of the IDT 130 excites a primary acoustic mode within the piezoelectric plate 110. The primary acoustic mode is a bulk shear mode where acoustic energy propagates along a direction substantially orthogonal to the surface of the piezoelectric plate 110, which is also normal, or transverse, to the direction of the electric field created by the IDT fingers. Thus, the XBAR is considered a transversely-excited film bulk wave resonator.
The IDT 130 is positioned on the piezoelectric plate 110 such that at least the fingers of the IDT 130 are disposed on the diaphragm 115 that spans, or is suspended over, the cavity 140. As shown in
For ease of presentation in
Referring now to the detailed schematic cross-sectional view, a front-side dielectric layer 150 may optionally be formed on the front side of the piezoelectric plate 110. The “front side” of the XBAR is, by definition, the surface facing away from the substrate. The front-side dielectric layer 150 may be formed only between the IDT fingers (e.g. IDT finger 138b) or may be deposited as a blanket layer such that the dielectric layer is formed both between and over the IDT fingers (e.g. IDT finger 138a). The front-side dielectric layer 150 may be a non-piezoelectric dielectric material, such as silicon dioxide, alumina, or silicon nitride. A thickness of the front side dielectric layer 150 is typically less than about one-third of the thickness of the piezoelectric plate 110. The front-side dielectric layer 150 may be formed of multiple layers of two or more materials. In some applications, a back-side dielectric layer (not shown) may be formed on the back side of the piezoelectric plate 110.
The IDT fingers 138a, 138b may be one or more layers of aluminum, an aluminum alloy, copper, a copper alloy, beryllium, gold, tungsten, molybdenum or some other conductive material. The IDT fingers are considered to be “substantially aluminum” if they are formed from aluminum or an alloy comprising at least 50% aluminum. The IDT fingers are considered to be “substantially copper” if they are formed from copper or an alloy comprising at least 50% copper. Thin (relative to the total thickness of the conductors) layers of other metals, such as chromium or titanium, may be formed under and/or over and/or as layers within the fingers to improve adhesion between the fingers and the piezoelectric plate 110 and/or to passivate or encapsulate the fingers and/or to improve power handling. The busbars (132, 134 in
Dimension p is the center-to-center spacing or “pitch” of the IDT fingers, which may be referred to as the pitch of the IDT and/or the pitch of the XBAR. Dimension w is the width or “mark” of the IDT fingers. The geometry of the IDT of an XBAR differs substantially from the IDTs used in surface acoustic wave (SAW) resonators. In a SAW resonator, the pitch of the IDT is one-half of the acoustic wavelength at the resonance frequency. Additionally, the mark-to-pitch ratio of a SAW resonator IDT is typically close to 0.5 (i.e. the mark or finger width is about one-fourth of the acoustic wavelength at resonance). In an XBAR, the pitch p of the IDT is typically 2 to 20 times the width w of the fingers. In addition, the pitch p of the IDT is typically 2 to 20 times the thickness of the piezoelectric plate 210. The width of the IDT fingers in an XBAR is not constrained to be near one-fourth of the acoustic wavelength at resonance. For example, the width of XBAR IDT fingers may be 500 nm or greater, such that the IDT can be readily fabricated using optical lithography. The thickness of the IDT fingers may be from 100 nm to about equal to the width w. The thickness of the busbars (132, 134) of the IDT may be the same as, or greater than, the thickness tm of the IDT fingers.
In the exemplary filter 200, the three series resonators 210A, B, C and the two shunt resonators 220A, B of the filter 200 are formed on a single plate 230 of piezoelectric material bonded to a silicon substrate (not visible). Each resonator includes a respective IDT (not shown), with at least the fingers of the IDT disposed over a cavity in the substrate. In this and similar contexts, the term “respective” means “relating things each to each”, which is to say with a one-to-one correspondence. In
Each of the resonators 210A, 210B, 210C, 220A, 220B in the filter 200 has resonance where the admittance of the resonator is very high and an anti-resonance where the admittance of the resonator is very low. The resonance and anti-resonance occur at a resonance frequency and an anti-resonance frequency, respectively, which may be the same or different for the various resonators in the filter 200. In over-simplified terms, each resonator can be considered a short-circuit at its resonance frequency and an open circuit at its anti-resonance frequency. The input-output transfer function will be near zero at the resonance frequencies of the shunt resonators and at the anti-resonance frequencies of the series resonators. In a typical filter, the resonance frequencies of the shunt resonators are positioned below the lower edge of the filter's passband and the anti-resonance frequencies of the series resonators are position above the upper edge of the passband.
The primary acoustic mode in an XBAR is a shear mode in which atomic displacements in the piezoelectric plate are lateral (i.e. parallel to the surfaces of the piezoelectric plate) but vary in a vertical direction. The direction of acoustic energy flow of the excited primary shear acoustic mode is substantially orthogonal to the surfaces of the piezoelectric plate.
The resonance frequency of an XBAR is proportional to the velocity of the shear primary acoustic mode in the diaphragm, and roughly inversely proportional to the diaphragm thickness. The resonance frequency of an XBAR is also dependent on the pitch and mark of the IDT fingers. In some broadband filters, a dielectric frequency setting layer, indicated by the broken rectangle 240, may be formed on the front and/or back surfaces to increase the diaphragm thickness above the thickness of the piezoelectric plate. This lowers the resonance frequencies of the shunt resonators relative to the resonance frequencies of the series resonators.
The shear wave velocity and the diaphragm thickness are both temperature dependent, with the temperature coefficient of shear wave velocity (TCV) being the dominant factor in the temperature dependence of resonance frequency.
The difference between the resonance and anti-resonance frequencies of an XBAR is determined, in part, by the electro-mechanical coupling between the electric field and the primary shear wave. This coupling depends on piezoelectric coupling coefficient e15. e15 is an element of a 3×6 matrix of piezoelectric coupling coefficients that describe the physical response of a piezoelectric material to an applied electric field. A larger value of e15 results in more efficient coupling to the primary shear acoustic mode, which results in wider spacing between the resonance and anti-resonance frequencies of an XBAR.
Lithium niobate crystal orientations previously used for XBARs include Z-cut and rotated Y-cut. Z-cut has Euler angles=(0°, 0°, 90°). Rotated Y-cut has Euler angles=(0°, β, 0°), with β between 30 and 38 degrees. Z-cut lithium niobate has a TCV of about −102 ppm/° ° C. and e15 of about 3.7. Rotated Y-cut lithium niobate has e15 about 4.4 and TCV between about −86 ppm/° C. and −92 ppm/° C.
Inspection of
The bandwidth and other requirements of a particular filter may dictate a minimum value for e15. The Euler angles (0°, β, 0°) of the piezoelectric plate may be selected with β set to the highest value in the range from 40° to 67° that provides the required minimum value of e15, while minimizing, to the extent possible, the TCF of the filter.
Inspection of
Closing Comments
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
This patent is a continuation of application Ser. No. 17/460,133, filed Aug. 27, 2021, entitled ACOUSTIC RESONATORS AND FILTERS WITH REDUCED TEMPERATURE COEFFICIENT OF FREQUENCY, which is a continuation of application Ser. No. 17/122,977, filed Dec. 15, 2020, entitled ACOUSTIC RESONATORS AND FILTERS WITH REDUCED TEMPERATURE COEFFICIENT OF FREQUENCY, which claims priority to provisional patent application 63/053,584, filed Jul. 18, 2020, entitled TCF OPTIMIZED XBAR DEVICES, and provisional patent application 63/088,344, filed Oct. 6, 2020, entitled OPTIMAL CUT ANGLE TO REDUCE TCF OF XBAR FILTERS. All of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5204575 | Kanda et al. | Apr 1993 | A |
5274345 | Gau | Dec 1993 | A |
5446330 | Eda et al. | Aug 1995 | A |
5552655 | Stokes et al. | Sep 1996 | A |
5631515 | Mineyoshi et al. | May 1997 | A |
5726610 | Allen et al. | Mar 1998 | A |
5729186 | Seki et al. | Mar 1998 | A |
5853601 | Krishaswamy | Dec 1998 | A |
6172582 | Hickernell | Jan 2001 | B1 |
6271617 | Yoneda et al. | Aug 2001 | B1 |
6377140 | Ehara et al. | Apr 2002 | B1 |
6516503 | Ikada et al. | Feb 2003 | B1 |
6540827 | Levy et al. | Apr 2003 | B1 |
6570470 | Maehara et al. | May 2003 | B2 |
6670866 | Ella et al. | Dec 2003 | B2 |
6707229 | Martin | Mar 2004 | B1 |
6710514 | Ikada et al. | Mar 2004 | B2 |
6833774 | Abbott et al. | Dec 2004 | B2 |
7009468 | Kadota et al. | Mar 2006 | B2 |
7345400 | Nakao et al. | Mar 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7535152 | Ogami et al. | May 2009 | B2 |
7554427 | Matsumoto | Jun 2009 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7728483 | Tanaka | Jun 2010 | B2 |
7868519 | Umeda | Jan 2011 | B2 |
7939987 | Solal et al. | May 2011 | B1 |
7941103 | Iwamoto et al. | May 2011 | B2 |
7965015 | Tai et al. | Jun 2011 | B2 |
8278802 | Lee et al. | Oct 2012 | B1 |
8294330 | Abbott et al. | Oct 2012 | B1 |
8344815 | Yamanaka et al. | Jan 2013 | B2 |
8816567 | Zuo et al. | Aug 2014 | B2 |
8829766 | Milyutin et al. | Sep 2014 | B2 |
8932686 | Hayakawa et al. | Jan 2015 | B2 |
9093979 | Wang | Jul 2015 | B2 |
9112134 | Takahashi | Aug 2015 | B2 |
9130145 | Martin et al. | Sep 2015 | B2 |
9148121 | Inoue | Sep 2015 | B2 |
9154111 | Bradley | Oct 2015 | B2 |
9219466 | Meltaus et al. | Dec 2015 | B2 |
9240768 | Nishihara et al. | Jan 2016 | B2 |
9276557 | Nordquist et al. | Mar 2016 | B1 |
9369105 | Li et al. | Jun 2016 | B1 |
9425765 | Rinaldi | Aug 2016 | B2 |
9525398 | Olsson | Dec 2016 | B1 |
9640750 | Nakanishi et al. | May 2017 | B2 |
9748923 | Kando et al. | Aug 2017 | B2 |
9762202 | Thalmayr et al. | Sep 2017 | B2 |
9780759 | Kimura et al. | Oct 2017 | B2 |
9837984 | Khlat et al. | Dec 2017 | B2 |
10079414 | Guyette et al. | Sep 2018 | B2 |
10187039 | Komatsu et al. | Jan 2019 | B2 |
10200013 | Bower et al. | Feb 2019 | B2 |
10211806 | Bhattacharjee | Feb 2019 | B2 |
10284176 | Solal | May 2019 | B1 |
10389391 | Ito | Aug 2019 | B2 |
10491192 | Plesski | Nov 2019 | B1 |
10601392 | Plesski et al. | Mar 2020 | B2 |
10637438 | Garcia et al. | Apr 2020 | B2 |
10644674 | Takamine | May 2020 | B2 |
10756697 | Plesski et al. | Aug 2020 | B2 |
10790802 | Yantchev et al. | Sep 2020 | B2 |
10797675 | Plesski | Oct 2020 | B2 |
10812048 | Nosaka | Oct 2020 | B2 |
10819309 | Turner et al. | Oct 2020 | B1 |
10819319 | Hyde | Oct 2020 | B1 |
10826462 | Plesski et al. | Nov 2020 | B2 |
10868510 | Yantchev et al. | Dec 2020 | B2 |
10868512 | Garcia et al. | Dec 2020 | B2 |
10868513 | Yantchev | Dec 2020 | B2 |
10911017 | Plesski | Feb 2021 | B2 |
10911021 | Turner et al. | Feb 2021 | B2 |
10911023 | Turner | Feb 2021 | B2 |
10917070 | Plesski et al. | Feb 2021 | B2 |
10917072 | McHugh et al. | Feb 2021 | B2 |
10985726 | Plesski | Apr 2021 | B2 |
10985728 | Plesski et al. | Apr 2021 | B2 |
10985730 | Garcia | Apr 2021 | B2 |
10992282 | Plesski et al. | Apr 2021 | B1 |
10992283 | Plesski et al. | Apr 2021 | B2 |
10992284 | Yantchev | Apr 2021 | B2 |
10998877 | Turner et al. | May 2021 | B2 |
10998882 | Yantchev et al. | May 2021 | B2 |
11003971 | Plesski et al. | May 2021 | B2 |
11114996 | Plesski et al. | Sep 2021 | B2 |
11114998 | Garcia et al. | Sep 2021 | B2 |
11139794 | Plesski et al. | Oct 2021 | B2 |
11143561 | Plesski | Oct 2021 | B2 |
11146231 | Plesski | Oct 2021 | B2 |
11146232 | Yandrapalli et al. | Oct 2021 | B2 |
11146238 | Hammond et al. | Oct 2021 | B2 |
11146244 | Yantchev | Oct 2021 | B2 |
11165407 | Yantchev | Nov 2021 | B2 |
11171629 | Turner | Nov 2021 | B2 |
11201601 | Yantchev et al. | Dec 2021 | B2 |
11323089 | Turner | May 2022 | B2 |
11368139 | Garcia | Jun 2022 | B2 |
20020079986 | Ruby et al. | Jun 2002 | A1 |
20020130736 | Mukai | Sep 2002 | A1 |
20020158714 | Kaitila et al. | Oct 2002 | A1 |
20020189062 | Lin et al. | Dec 2002 | A1 |
20030042998 | Edmonson | Mar 2003 | A1 |
20030080831 | Naumenko et al. | May 2003 | A1 |
20030199105 | Kub et al. | Oct 2003 | A1 |
20040041496 | Imai et al. | Mar 2004 | A1 |
20040100164 | Murata | May 2004 | A1 |
20040207033 | Koshido | Oct 2004 | A1 |
20040207485 | Kawachi et al. | Oct 2004 | A1 |
20040261250 | Kadota et al. | Dec 2004 | A1 |
20050077982 | Funasaka | Apr 2005 | A1 |
20050099091 | Mishima | May 2005 | A1 |
20050185026 | Noguchi et al. | Aug 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20050264136 | Tsutsumi et al. | Dec 2005 | A1 |
20060131731 | Sato | Jun 2006 | A1 |
20060152107 | Tanaka | Jul 2006 | A1 |
20060179642 | Kawamura | Aug 2006 | A1 |
20070090898 | Kando et al. | Apr 2007 | A1 |
20070115079 | Kubo et al. | May 2007 | A1 |
20070182510 | Park | Aug 2007 | A1 |
20070188047 | Tanaka | Aug 2007 | A1 |
20070194863 | Shibata et al. | Aug 2007 | A1 |
20070267942 | Matsumoto et al. | Nov 2007 | A1 |
20070278898 | Miura et al. | Dec 2007 | A1 |
20070296304 | Fujii et al. | Dec 2007 | A1 |
20080018414 | Inoue et al. | Jan 2008 | A1 |
20080246559 | Ayazi | Oct 2008 | A1 |
20080297280 | Thalhammer | Dec 2008 | A1 |
20090273415 | Frank | Nov 2009 | A1 |
20090315640 | Umeda | Dec 2009 | A1 |
20100019866 | Hara et al. | Jan 2010 | A1 |
20100064492 | Tanaka | Mar 2010 | A1 |
20100123367 | Tai et al. | May 2010 | A1 |
20100223999 | Onoe | Sep 2010 | A1 |
20100301703 | Chen et al. | Dec 2010 | A1 |
20110018389 | Fukano et al. | Jan 2011 | A1 |
20110018654 | Bradley et al. | Jan 2011 | A1 |
20110102107 | Onzuka | May 2011 | A1 |
20110109196 | Goto et al. | May 2011 | A1 |
20110278993 | Iwamoto | Nov 2011 | A1 |
20120073390 | Zaghloul et al. | Mar 2012 | A1 |
20120198672 | Ueda et al. | Aug 2012 | A1 |
20120286900 | Kadota et al. | Nov 2012 | A1 |
20120326809 | Tsuda | Dec 2012 | A1 |
20130057360 | Meltaus et al. | Mar 2013 | A1 |
20130127551 | Yamanaka | May 2013 | A1 |
20130207747 | Nishii et al. | Aug 2013 | A1 |
20130234805 | Takahashi | Sep 2013 | A1 |
20130271238 | Onda | Oct 2013 | A1 |
20130278609 | Stephanou et al. | Oct 2013 | A1 |
20130321100 | Wang | Dec 2013 | A1 |
20140009032 | Takahashi et al. | Jan 2014 | A1 |
20140009247 | Moriya | Jan 2014 | A1 |
20140113571 | Fujiwara et al. | Apr 2014 | A1 |
20140130319 | Iwamoto | May 2014 | A1 |
20140145556 | Kadota | May 2014 | A1 |
20140151151 | Reinhardt | Jun 2014 | A1 |
20140152145 | Kando et al. | Jun 2014 | A1 |
20140173862 | Kando et al. | Jun 2014 | A1 |
20140225684 | Kando et al. | Aug 2014 | A1 |
20140312994 | Meltaus et al. | Oct 2014 | A1 |
20150014795 | Franosch | Jan 2015 | A1 |
20150042417 | Onodera et al. | Feb 2015 | A1 |
20150165479 | Lasiter et al. | Jun 2015 | A1 |
20150244149 | Van Someren | Aug 2015 | A1 |
20150319537 | Perois et al. | Nov 2015 | A1 |
20150333730 | Meltaus et al. | Nov 2015 | A1 |
20150365067 | Hori et al. | Dec 2015 | A1 |
20160028367 | Shealy | Jan 2016 | A1 |
20160049920 | Kishino | Feb 2016 | A1 |
20160079958 | Burak | Mar 2016 | A1 |
20160087187 | Burak | Mar 2016 | A1 |
20160182009 | Bhattacharjee | Jun 2016 | A1 |
20160285430 | Kikuchi et al. | Sep 2016 | A1 |
20160301382 | Iwamoto | Oct 2016 | A1 |
20170104470 | Koelle et al. | Feb 2017 | A1 |
20170063332 | Gilbert et al. | Mar 2017 | A1 |
20170179225 | Kishimoto | Jun 2017 | A1 |
20170179928 | Raihn et al. | Jun 2017 | A1 |
20170187352 | Omura | Jun 2017 | A1 |
20170201232 | Nakamura et al. | Jul 2017 | A1 |
20170214381 | Bhattacharjee | Jul 2017 | A1 |
20170214387 | Burak et al. | Jul 2017 | A1 |
20170222617 | Mizoguchi | Aug 2017 | A1 |
20170222622 | Solal et al. | Aug 2017 | A1 |
20170264266 | Kishimoto | Sep 2017 | A1 |
20170290160 | Takano et al. | Oct 2017 | A1 |
20170370791 | Nakamura et al. | Dec 2017 | A1 |
20180005950 | Watanabe | Jan 2018 | A1 |
20180013400 | Ito et al. | Jan 2018 | A1 |
20180013405 | Takata | Jan 2018 | A1 |
20180026603 | Iwamoto | Jan 2018 | A1 |
20180033952 | Yamamoto | Feb 2018 | A1 |
20180041191 | Park | Feb 2018 | A1 |
20180062615 | Kato et al. | Mar 2018 | A1 |
20180062617 | Yun et al. | Mar 2018 | A1 |
20180123016 | Gong | May 2018 | A1 |
20180191322 | Chang et al. | Jul 2018 | A1 |
20180212589 | Meltaus et al. | Jul 2018 | A1 |
20180278227 | Hurwitz | Sep 2018 | A1 |
20180309426 | Guenard | Oct 2018 | A1 |
20190007022 | Goto et al. | Jan 2019 | A1 |
20190068155 | Kimura | Feb 2019 | A1 |
20190068164 | Houlden et al. | Feb 2019 | A1 |
20190123721 | Takamine | Apr 2019 | A1 |
20190131953 | Gong | May 2019 | A1 |
20190148621 | Feldman et al. | May 2019 | A1 |
20190181825 | Schmalzl et al. | Jun 2019 | A1 |
20190181833 | Nosaka | Jun 2019 | A1 |
20190207583 | Miura et al. | Jul 2019 | A1 |
20190245518 | Ito | Aug 2019 | A1 |
20190273480 | Lin et al. | Sep 2019 | A1 |
20190305746 | Ota | Oct 2019 | A1 |
20190348966 | Campanella-Pineda | Nov 2019 | A1 |
20190379351 | Miyamoto et al. | Dec 2019 | A1 |
20190386633 | Plesski | Dec 2019 | A1 |
20190386635 | Plesski et al. | Dec 2019 | A1 |
20190386636 | Plesski et al. | Dec 2019 | A1 |
20190386638 | Kimura et al. | Dec 2019 | A1 |
20200007110 | Konaka et al. | Jan 2020 | A1 |
20200021271 | Plesski | Jan 2020 | A1 |
20200021272 | Segovia Fernandez et al. | Jan 2020 | A1 |
20200036357 | Mimura | Jan 2020 | A1 |
20200228087 | Michigami et al. | Jul 2020 | A1 |
20200235719 | Yantchev et al. | Jul 2020 | A1 |
20200244247 | Maeda | Jul 2020 | A1 |
20200259480 | Pensala | Aug 2020 | A1 |
20200274520 | Shin | Aug 2020 | A1 |
20200295729 | Yantchev | Sep 2020 | A1 |
20200304091 | Yantchev | Sep 2020 | A1 |
20200313645 | Caron | Oct 2020 | A1 |
20200350891 | Turner | Nov 2020 | A1 |
20210013859 | Turner et al. | Jan 2021 | A1 |
20210265978 | Plesski et al. | Aug 2021 | A1 |
20210273631 | Jachowski et al. | Sep 2021 | A1 |
20210328574 | Garcia | Oct 2021 | A1 |
20210351762 | Dyer et al. | Nov 2021 | A1 |
20220103160 | Jachowski et al. | Mar 2022 | A1 |
20220149808 | Dyer et al. | May 2022 | A1 |
20220200567 | Garcia | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
106788318 | May 2017 | CN |
110417373 | Nov 2019 | CN |
210431367 | Apr 2020 | CN |
H10209804 | Aug 1998 | JP |
2001244785 | Sep 2001 | JP |
2002300003 | Oct 2002 | JP |
2003078389 | Mar 2003 | JP |
2004096677 | Mar 2004 | JP |
2004129222 | Apr 2004 | JP |
2004304622 | Oct 2004 | JP |
2006173557 | Jun 2006 | JP |
2007251910 | Sep 2007 | JP |
2007329584 | Dec 2007 | JP |
2010062816 | Mar 2010 | JP |
2010103803 | May 2010 | JP |
2010233210 | Oct 2010 | JP |
2013528996 | Jul 2013 | JP |
2013214954 | Oct 2013 | JP |
2015054986 | Mar 2015 | JP |
2016001923 | Jan 2016 | JP |
2018093487 | Jun 2018 | JP |
2018166259 | Oct 2018 | JP |
2018207144 | Dec 2018 | JP |
2020113939 | Jul 2020 | JP |
2010047114 | Apr 2010 | WO |
2015098694 | Jul 2015 | WO |
2016017104 | Feb 2016 | WO |
2016052129 | Jul 2016 | WO |
2016147687 | Sep 2016 | WO |
2017188342 | Nov 2017 | WO |
2018003268 | Jan 2018 | WO |
2018003273 | Jan 2018 | WO |
2018163860 | Sep 2018 | WO |
2019138810 | Jul 2019 | WO |
2020092414 | May 2020 | WO |
2020100744 | May 2020 | WO |
Entry |
---|
International Search Report and Written Opinion in PCT/US2022/081068, mailed Apr. 18, 2023, 17 pages. |
Office Action in JP2021175220, mailed Apr. 25, 2023, 10 pages. |
Gorisse et al., “Lateral Field Excitation of membrane-based Aluminum Nitride resonators,” Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), May 2011, 5 pages. |
Pang et al., “Self-Aligned Lateral Field Excitation Film Acoustic Resonator with Very Large Electromechanical Coupling,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Aug. 2004, pp. 558-561. |
Yandrapalli et al., “Toward Band n78 Shear Bulk Acoustic Resonators Using Crystalline Y-Cut Lithium Niobate Films With Spurious Suppression,” Journal of Microelectromechanical System, Aug. 2023, vol. 32, No. 4, pp. 327-334. |
Number | Date | Country | |
---|---|---|---|
20220200569 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63088344 | Oct 2020 | US | |
63053584 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17460133 | Aug 2021 | US |
Child | 17692089 | US | |
Parent | 17122977 | Dec 2020 | US |
Child | 17460133 | US |